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Dynamic Steady-State Stress
Field in a Web During Slitting
Based on a dynamic fracture mechanics analysis, the stress field in a continuou
(called a web) during slitting (or cutting) is investigated. For a homogeneous, isotr
and linearly elastic web, the steady-state dynamic stress field surrounding the slitter
can be related to the interacting traction between the moving web and the blade, a
the far-field tension that is parallel to the slitting direction. The interaction between
moving web and the blade also includes friction that is considered to be a Coulomb
By solving an integral equation, the normal traction between the web and the blade
be expressed as a function of the blade profile and the web speed. Numerical calcul
are performed for an ideal razor blade with the wedge shape. The analysis presen
this study indicates that the contact between the moving web and the blade does no
at the tip of the blade but rather starts at some distance behind the blade tip. More
it is found that the distance from the point where the web begins to separate to the
where the blade and the web start to have contact, is controlled by the toughness
web material and also by the web speed. Some characteristic nature of the dynamic
field surrounding the slitter blade is investigated based on the dynamic fracture mec
ics analysis results.@DOI: 10.1115/1.1831298#
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1 Introduction
A web is a thin, continuous, and flexible material such a

plastic film. Slitting, or equivalently cutting, of a web is a proce
that converts a web into narrower webs. Usually, this is the fi
process that requires high slit-edge quality. While only high qu
ity final products such as photographic films and video tapes
available on the market, there is a tremendous amount of prod
being thrown away or recycled because of the poor slit-edge q
ity that attributes to improper slitting conditions or improper cu
ting tool, or slitters. To reduce the material waste and to impr
the quality control of the slit-edge require a better understand
of the mechanics underlying the slitting processes.

Most publications on web slitting in the open literature are
stricted to qualitative investigations; quantitative study is ve
limited. The identification of appropriate controlling parameters
slitting process relies heavily on experience and empirical m
ods such as trial and error. Among the few relevant quantita
investigations, Meehan and Burns@1# measured the cutting forc
and determined the isochromatic stress lines of a shear s
blade in a polycarbonate sheet; Kasuga et al.@2# investigated the
shearing process of ductile materials; Arcona and Dow@3# deter-
mined the relation between the cutting force and the cutting sp
for plastic films; Bollen@4# studied the process of shear cutting
PET film; Bax @5# investigated the slitting energy rate and bla
forces; Zheng and Wierzbicki@6# derived a closed-form solution
for the cutting force for a steady-state wedge cutting process

Web slitting can be considered primarily as a process of a c
trolled crack propagation in the web material. A crack is initiat
by the cutting tool, or equivalently slitter blade, and is propagat
in the web under the guidance of the slitter blade. Razor slitt
can be considered primarily as an opening mode problem in
framework of fracture mechanics, while shear slitting may be c
sidered primarily as an antiplane shear mode problem. Near
crack tip, there exists a high stress zone, where excessive ine
deformation might occur. Damages, such as microvoids, m
likely initiate and coalesce to form visible cracks for some w

1
To whom correspondence should be addressed.

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the Applied Mechanics Division, October
1999; final revision, June 17, 2004. Editor: R. M. McMeeking.
Copyright © 2Journal of Applied Mechanics
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materials under certain slitting conditions. Part of the dama
such as voids and cracks will remain in the wake of the m
crack, i.e., the slit edge, and cause deterioration in the slit qua
The defective edges that contain debris and slivers, will also g
erate slit dust. Therefore, understanding the stress and strain
tribution in a slitting web near the blade, their relation to the s
edge defects, and their effects on slit quality, dust formation, w
winding quality following slitting etc., is essential for quality con
trol in slitting processes.

In this paper, a general representation of the stress and s
distribution in a web during razor slitting is derived for an isotr
pic, homogeneous, and linearly elastic material based on dyna
fracture mechanics analysis. The solution approach is approp
for a slitter blade of arbitrary shape with symmetry. For an id
razor blade with the wedge profile, the stress solution is presen
and the contact condition between the moving web and the slit
blade is investigated. The solution is used to investigate the
pendence of the size of yield zone on web speed.

2 Deformation Field Surrounding the Slitter
In this section, the deformation field surrounding the slitter in

moving web is obtained based on the dynamic fracture mecha
analysis. Due to the nature of the web material, the deformatio
considered to be two dimensional. We also assume that the
material is homogeneous, isotropic, and elastic. First, the gen
formulation regarding the web slitting process is discussed. Th
the special case of concentrated tractions on the crack surfa
considered. Finally, using the scheme of superposition, the st
field in the web surrounding the slitter is constructed.

2.1 Mathematical Formulation. The web slitting process
is shown schematically in Fig. 1. A web is moving at a const
velocity v. A stationary slitting blade separate the moving w
into two pieces. In the web plane, a Cartesian coordinate sys
(X1 ,X2) is chosen and it moves with the web at the speed ofv.
The X1 axis is parallel to but pointing against the web movin
direction.

For two-dimensional planar deformation, we may consider
two displacement potentials,F(X1 ,X2 ,t) and C(X1 ,X2 ,t), in
the Cartesian system (X1 ,X2). With respect to the undeforme
field, the two nonzero in-plane displacement components can
expressed through

7,
005 by ASME MARCH 2005, Vol. 72 Õ 157
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]F~X1 ,X2 ,t !

]Xa
1eab

]C~X1 ,X2 ,t !

]Xb
, a51,2, (1)

where the summation convention has been used. Notationeab is
the two-dimensional alternator defined by
o
h
t

e

r

h
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e1252e2151, e115e2250.

The components of stress for a homogeneous, isotropic, and
early elastic material that we consider, can be expressed thro
the displacement potentials as
s115mS cl
2

cs
2
•

]2F~X1 ,X2 ,t !

]Xa]Xa
22

]2F~X1 ,X2 ,t !

]X2
2

12
]2C~X1 ,X2 ,t !

]X1]X2
D

s225mS cl
2

cs
2
•

]2F~X1 ,X2 ,t !

]Xa]Xa
22

]2F~X1 ,X2 ,t !

]X1
2

22
]2C~X1 ,X2 ,t !

]X1]X2
D

s125mS 2
]2F~X1 ,X2 ,t !

]X1]X2
1

]2C~X1 ,X2 ,t !

]X2
2

2
]2C~X1 ,X2 ,t !

]X1
2 D 6 , (2)
ed.
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wherecl andcs are, respectively, the dilatational and shear wa
speeds of the elastic material. They can be expressed, in term
the shear modulusm, Poisson’s ration, and the mass densityr, as

cl5S k11

k21
•

m

r D 1/2

, cs5S m

r D 1/2

, (3)

wherek5324n for plane strain deformation andk5~32n!/~11n!
for plane stress deformation, respectively. In the absence of
body force density, equations of motion are given by

]sab

]Xb
5r

]2ua

]t2
, a51,2. (4)

By using the constitutive relation~2!, the equations of motion~4!
can be rewritten in terms of the displacement potentia
F(X1 ,X2 ,t) andC(X1 ,X2 ,t), as

]2F~X1 ,X2 ,t !

]Xa]Xa
2

1

cl
2
•

]2F~X1 ,X2 ,t !

]t2
50, (5a)

]2C~X1 ,X2 ,t !

]Xa]Xa
2

1

cs
2
•

]2C~X1 ,X2 ,t !

]t2
50. (5b)

Suppose that the slitting process has started for quite s
time, and the deformation surrounding the slitter has reac
steady state. In other words, for an observer sitting at the sli
the surrounding field does not change with time. Introduce a
ordinate system (x1 ,x2) with the origin located at the point wher
the web starts to separate and with thex1-axis pointing against the
web moving direction. Then the relation between the two coo
nate systems (X1 ,X2) and (x1 ,x2) is a simple translation:

x15X12vt, x25X2 .

Here we have assumed that at the moment oft50, the two sys-
tems coincide. If we view the material system (X1 ,X2) as station-
ary, then the web slitting process can be considered as one t

Fig. 1 Schematics of the web slitting process
ve
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straight crack propagates with a constant velocityv under the load
applied by the slitter which is also traveling with the same spe

In the ‘‘moving’’ coordinate system, the equation of motion~5!
becomes

f ,11~x1 ,x2!1
1

a l
2

f ,22~x1 ,x2!50,

c ,11~x1 ,x2!1
1

as
2

c ,22~x1 ,x2!50, (6)

where f(x1 ,x2)5F(x11vt,x2) and c(x1 ,x2)5C(x11vt,x2),
and the steady-state condition has been used in writing Eq.~6!.
Meanwhile the two parametersa l andas are defined by

a l5S 12
v2

cl
2D 1/2

, as5S 12
v2

cs
2D 1/2

.

The two equations in Eq.~6! are Laplace’s equations in the co
responding scaled plane (x1 ,a lx2) for f, and (x1 ,asx2) for c,
respectively. As a result, the most general solutions for Eq.~6! can
be expressed as@7#

f~x1 ,x2!5Re@F~zl !#, c~x1 ,x2!5Im@G~zs!#, (7)

where the complex variableszl andzs are given by

zl5x11 ia lx2 , zs5x11 iasx2 ,

and i 5A21. FunctionsF(zl) andG(zs) are analytic everywhere
in the complexzl , or zs planes except along the nonpositive re
axis 2`,x1<0 occupied by the crack. In terms of the analyt
functionsF(zl) and G(zs), the displacement and stress comp
nents, in the (x1 ,x2) system, are

u1~x1 ,x2!5Re@F8~zl !1asG8~zs!#,

u2~x1 ,x2!52Im@a lF8~zl !1G8~zs!#, (8)

and

s11~x1 ,x2!5m Re@~112a l
22as

2!F9~zl !12asG9~zs!#

s22~x1 ,x2!52m Re@~11as
2!F9~zl !12asG9~zs!#

s12~x1 ,x2!52m Im@2a lF9~zl !1~11as
2!G9~zs!#

J ,

(9)

where the prime represents the derivative with respect to the
responding complex argument. From the above discussion,
can see that the whole deformation field will be determined if
two analytic functionsF(zl) andG(zs) can be obtained.

2.2 Concentrated Tractions on the Crack Surface. In this
section, we consider the stress field surrounding a steadily mo
Transactions of the ASME
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crack where concentrated tractions are applied on the crack
face. Then, the stress field surrounding the slitter can be c
structed using superposition.

As shown in Fig. 2, a crack is propagating at a constant ve
ity, v, through an unbounded two-dimensional region. At a fix
distance,c, behind the moving crack tip, a pair of concentrat
forces with the magnitude,s, is applied to the crack surface an

Fig. 2 Steady crack growth due to symmetrically applied con-
centrated tractions on the crack surface at a fixed distance, c ,
behind the crack tip
t

d

c

b
n

Journal of Applied Mechanics
sur-
on-

oc-
ed
d

d

tends to open the crack. Meanwhile, another concentrated fo
ls, is applied at the same location and is pointing to the direct
of crack growth. The second concentrated force is due to frict
and the Coulomb-type of contact condition is assumed withl to
be the friction coefficient. Therefore, the boundary conditions
described by

s22~x1,06!52sd~x11c!

s12~x1,06!57lsd~x11c!J , for 2`,x1,0, (10)

whered~•! is the Dirac’s delta function. Far away from the crac
tip, or at infinity, the stress field is such that

s115s0 , s2250, s1250, as~x1
21x2

2!1/2→`, (11)

wheres0 characterizes the remote tension along thex1 direction.
One can see that the deformation field is symmetric with resp
to the x1 axis. As a result, the two analytic functions,F(zl) and
G(zs) introduced in the previous section, have to satisfy the f
lowing restrictions:

F̄~zl !5F~zl !, Ḡ~zs!5G~zs!, (12)

where the overline stands for the complex conjugate, and th
fore, we only need to consider the upper half of the (x1 ,x2) plane.

The problem of a steady growing crack subjected to conc
trated shear traction on the crack surface has been discusse
Freund@7#. Following similar procedure, the two analytic func
tions,F(zl) andG(zs), can be obtained as
F9~zl !5
11as

2

pD~v !
•

s

m
•

Ac

Azl~zl1c!
2

2as

pD~v !
•

ls

m
•

1

zl1c
1

1

2~a l
22as

2!
•

s0

m

G9~zs!52
2a l

pD~v !
•

s

m
•

Ac

Azs~zs1c!
1

11as
2

pD~v !
•

ls

m
•

1

zs1c
2

11as
2

4as~a l
22as

2!
•

s0

m
6 , (13)
e
can
dy-

tion
where

D~v !54a las2~11as
2!2.

Note, thatD(v)50 whenv5cR , wherecR is the Rayleigh wave
speed of the elastic material. Therefore, we exclude situa
where the crack propagates with the Rayleigh wave speedcR .
The stress field surrounding the moving crack can be obtaine
combining Eqs.~13! and ~9!.

According to the theory of linearly elastic fracture mechani
the dynamic mode-I stress intensity factor at the moving crack
K I , is defined by

K I5 lim
x1→01

A2px1s22~x1,0!. (14)

From Eqs.~9! and ~13!, we have

K I5sA 2

pc
. (15)

One can see that the dynamic stress intensity factor,K I , does not
explicitly depend on the crack-tip speed,v.

2.3 Stress Field Surrounding the Slitter. Now, consider
that the crack surface is subjected to a distributed normal trac
s(x1). The associated friction traction is therefore, given
ls(x1). Using the superposition scheme, the two analytic fu
tions,F(zl) andG(zs), can be expressed as
ion

by

s,
tip,

tion
y
c-

F9~zl !5
11as

2

pD~v ! E2`

0 s~s!

m
•

A2s

Azl~zl2s!
ds2

2las

pD~v !

3E
2`

0 s~s!

m
•

ds

zl2s
1

1

2~a l
22as

2!
•

s0

m
, (16a)

G9~zs!52
2a l

pD~v ! E2`

0 s~s!

m
•

A2s

Azs~zs2s!
ds

1
l~11as

2!

pD~v ! E
2`

0 s~s!

m
•

ds

zs2s
2

11as
2

4as~a l
22as

2!
•

s0

m
.

(16b)

By combining Eqs.~9! and ~16!, the stress field surrounding th
slitter can be calculated and therefore, the deformation field
be determined. Also, by using the superposition scheme, the
namic stress intensity factor at the crack tip,K I , is given by

K I5A2

p E
2`

0 s~s!

A2s
ds. (17)

One can observe that for the dynamic stress intensity factor,K I ,
to be finite, the normal tractions(x1) has to be bounded asx1

→02, ands(x1)→ux1up as ux1u→` for somep,21/2. On the
other hand, if the normal tractions(x1) is applied in a finite
region, where the crack tip is not an end point, the normal trac
s(x1) has to be integrable at both end points of the region.
MARCH 2005, Vol. 72 Õ 159
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Fig. 3 Geometric profile of the slitter and contact condition
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3 Interaction Between Moving Web and Slitting Blade
In the previous section, the stress field in the moving web s

rounding the slitting blade, is obtained based on the dynamic f
ture mechanics analysis. In determining the stress field, we h
to know the functions(x1), which is assumed to be prescribe
along the crack surface in the analysis. With the normal trac
s(x1), together with the remote tensile stress,s0 ~also called web
stress!, we can calculate the stress field at any point surround
the slitting blade. However, in the web slitting process, the tr
tion applied on the crack surface or the web edge,s(x1), is the
result of interaction between the slitting blade and the mov
web. Intuitively, this interacting traction will depend on the mo
ing velocity of the web and the shape of the slitting blade. In t
section, we will determine the tractions(x1) and investigate its
properties.

Behind the crack tip, the crack opening displacement at
positionx1 is defined by

d2~x1!5u2~x1,01!2u2~x1,02!, for 2`,x1<0. (18)

With the help of Eqs.~8! and ~16!, one can show that

d28~x1!5
2a l~12as

2!

D~v !
•

1

p E
2`

0 s~s!

m
A2s

2x1
•

ds

s2x1
,

for 2`,x1<0. (19)

By using the fact that at the crack tip,d2(0)50, the crack opening
displacement can be obtained as

d2~x1!5
2a l~12as

2!

pD~v ! E
2`

0 s~s!

m
lnUA2s1A2x1

A2s2A2x1
Uds,

for 2`,x1<0. (20)

Note that in the above expression, the normal opening displ
mentd2(x1) depends only on the normal traction applied on t
crack surface or web edge,s(x1). The shearing traction assoc
ated with the friction coefficientl, and the remote tensile
stresss0 , do not enter the expression for the crack open
displacement.

Consider the situation depicted in Fig. 3. Here the slitting bla
has a finite length. The distance between the crack tip and th
of the blade isq and the distance between the crack tip and
end of the blade isb. The profile of the slitting blade is charac
terized by the functiond(x1). We assume that the slitting blad
and the moving web keep contact in the region of2b<x1<2a
where a>q. Therefore, when the slitting blade is perfect
CH 2005
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aligned with the web moving direction, within the contact regio
we have d2(x1)5d(x1). By denoting h152x1 /b and h5
2s/b, from Eq. ~20!, one can write:

E
a

1

s
*

~h!lnUAh1Ah1

Ah2Ah1
Udh5

pD~v !

2a l~12as
2!

d
*

~h1!, for a<h1<1,

(21)

where we have defined the following,

s
*

~h1!5
s~x1!

m , d
*
~h1!5

d~x1!
b , a5 a

b .

One can observe from Eq.~21! that the interacting traction

between the moving web and the slitting blade,s
*

(h1), can be
expressed in the form of

s
*

~h1!5
D~v !

2a l~12as
2!

S~h1!, for a<h1<1, (22)

which indicates thats
*

(h1) is composed by two parts. The firs
one is a function of the web speed,D(v)/2a l(12as

2), which
intrinsically also depends on the Poisson’s ratio,n. The second
part, denoted byS(h1), does not depend on the web speed, it
only a function of the blade profile. We may refer to the first p
as the speed factor and the second part as the shape factor
variation of the speed factor as a function of the web spee
presented in Fig. 4 for different Poisson’s ratios. Here we h
assumed that the deformation is plane stress. One can see th
speed factor is a monotonic function of the web speed. It st
from the value of 2/~k11! at v50 and decreases to zero whe
v5cR , wherecR is the Rayleigh wave speed of the material.

The shape factor, orS(h1), is determined in the following. By
substituting Eq.~22! into Eq. ~21!, we have

1

p E
a

1

S~h!lnUAh1Ah1

Ah2Ah1
Udh5d

*
~h1!, for a<h1<1. (23)

Equation~23! is an integral equation for the unknown functio
S(h1). This integral equation is of the first kind, Fredholm typ
and linear. To solve Eq.~23!, we differentiate both sides with
respect toh1 , which leads to

E
a

1 AhS~h!

h2h1
dh5pAh1d

*
8~h1!, for a<h1<1. (24)

The solution to the above integral equation can be obtained a@8#
Transactions of the ASME
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S~h1!52
1

p E
a

1 Ah~h2a!~12h!

Ah1~h12a!~12h1!
•

d
*
8~h!

h2h1
dh

1
A

pAh1~h12a!~12h1!
, for a<h1<1, (25)

whereA is a real constant. The situation depicted in Fig. 3 h
suggested that the contact traction ath15a has to be bounded
This requirement renders the constantA to be

A5E
a

1 Ah~12h!

Ah2a
d
*

8~h!dh. (26)

Now, the functionS(h1) can be rewritten as

S~h1!52
1

p
A h12a

h1~12h1! Ea

1Ah~12h!

h2a
•

d
*
8~h!

h2h1
dh,

for a<h1<1. (27)

If we let the parametera vanish, or the slitting blade and th
moving web start to have contact right at the tip of the bla
From Fig. 3, such assumption also implies that the tip of the bl
and the crack tip are coincide, orq50. As a result, the expressio
for the functionS(h1) becomes

S~h1!52
1

pA12h1
E

0

1 A12hd
*
8~h!

h2h1
dh, for 0<h1<1.

(28)

One can show that ash1→02, the above functionS(h1) is un-
bounded. However, from Eq.~17!, we have observed that the no
mal tractions(x1) has to be bounded asx1→02. Such observa-
tion indicates that in Eq.~27! we must haveaÞ0. Therefore, the
exclusion ofa50 indicates that the contact between the mov
web and the slitting blade does not start at the tip of the blade
rather starts at some distance behind the blade tip. As a matt
fact, the above conclusion is consistent with observations
during the slitting of some brittle webs, the crack tip is inde
ahead of the tip of the slitting blade.

Fig. 4 Variation of the speed factor as a function of the web
speed for different Poisson’s ratios
Journal of Applied Mechanics
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To study the properties of the shape factor,S(h1), we consider
an ideal shape, a wedge profile, for the slitting blade. The we
profile can be described as

d~x1!52ux11qutanu, for 2b<x1<2q, (29)

where 2u is the angle of the wedge. In nondimensional form, t
wedge shape in Eq.~29! can be rewritten as

d
*
~h1!52~h12g!tanu, for g<h1<1, (30)

whereg5q/b and g,a. The shape factor,S(h1), is expressed
for slitting blade with wedge slitter as

S~h1!52
2 tanu

p
A h12a

h1~12h1! Ea

1Ah~12h!

h2a
•

dh

h2h1
,

for a<h1<1. (31)

The variation ofA12h1S(h1)/tanu as a function of the position
behind the crack tip, is plotted in Fig. 5 for different values of t
parametera. Note that for smallera ~e.g.,a50.01 or 0.1 in Fig.
5!, as h1 changes froma to 1, S(h1) starts from zero, which
satisfies the requirement imposed onS(h1), and decreases. Then
S(h1) starts to increase and becomes positive. For largera ~a
50.5 in Fig. 5!, S(h1) becomes a monotonically increasing fun
tion. However, the interacting traction between the moving w
and the slitting blade cannot be negative. Therefore, the ab
observation suggests that there exists a lower bound for
parametera denoted bya0 , and we must havea>a0 . This lower
bound parametera0 can be obtained from the following
condition:

dS~h1!

dh1
U

h15a0

50, (32)

for any given slitting blade profile. Specifically, for blades wi
the wedge profile Eq.~29!, a numerical estimation givesa0
50.1739. It is interesting to note that the limiting valuea0 does
not depend on the wedge angle 2u. However, since the analysi
presented in this study is based on the infinitesimal deforma
theory, the above conclusion should be understood of being
only for small angleu.

Fig. 5 Variation of the shape factor as a function of the dis-
tance behind crack tip for different values of a
MARCH 2005, Vol. 72 Õ 161
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Through the above discussions, we have shown that the in
acting traction between the moving web and the slitting blade
the product of two factors, the speed factor and the shape fa
We also showed that the parametera has to be in the range of

a0<a,1, (33)

in order for the interacting traction to be positive. Neverthele
the constanta still remains as a free parameter and needs to
determined. Recall that the dynamic stress intensity factor at
crack tip, K I , is given in Eq.~17!. Also note that during the
slitting process, the stress intensity factor,K I , has to be equal to
the fracture toughness of the web material, which is denoted
K IC(v). Here the notation has suggested that the fracture tou
ness of the web material,K IC , also depends on the web speedv.
In terms of the shape factor,S(h1), K IC(v) can be rewritten as

K IC~v !5mA2b

p
•

D~v !

2a l~12as
2!
E

a

1 S~h!

Ah
dh. (34)

Using the requirement Eq.~34!, the parametera is therefore de-
termined. From Eq.~34!, one can see thata will depend on the
material’s fracture toughness, web speed, and the shape o
blade. For slitting blades with the wedge profile Eq.~29!, the
relation between the fracture toughness of the web material,K IC ,
and the parametera is presented in Fig. 6 for several differen
web speeds. Here we have chosen that the Poisson’s ration50.25
and the deformation is plane stress. One can see from Fig. 6
for given wedge angle, 2u, and web speed,v, if the toughness of
the web materialK IC is known, the length of the contact regio
characterized by (12a)b, can be determined by using the rel
tion shown in Fig. 6. On the other hand, by measuring the len
of contact region, or the parametera, the fracture toughness of th
web material,K IC , can be determined by using the relation sho
in Fig. 6, as well. Another observation from Fig. 6 is that for giv
wedge angle, 2u, and web speed,v, the length of the contac
region will be longer for tougher web materials.

4 Numerical Results and Discussions
In this section, some general characteristics of the dyna

steady-state stress field surrounding the blade during web sli
are studied based on the dynamic fracture mechanics analysis
sented in the previous sections.

Fig. 6 Relation between the fracture toughness of the web ma-
terial, K IC , and the parameter a
162 Õ Vol. 72, MARCH 2005
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In Fig. 7, contour plots of the three components of the dynam
steady-state stress field surrounding the slitter with a wedge
file are presented. In this numerical calculation, we choose
web speed to bev/cs50.1 wherecs is the shear wave speed of th
web material with Poisson’s ration50.3. The half angle of the
wedge isu55.0° and the friction coefficient between the movin
web and the slitter is set to bel50.1. We also assume that th
fracture toughness of the web material is a constant

Fig. 7 Contour plots of the three stress components of the
dynamic steady-state stress field surrounding the slitter
Transactions of the ASME
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K IC /mAb50.075, wherem is the shear modulus of the materi
andb is the distance from the crack tip to end point of the cont
region as shown in Fig. 3. The remote tension is assumed t
s0 /m50.008. As shown in Fig. 6, for a given fracture toughne
the length of the contact region can be determined and from
relation we havea50.3913.

According to the analysis by Cotterell and Rice@9# on slightly
curved and kinked stationary cracks, the sign of theT stress~the
second term next to the singular term in the asymptotic expan
near the crack tip! determines the stability of the crack, whe
under mode-I loading, the straight crack remains stable when
T stress is compressive, i.e.,T,0, and the straight crack become
unstable for positiveT stress, i.e.,T.0. The unstable crack will
tend to kink out of its original direction or bifurcate into sever
branches. On the other hand, Melin@10# suggested that the direc
tional stability of a mode-I crack is not only controlled by th
so-calledT stress, but also controlled by the opening stress nor
to the crack. Through a model problem, Melin@10# showed that
the mode-I crack will lose its directional stability when the ra
of the T stress to the opening stress is bigger than certain va
Although directional stability remains as an unsolved probl
~see@11#!, the loss of stability of a mode-I crack still has som
significant implications in the quality control of web slitting. Th
is because that after the crack becomes unstable, many mic
small cracks tend to form along the cutting edge of the web
the quality of the final product would be poor. Since the so-cal
T stress in mode-I type of deformation, is determined by the d
tribution of thes11 component ahead of the crack tip, in Fig. 7~a!,
the contour ofs11/m is presented. One observes that ahead of
crack tip and in a wedge-shape region, the stress components11 is
indeed positive. As a result, the value of theT stress is also posi
tive. However, from the dynamic fracture mechanic analysis,
s11 component ahead of the crack tip is determined by the rem
tensions0 and the web speedv. Therefore, the web slitting qual
ity might be controlled by adjusting these two parameters so
the T stress is controlled beneath certain threshold and this
eliminate the tendency that the crack loses its stability dur
slitting.

Meanwhile, from Figs. 7~a! and 7~b!, we see that near the con
tact region between the moving web and the slitter, i.e., fromx1
520.3913b to x152b, boths11 ands22 are negative. One can
deduce that the two principal stresses will also be negative
the contact region. This situation might trigger the web materia
buckle and this will also lead to poor quality of web cutting edg

Finally, the contour plot of the effective stressseff is shown in
Fig. 8, whereseff is defined by

seff5F1

2 S s i j 2
1

3
skkd i j D S s i j 2

1

3
skkd i j D G1/2

5S 5

6
s11

2 1
4

3
s11s221

5

6
s22

2 13s12
2 D 1/2

. (35)

In writing the expression in Eq.~35!, we have assumed that th
deformation is plane stress. In Fig. 8, two different web speeds
considered and they arev/cs50.1 andv/cs50.3, respectively.
Other parameters are the same as those shown in Fig. 7. By n
that the von Mises yield criterion can be expressed as

seff<t, (36)

wheret is the yield stress in pure shear, the contour plots sho
in Fig. 8 indicate the effect of the web speed on the size of
yielding zone near the slitting blade. There are two singular po
in the stress field. One is the crack tip and the other is the en
contact region. From Fig. 8, we can see that although the st
concentration at the tip of the crack will cause plastic deform
tion, the majority of the yielding occurring in the area surroundi
the slitting blade is dominated by the contact condition, especi
near the end of the contact region. Also, we can see that elev
web speed will enlarge the yielding area surrounding the slitt
Journal of Applied Mechanics
l
ct
be

s,
this

ion
e
the
s

al
-
e

al

io
lue.
m
e
s
o or
nd
ed
is-

the

the
ote

hat
ill

ing

-

ear
l to
s.

e
are

ting

wn
the
nts

of
ress
a-
g
lly

ated
ing

blade. However, this enlargement is not very significant. Nev
theless, crack-tip plasticity and plastic deformation near the en
the contact region might change the contact condition between
moving web and the slitter and this remains to be investiga
further.

5 Concluding Remarks
A stress analysis for the slitting process of a thin web mate

is presented in this study based on the dynamic fracture mec
ics. The analysis leads to the determination of the stress and s
field for given slitter profile, web material properties, and movi
velocity. It is shown that under the steady state conditions,
dynamic stress field surrounding the slitter is a function of
interacting traction and the friction between the moving web a
the slitter, as well as a function of the web tension. By solving
integral equation, the normal interacting traction between
moving web and the slitter is determined as a function of
slitter profile and the web speed. For an ideal razor blade with
wedge profile, the contact condition between the moving web
the slitting blade is investigated and we found that the contac
controlled by the fracture toughness of the web material and
web speed. The fracture toughness of the web material itself m
also depend on the web speed. The results presented in this p
provides the analytical foundation for studying the yielding zo

Fig. 8 Contour plots of the effective stress, seff , for „a… v Õc s
Ä0.1 and „b… v Õc sÄ0.3
MARCH 2005, Vol. 72 Õ 163
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surrounding the slitting blade, thickening of the web along
slitting edge, and other phenomena that will affect the quality
web slitting.

The purpose of this work is to identify the key parameters t
will contribute to the quality control during the web slitting pro
cess. The instability of the crack tip, web buckling in the regi
near the slitting blade, and the plastic yielding surrounding bl
are believed to be the primary factors that affect the quality of
web cutting edges. In this study we are able to relate these qua
controlling factors to the mechanical conditions imposed on
web slitting process, such as the web speed and the remote te
along web moving direction, and the material parameters, inc
ing the fracture toughness of the web. The web material we c
sidered here is assumed to be isotropic. However, the analy
method presented in this study can be extended to the situa
where the web material is anisotropic. Some numerical exam
are presented in this paper, but detailed parametric investiga
which will lead to better design and improvement of the w
slitting processes will be presented in a separate study.
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Boundary Element Analysis of
Multiple Scattering Waves in High
Performance Concretes
Advances in computing have allowed for the development of high performance con
mathematically. We develop a method which combines the generalized self con
model together with the boundary element method and the statistical averaging proc
to study the multiple scattering of plane elastic waves in concrete containing rand
distributed parallel fibers. In analysis, the concrete matrix is modeled by dispersed
gregate structure. The physical properties for a fiber-reinforced concrete are obta
numerically and shown in graphs for various microstructures at designated frequen
@DOI: 10.1115/1.1831299#
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1 Introduction
The frequent use of the civil infrastructure under severe en

ronments has increased the worldwide demands to develop
nologies for design and maintenance of high performance c
cretes. The high performance concretes have possibilities to
applied by the various industries and to be developed to impr
resistance to the hostile environments. In order to design, deve
and maintain the high performance concretes as new gener
materials, especially fiber-reinforced concretes with the speci
designed microstructures, there is a need to quantitatively des
the different classes of microstructure-physical property relati
ships from the viewpoints of nanoscopic, microscopic, mes
copic, and macroscopic scales. Sato and Shindo@1,2# analyzed the
scattering of in-plane compressional~P! and shear~SV! waves by
a distribution of complex fibers by using the boundary elem
method~BEM! to control and catch the signs of the degradatio
These methods neglect multiple scattering effects, and is suite
the composite materials containing dilute concentrations of fib
In the composite materials containing dense concentrations o
bers, the problem of the propagation of multiple scattering wa
has been investigated@3#. Recently, Sato and Shindo@4# studied
the multiple scattering waves in a functionally graded mate
~FGM! and characterized the microstructures for the purpose
seeking ideally stable composite materials in any environmen

In this study, we consider the multiple scattering of plane el
tic waves by a random distribution of fibers in concrete. We
sume same-size fibers of identical properties, and concrete m
which consists of mortar and small aggregates compared with
wavelength. To account for the multiple scattering at high conc
trations of fibers, a method which combines the generalized
consistent model together with the boundary element method
the statistical averaging procedure is used to calculate frequ
dependent phase velocities and attenuations of coherent w
The solutions obtained are based on the plane strain assump
In analysis, the microstructure of the concrete matrix changes
the change on the volume concentration of aggregates which
isolated from one another in the mortar. For calculating the ela
properties of the concrete matrix analytically, micromechani

1To whom correspondence should be addressed.
Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF

MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the Applied Mechanics Division, October
2000; final revision; June 17, 2004. Associate Editor: S. Mukherjee.
Copyright © 2Journal of Applied Mechanics
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model of dispersed aggregate structure is used. Numerical re
for a steel fiber-reinforced concrete are obtained as a functio
frequency, and the effects of multiple scattering and microstr
tures on the phase velocities and attenuations of the cohe
waves, and the effective moduli for the steel fiber-reinforced c
crete are discussed in detail.

2 Problem Statement and Analysis
We consider a random distribution of identical fibers in an

finite concrete matrix. To take into account the complex inter
tion among the concrete matrix and fibers, we must have a g
metric model which consists of randomly distributed compos
inclusions in an infinite effective medium as shown in Fig. 1.
should be mentioned here that unknown complex wave num
of the effective compressional~P! and shear~SV! waves in the
effective medium are defined byKp andKsv , respectively. For the
relevant roots, the real, and imaginary parts should be positiv

In order to study the propagations of effective P and SV wa
in the composite-inclusions medium of Fig. 1, we first conside
that the tentative scattered fields are assumed to be caused
single composite inclusion. In the composite inclusion, which
embedded in the infinite effective medium with the mass den
r* and the effective Lame´ constantsl* , m* where a superscrip
~* ! denotes the effective component within the effective mediu
fiber of radiusa is surrounded by the concentric concrete mat
shell of outer radiusb. Let l, m, r be the Lame´ constants, the mas
density of the concrete matrix, andl0 , m0 , r0 those of the fiber.
The geometry is depicted in Fig. 2, where (x1 ,x2 ,x3) is the Car-
tesian coordinate system with origin at the center of the conc
matrix shell and fiber,B, D, andV are the domains of the effectiv
medium, concrete matrix shell and fiber, andG and G0 are the
surfaces of the concrete matrix shell and fiber, respectively. H
the shape variation ofG0 makes it possible to consider the effe
of fiber shape, thoughG0 is assumed to be circular in this stud
The outer radiusb of the circular concrete matrix shell, whic
corresponds to a spatially isotropic distribution of fibers, is rela
to the volume concentration of fibersc by

c5a2/b2. (1)

The displacement components of the effective medium in thex1

and x2 directions areu1* and u2* , while the componentu3* is
absent because the problem is plane strain. For the same re
derivatives with respect tox3 are zero. The medium is in time

7,
005 by ASME MARCH 2005, Vol. 72 Õ 165



i

d

n

P

ete
ary

in

hell
-
l
ber

nd

nd
er,
red

is

he
harmonic motion, but the term exp(2ivt), wherev is the circular
frequency andt is the time, will be omitted. Under these cond
tions, the stress equations of motion are given bysba,b*
1r* v2ua* 50. Here a comma denotes partial differentiation w
respect to the coordinate, Greek indices can assume the valu
and 2 only,sba* define the stress components which are relate
the displacement gradients by Hooke’s law,ua* denote the dis-
placement components, andr* is given by the average mass de
sity as follows:

r* 5r~12c!1r0c. (2)

Then the effective Lame´ constantsl* , m* can be obtained from
the phase velocities Re(kp /Kp) and Re(ksv /Ksv) of the effective P
and SV waves as follows:

Fig. 1 Schematic diagram of composite-inclusions medium

Fig. 2 Composite inclusion embedded in the effective medium
and coordinate systems
166 Õ Vol. 72, MARCH 2005
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l* 12m* 5~l12m!S r*

r D FReS kp

Kp
D G2

, (3)

m* 5mS r*

r D FReS ksv

Ksv
D G2

, (4)

wherekp5v/cp and ksv5v/csv are the wave numbers of the
and SV waves in the concrete matrix, andcp5@(l12m)/r#1/2

andcsv5(m/r)1/2 are the P and SV wave speeds in the concr
matrix, respectively. For the perfect bonding of fiber, the bound
conditions onG andG0 can be written as

ua* 5ua , ta* 1ta50, on G, (5)

ua5ua
t , ta1ta

t 50, on G0 , (6)

where a superscriptt denotes the transmitted component with
the fiber,ta* 5sba* nb* , ta5sbanb , and ta

t 5sba
t nb

t are the trac-
tion components on the effective medium, concrete matrix s
and fiber, andnb* , nb , andnb

t are the unit outward normal com
ponents fromB, D, and V, respectively. The boundary integra
equations for the effective medium, concrete matrix shell and fi
are written as

cab* ~x!ub* ~x!5E
G
Uab* ~x,y!tb* ~y!dG~y!

2E
G
Tab* ~x,y!ub* ~y!dG~y!1u0* exp~ iK px1!e1

1w0* exp~ iK svx1!e2 , (7)

cab~x!ub~x!5E
G1G0

Uab~x,y!tb~y!d@G~y!1G0~y!#

2E
G1G0

Tab~x,y!ub~y!d@G~y!1G0~y!#, (8)

cab
t ~x!ub

t ~x!5E
G0

Uab
t ~x,y!tb

t ~y!dG0~y!

2E
G0

Tab
t ~x,y!ub

t ~y!dG0~y!, (9)

wherex5x1e11x2e2 andy5y1e11y2e2 are the field and source
points,e1 ande2 are the unit base vectors in thex1 andx2 direc-
tions,u0* andw0* are the amplitudes of the incident effective P a
SV waves, the coefficients ofcab* , cab and cab

t depend on the
local geometries ofG and G0 at x, and Uab* , Tab* , Uab , Tab ,
Uab

t , andTab
t are the fundamental solutions for displacement a

traction in the effective medium, concrete matrix shell and fib
respectively, given in Appendix A. Thus the tentative scatte
fields at a large distance from a single composite inclusion
determined by Eqs.~5!–~9! and

ua*
s;u0* Aa* ~Kp ,x̂!A 2

pKpuxu
expF i S Kpuxu2

p

4 D G
1w0* Ba* ~Ksv ,x̂!A 2

pKsvuxu
expF i S Ksvuxu2

p

4 D G ,
(10)

where x̂ is a unit vector in the direction of observation, and t
tentative far-field scattering amplitudes are

Aa* ~Kp ,x̂!5
1

u0*
E

G
@Cab* p~ x̂!tb* ~y!1KpDabg* p ~ x̂!ng* ~y!ub* ~y!#

3exp~2 iK px̂"y!dG~y!, (11)
Transactions of the ASME
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Ba* ~Ksv ,x̂!5
1

w0*
E

G
@Cab* sv~ x̂!tb* ~y!1KsvDabg* sv ~ x̂!ng* ~y!ub* ~y!#

3exp~2 iK svx̂"y!dG~y!, (12)

and Eqs.~B1!–~B4!.
Now the statistical averaging procedure is used to obtain eq

tions for determining the effective P and SV waves in terms of
tentative scattered fields from a single composite inclusion
should be clarified here that the composite-inclusions medium
Fig. 1 represents the infinite concrete matrix containing rando
distributed fibers byc of Eq. ~1!, if the composite inclusions fill
the effective medium space of Fig. 1 completely; that is,cb

5nbpb251.0, wherecb is the volume concentration of compo
ite inclusions andnb is the number of composite inclusions p
unit area in the effective medium. This corresponds to
composite-cylinders model in@5#. It can be supposed that both th
effective medium of Fig. 2 and the composite-inclusions medi
(cb51.0) represent the infinite concrete matrix containing ra
domly distributed fibers. And the effective P and SV waves pro
gating through the effective medium of Fig. 2 should be the sa
as those propagating through the composite-inclusions med
(cb51.0), though we cannot prove that the effective medium
Fig. 2 is rigorously equivalent to the composite-inclusions m
dium (cb51.0). Thus, the problem, for which we present so
tions, is that of obtaining relationships between the effective P
SV waves through those two mediums. To obtain the relati
ships, the statistical averaging procedure developed by Water
and Truell@6# is applied to averaging waves over a random d
tribution of identical composite inclusions in the infinite effectiv
medium of Fig. 1 in terms of the tentative far-field scatteri
amplitudes due to a single composite inclusion of Fig. 2. Comb
ing Kp , Ksv of those two mediums in thex1 direction, with the
statistical averaging procedure, gives the following equations
be satisfied:

Kp
25FKp2

2inbA1* ~Kp ,e1!

Kp
G2

2F2inbA1* ~Kp ,2e1!

Kp
G2

, (13)

Ksv
2 5FKsv2

2inbB2* ~Ksv ,e1!

Ksv
G2

2F2inbB2* ~Ksv ,2e1!

Ksv
G2

,

(14)

with

nb5
1

pb2
5

c

pa2
. (15)

Equations~13! and ~14! are final forms for the determination o
the complex wave numbersKp and Ksv which are reasonable
results at high concentrations and frequencies. It can be said
the solutionsKp , Ksv found with Eqs.~13! and ~14! are equal to
results of Fig. 2 guessed under the conditions:

A1* ~Kp ,e1!50, B2* ~Ksv ,e1!50,

A1* ~Kp ,2e1!50, B2* ~Ksv ,2e1!50. (16)

For any ofx̂ direction but thex1 direction, the equations, with th
statistical averaging procedure, are also given by

05@022inbA* ~Kp ,x̂!#22@2inbA* ~Kp ,2 x̂!#2, (17)

05@022inbB* ~Ksv ,x̂!#22@2inbB* ~Ksv ,2 x̂!#2, ~ x̂Þ6e1!,

(18)

where

A* ~Kp ,x̂!x̂1e11A* ~Kp ,x̂!x̂2e25A1* ~Kp ,x̂!e11A2* ~Kp ,x̂!e2

and
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2B* ~Ksv ,x̂!x̂2e11B* ~Ksv ,x̂!x̂1e25B1* ~Ksv ,x̂!e1

1B2* ~Ksv ,x̂!e2 ,

because no effective P and SV waves butu0* exp(iKpx1)e1 and
w0* exp(iKsvx1)e2 defined in Eq.~7! exist in the effective medium.
Considering Eqs.~17!, ~18! and the composite-inclusion geom
etry, the tentative far-field scattering amplitudes have to be

Aa* ~Kp ,x̂!50, Ba* ~Ksv ,x̂!50, ~ x̂Þ6e1!. (19)

Thus the tentative scattered fields of Eq.~10! are vanished due to
Aa* (Kp ,x̂)50 andBa* (Ksv ,x̂)50 in any of x̂ direction. That is,
the composite inclusion is equivalent to the effective medium.

It should be mentioned that we need to solve Eqs.~13! and~14!
by using the iterative numerical scheme, because these equa
can not be solved analytically. In carrying through the calculat
by iteration, Kp and Ksv are expressed byK j

p and K j
sv ( j

50,1,2, . . . ), respectively. Let sequences ofK j
p and K j

sv be de-
fined by

~K j 11
p !25FK j

p2
2inbA1* ~K j

p ,e1!

K j
p G 2

2F2inbA1* ~K j
p ,2e1!

K j
p G 2

,

(20)

~K j 11
sv !25FK j

sv2
2inbB2* ~K j

sv ,e1!

K j
sv G 2

2F2inbB2* ~K j
sv ,2e1!

K j
sv G 2

, ~ j 50,1,2, . . . !, (21)

with the tentative initial values ofK0
p andK0

sv . Then,

Kp5 lim
j→`

K j
p , Ksv5 lim

j→`

K j
sv , (22)

exist and are solutions of Eqs.~13! and~14!, because the calcula
tion is to make the effective medium be equivalent to the comp
ite inclusion by averaging, i.e.,

lim
j→`

A1* ~K j
p ,e1!50,

lim
j→`

B2* ~K j
sv ,e1!50,

lim
j→`

A1* ~K j
p ,2e1!50,

lim
j→`

B2* ~K j
sv ,2e1!50,

which satisfy Eq.~16!.

3 Numerical Results and Discussions
To examine the effects of multiple scattering and microstr

tures on the physical properties of the fiber-reinforced concr
the unknown complex wave numbers of the effective P and
waves have been computed. The values ofKp andKsv , as deter-
mined above, are obviously complex. The phase velocities of
effective P and SV waves are Re(kp /Kp) and Re(ksv /Ksv). Their
corresponding attenuations are Im(Kp /kp) and Im(Ksv /ksv), respec-
tively. The considered fiber was steel, and concrete matrices w
mortar without aggregates~Case I!, mortar with limestone aggre
gates~Case II! and mortar with ingot iron aggregates~Case III!.
Limestone and ingot iron aggregates are corresponding to the
mal weight and heavy weight aggregates, respectively. The siz
aggregates is assumed to be sufficiently small compared to th
fibers and the wavelength, so there is no wave scattering b
distribution of aggregates. The constituent properties are give
Table 1, wherelmor, mmor, rmor are the Lame´ constants, the mas
density of the mortar, andlagg, magg, raggthose of the aggregates

For calculating the elastic properties of the concrete matrix
micromechanical model is used consisting of one lumped th
MARCH 2005, Vol. 72 Õ 167
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dimensional aggregate and continuous mortar as shown in Fi
Changing the volume concentration of aggregates, a numbe
profiles can be examined with this model. The Lame´ constantsl
andm of the concrete matrix are considered to vary as

l5
En

~11n!~122n!
, (23)

m5
E

2~11n!
, (24)

whereE andn are the Young’s modulus and Poisson’s ratio of t
concrete matrix. The composition dependent maximum Youn
modulus and Poisson’s ratio of the concrete matrix are obtain
in accordance with the rule of mixture like@7#, as

E5F12z

Emor
1

z

Emor~12z2!1Eaggz
2G21

, (25)

n5
nmor@nm1~n1m21!~11z!z#~12z!1nagg~n1m21!z3

@n1~m21!z#@m2~m21!z#
,

(26)

where

n5z21
Eagg

Emor
~12z2!, m5~12z2!1

Eagg

Emor
z2, (27)

Vagg5z3, z5
l

L
, (28)

andVagg is the volume concentration of aggregates in the mor
EaggandEmor are the Young’s moduli of the aggregate and mort

Table 1 Material properties of steel, mortar, limestone, and in-
got iron

Steel
fiber

r0 (t/m3) m0 (GPa) l012m0 (GPa)
7.8 78.13 255.7

Mortar rmor ~t/m
3) mmor ~GPa) lmor12mmor ~GPa)

1.4 11.08 29.56

Limestone
aggregate

ragg~t/m3) magg~GPa) lagg12magg~GPa)
2.6 24.38 65.00

Ingot iron
aggregate

ragg~t/m3)
7.2

magg~GPa)
37.25

lagg12magg~GPa)
138.3

Fig. 3 Micromechanical model of concrete matrix
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andnagg andnmor are Poisson’s ratios of the aggregate and mor
The composition dependent minimum Young’s modulus and P
son’s ratio are also given by

E5Emor~12z2!1
EmorEaggz

2

Emorz1Eagg~12z!
, (29)

n5
nmor@nm~11z!1~n1m21!z2#~12z!1nagg~n1m21!z3

nm
,

(30)

where

n5z1
Eagg

Emor
~12z!, m5~12z!1

Eagg

Emor
z. (31)

Values ofE andn calculated with Eqs.~25!–~28! are always larger
than those calculated with Eqs.~29!–~31!. It may be taken that
Eqs.~25!–~28! give upper, and Eqs.~29!–~31! lower estimates of
the Young’s modulus and Poisson’s ratio of the concrete mat
After this, we use Eqs.~29!–~31! to get the elastic properties o
the concrete matrix. The density of the concrete matrix is given

r5rmor~12Vagg!1raggVagg. (32)

Figures 4 and 5 show the variations of the phase veloci
Re(kp

mor/Kp) and Re(ksv
mor/Ksv) of the effective P and SV wave

with the frequencyav/csv
mor for Cases I (Vagg50.0), II, III ( Vagg

50.6), andc50.3, wherekp
mor5v/cp

mor andksv
mor5v/csv

mor are the
wave numbers of the P and SV waves in the mortar, andcp

mor

5@(lmor12mmor)/rmor#
1/2 andcsv

mor5(mmor/rmor)
1/2 are the P and

SV wave speeds in the mortar. Up to approximatelyav/csv
mor

51.5, the variations of the phase velocities are not so remarka
For higher frequencies, the discrepancies of the phase veloc
for Cases I, II, and III appear as the frequency is increased in
calculated range.

Figures 6 and 7 show the variations of the attenuatio
Im(Kp /kp

mor) and Im(Ksv /ksv
mor) of the effective P and SV wave

with the frequencyav/csv
mor for Cases I (Vagg50.0), II, III ( Vagg

50.6), andc50.3. It is found that the attenuations increase w
the frequency and reach the maximum values aroundav/csv

mor

51.2– 1.6. The maximum value for Case I is higher than those
Cases II and III. The abilities of damping are dependent on
aggregates when the volume concentrations of fibers are equ
the concretes, because the aggregates change the wave spe

Fig. 4 Effect of concrete matrix on phase velocity versus fre-
quency for P wave
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the concrete matrix and the chance of wave scattering by fib
The characteristics of the attenuations that are most sensitiv
the microstructures may be the best to be utilized in determin
the conditions of the fiber-reinforced concretes nondestructive

Figures 8 and 9 show the variations of the effective in-pla
bulk k* 5l* 1m* and shearm* moduli with the frequency
av/csv

mor for Cases I (Vagg50.0), II, III ( Vagg50.6), andc50.3.
The changes of the elastic moduli are relatively small at low
frequencies. For Case III, the elastic moduli do not also tend
change extensively at higher frequencies compared with Cas
and II. However, after passing aroundav/csv

mor51.5, the elastic
moduli for Cases I and II are increased and exceed those for C
III dramatically as the frequency is increased. It should also
emphasized that the results of the effective in-plane bulk mod
calculated from the present theory converge to those obta
from the Eshelby method@8# ~Eq. ~C1!! and the composite cylin-
der assemblage~CCA! model @5# ~Eq. ~C5!! as av/csv

mor→0.0.

Fig. 5 Effect of concrete matrix on phase velocity versus fre-
quency for SV wave

Fig. 6 Effect of concrete matrix on attenuation versus fre-
quency for P wave
Journal of Applied Mechanics
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Again the convergence in the effective in-plane shear moduli
the static limit calculated from the present theory and the Eshe
method@8# ~Eq. ~C2!! is good. Thus, the dynamic elastic modu
of the steel-fiber-reinforced concretes have the unique charac
These concretes can be used safely under the dynamic cond
at higher frequencies calculated. But it is desirable to be analy
carefully at lower frequencies for the safe use of the concrete

Figure 10 shows the variation of the phase velocity Re(kp
mor/Kp)

of the effective P wave with the volume concentration of fiberc
for av/csv

mor51.0 and Cases I (Vagg50.0), II, III ( Vagg50.6). The
phase velocity decreases with the change in the aggregatec
50.0, because the elastic properties of the concrete matrix
altered by the combination of constituents. The multiple scatter
effect appeares as the volume concentration of fibers is increa
Unlike the previous case ofc50.0, the phase velocity indicate
complex trend with increasing volume concentration of fibe
Figure 11 shows the variation of the attenuation Im(Kp /kp

mor).

Fig. 7 Effect of concrete matrix on attenuation versus fre-
quency for SV wave

Fig. 8 Effect of concrete matrix on in-plane bulk modulus ver-
sus frequency
MARCH 2005, Vol. 72 Õ 169
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When c50.0, no significant effect of the aggregates on atten
tion is found compared with the phase velocity. The attenua
increases rapidly with the volume concentration of fibers at l
volume concentrations and then decreases slowly to zero a
volume concentration of fibers increases to one because o
multiple scattering effect. The maximum attenuation of the eff
tive P wave for Case I is higher than the other Cases. Thus
damping properties of waves in concretes can be controlled by
volume concentrations of fibers and aggregates.

4 Conclusions
The development of high performance concretes is impor

for the safe use of high-cost concrete structures. We have de
oped the method that can analyze the physical properties of fi
reinforced concretes. In this method, the fiber-reinforced concr
which is also expressed by the effective medium, can be con
ered as the whole world formed by identical fibers through a c
crete matrix, while the composite inclusion can be regarded as

Fig. 9 Effect of concrete matrix on in-plane shear modulus
versus frequency

Fig. 10 Effect of concrete matrix on phase velocity versus
concentration for P wave
170 Õ Vol. 72, MARCH 2005
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individual world formed by one fiber which has relation with th
whole world through the concrete matrix. And, the equivalence
those two worlds is the essential principle to make the med
exist. Therefore, for the existence of a certain phenomenon, i.
certain coherent wave propagation, in the whole world, the in
vidual world must be equivalent to the whole world. On the co
trary, the variety of individual world and the principle of equiva
lence can materialize a variety of whole worlds and phenome
This method can shed some new light on the creation of the fi
reinforced concretes with the desired complex microstructures
the one hand, and predict the nanoscopic, microscopic, me
copic and macroscopic relations of the microstructures on
other hand. The effect of multiple scattering caused by the co
bination of fiber and small aggregate in the composite inclus
can, for example, really vary the phase velocities, attenuation
the coherent waves in the fiber-reinforced concretes, and the
fective elastic moduli, and depend on the frequency. Fiber is
most important constituent which causes the multiple wave s
tering in the fiber-reinforced concretes. It is effective to consid
the small aggregate, in support of the development of nanote
nology, for changing the wave speed in the concrete matrix w
out the occurrence of wave scattering from the aggregate. A
the physical properties show relatively constant trends at lo
frequencies, as similarly found in undamaged composite mate
@1,2,4#, in spite of complex changes of the microstructures. Th
results provide significant information to design the ideal fib
reinforced concretes that yield not only desirable strengths
also performances that are often not available in nature. Thus
present study can provide an appropriate methodology for s
analyses to be made.

Appendix A
The fundamental solutions of the effective medium have

following forms:

Uab* ~x,y!5
iK sv

2

4r* v2
~h* dab2k* r ,ar ,b!, (A1)

Fig. 11 Effect of concrete matrix on attenuation versus con-
centration for P wave
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Tab* ~x,y!5
i

4 F S dh*

dr
2

k*

r D S dab

]r

]n*
1na* r ,bD

22
k*

r S nb* r ,a22r ,ar ,b

]r

]n* D22
dk*

dr
r ,ar ,b

]r

]n*

2H 22S Ksv

Kp
D 2J S dh*

dr
2

dk*

dr
2

k*

r D r ,anb* G , (A2)

where

h* 5H0~Ksvr !2
1

Ksvr H H1~Ksvr !2
Kp

Ksv
H1~Kpr !J , (A3)

k* 52H2~Ksvr !1S Kp

Ksv
D 2

H2~Kpr !. (A4)

In the above,dab is the Kronecker delta,r 5ux2yu, ]/]n* de-
notes the directional differentiation along the unit outward norm
vectorn* to G, andHl( ) is the lth order Hankel function of the
first kind. It is also necessary to expressh* andk* by the static
and regular parts for sufficiently smallKpr andKsvr to cancel the
higher order singularities. The fundamental solutionsUab and
Tab are defined by Eqs.~A1!–~A4!, but with thekp , ksv of the
concrete matrix, and the unit outward normal vectorn. Uab

t and
Tab

t are also obtained by replacingKp , Ksv , n* by kp
t , ksv

t , nt in
Eqs.~A1!–~A4!. kp

t 5v/cp
t andksv

t 5v/csv
t are the wave number

of the P and SV waves in the fiber, andcp
t 5@(l012m0)/r0#1/2

and csv
t 5(m0 /r0)1/2 are the P and SV wave speeds in the fib

respectively.

Appendix B

Cab* p , Dabg* p , Cab* sv andDabg* sv in Eqs.~11! and ~12! are

Cab* p~ x̂!5
iK p

2

4r* v2
x̂ax̂b , (B1)

Cab* sv~ x̂!5
iK sv

2

4r* v2
~dab2 x̂ax̂b!, (B2)

Dabg* p ~ x̂!5
1

4
x̂aH F122S Kp

Ksv
D 2Gdbg12S Kp

Ksv
D 2

x̂bx̂gJ , (B3)

Dabg* sv ~ x̂!5
1

4
~dabx̂g1dagx̂b22x̂ax̂bx̂g!. (B4)

Appendix C
Using the Eshelby method, we obtain the effective in-pla

bulk modulusk* and shear modulusm* as @8#

k* 5~12c!k1ck01c~12c!
~k02k!~1/k021/k!

~12c!/k1c/k01m/kk0
,

(C1)

m* 5~12c!m1cm0

1c~12c!
~m02m!~1/m021/m!

~12c!/m1c/m01~k/m0!/~k12m!
, (C2)

wherek5l1m, k05l01m0 are the in-plane bulk moduli of the
concrete matrix and fiber.

Making use of the law of mixture, we also have

k* 5
E*

2~11n* !~122n* !
, (C3)

m* 5
E*

2~11n* !
, (C4)
Journal of Applied Mechanics
al

r,

ne

whereE* andn* are the Young’s modulus and Poisson’s ratio
the effective medium in the form

E* 5
2~11n0!~11n!m0m

~11n0!m0~12c!1~11n!mc
,

n* 5n~12c!1n0c.

Using the composite cylinder assemblage~CCA! model @5#, we
also obtain the effective in-plane bulk modulusk* in the form

k* 5k1
c~k02k!~k1m!

k01m2c~k02m!
. (C5)

The generalized self consistent model@9# yields an expression for
the effective in-plane shear modulus over the entire volume c
centration range. Their result is the quadratic equation

AS m*

m D12BS m*

m D1C50, (C6)

where

A53c~12c!2S m0

m
21D S m0

m
1h0D1Fm0

m
h1h0h

2S m0

m
h2h0D c3GFhcS m0

m
21D2S m0

m
h11D G ,

B523c~12c!2S m0

m
21D S m0

m
1h0D1

1

2 Fm0

m
h1S m0

m
21D c11G

3F S m0

m
21D S m0

m
1h0D22S m0

m
h2h0D c3G

1
c

2
~h11!S m0

m
21D Fm0

m
1h01S m0

m
h2h0D c3G ,

C53c~12c!2S m0

m
21D S m0

m
1h0D

1Fm0

m
h1S m0

m
21D c11GFm0

m
1h01S m0

m
h2h0D c3G ,

h5324n,

h05324n0 .
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Foundation of Correlation
Parameters for Eliminating Pulse
Shape Effects on Dynamic Plastic
Response of Structures
The theoretical foundation of Youngdahl’s correlation parameters, which have been
to eliminate pulse shape effects in the dynamic plastic response of two-dimensional
tural members, is studied in the present paper with the aid of bounds obtained
rigid-plastic material. It is shown that Youngdahl’s empirical estimate for the structu
response time is, in general, a lower bound on the actual response time. A lower b
expression is obtained for the maximum final displacement of a two-dimensional s
tural member when subjected to an axisymmetrically loaded transverse time-depe
pulse, which depends only on Youngdahl’s correlation parameters, and offers a theor
foundation for the validity of Youngdahl’s correlation parameter method.
@DOI: 10.1115/1.1839183#
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1 Introduction
The impact and blast pulse loading shapes are difficult to re

in both laboratory and practical conditions, and, therefore, i
necessary to understand the importance of loading shape ef
on the response of structures under various pulse loads. Sym
@1# proposed that the peak load and loading impulse could be u
to represent an impact or blast loading pulse. Abrahamson
Lindberg @2# used the peak load and loading impulse to defin
critical loading curve for structural failure. A similar metho
known as the pressure-impulse diagram, or P-I diagram, has
used in protective construction design to resist blast loading@3#.
When the applied loading intensity is much larger than the loa
cause yielding, the peak load and loading impulse could be c
sidered as two representative parameters for a pulse load
However, this simplification, otherwise, may introduce a large
ror, as shown by Hodge@4#.

Two correlation parameters have been proposed by Young
@5,6# to eliminate pulse shape effects on the dynamic plastic
sponse of two-dimensional structural members, i.e.,

I e5E
ty

t f

P~ t !dt (1)

and

Pe5
I e

2tmean
, (2)

wherety is the time when the structural plastic response startst f
is the time when the structural response ceases, and

tmean5
1

I e
E

ty

t f

~ t2ty!P~ t !dt. (3)
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Youngdahl’s correlation parameters have been widely used
effective loading parameters to eliminate the pulse shape effec
the dynamic plastic response of structures@7,8#. This method was
proposed originally for the plastic bending response of sev
structural members. Later studies have shown that Youngda
correlation parameter method is valid when transverse shear f
plays an important role@9–11# and when the interaction betwee
a structure and the damping medium exists@12#.

Although Youngdahl’s correlation parameter method has b
used successfully for many cases, there is no general theore
foundation to support this empirically proposed correlati
method. In the present paper, bounds will be used to provid
theoretical foundation for the validity of Youngdahl’s correlatio
parameter method.

2 Bounds and Basic Principles
An upper bound on the final displacement, a lower bound

the structural response time and a lower bound on the maxim
final displacement have been developed for dynamically load
rigid-plastic continua. These theorems can be used to estimat
overall response characteristics of dynamically loaded, tw
dimensional structural members, such as beams, circular p
and cylindrical shells.

The bounds are obtained using the principle of virtual velo
ties, d’Alembert’s principle and Drucker’s postulate for mater
stability. Martin @13,14# obtained an upper bound on the fin
displacement and a lower bound on the structural response
for impulsively loaded, rigid-plastic continua, which were e
tended in@15# to the cases when a time-dependent surface trac
is considered. Reference@16# extended these bounds to cater f
large deformation effects.

A lower bound on the maximum final displacement of a rigi
plastic continuum was obtained in@17# for the impulsive loading
case, and clarified in@18,19#. This lower bound theorem was ex
tended in@20# to include time-dependent surface tractions, a
was investigated in@21# to give a more concise and less restricti
expression.

Good agreements between these upper and lower bounds
mode approximation@22# and exact solutions on the central d
flection of a simply-supported rigid-plastic beam were obtained
@20#. Reference@23# also reviewed the development of the bou
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methods and discussed their accuracy for estimating the ben
response of dynamically loaded, rigid, perfectly plastic structu
elements.

Bound theorems were used in@7# to estimate the maximum
final displacements of simply supported beams, circular plates
cylindrical shells when transverse shear effects are import
These provided excellent estimates of the response duration
maximum final displacements of rigid, perfectly plastic theoreti
analyses for impulsively loaded structural members. Similar c
clusions were supported by works on fully clamped beams, cir
lar plates and cylindrical shells@9–11#.

Generalized stresses and strains, which have been define
many textbooks~e.g.,@24#!, are used in the following analyses fo
two-dimensional structural members, such as beams, plates
shells.Qj andqj ( j 51, . . . ,n) in the present paper represent ge
eralized stresses and strains, anduj andn j ( j 51, . . . ,m) are gen-
eralized displacements and velocities. If a virtual velocity fie
u̇ j

c , is defined by a set of kinematically admissible velocities, a
q̇ j

c are the associated components of the strain rate field, then
rate of the total internal energy dissipation for the given virtu
velocity field u̇ j

c is

D~Qj ,u̇ j
c!5E

S
Qj q̇j

c dS, (4)

and the corresponding total external energy dissipation rate is

Ė~ u̇ j
c!5E

L
cj u̇j

c dL1E
S
~F j2mṅ j !u̇ j

c dS, (5)

whereL is the boundary surrounding the areaS. cj are the gener-
alized forces at the boundaryL, which are work conjugate to the
generalized displacementsuj . F j are the external pressure load
acting on the area, which may include the gravitational forcemg,
whereg is the acceleration of gravity,m5rH, H is the structural
thickness, andr is the material density.

The principle of virtual velocity requires that

D~Qj ,u̇ j
c!5Ė~ u̇ j

c!, (6)

which leads to

E
L
cj u̇j

c dL1E
S
~F j2mṅ j !u̇ j

c dS5E
S
Qj q̇j

c dS. (7)

If Eq. ~7! is satisfied, the generalized stress field,Qj , on S, the
surface tractions,cj , on L, and the external forces and inert
forces,F j2mṅ j , on S, are in equilibrium. Drucker’s postulate fo
material stability may be expressed in the form of generali
stresses and strains@25#.

~Qj2Qj* !q̇ j>0, (8)

where,Qj* is any state of generalized stresses satisfyingf(Qj* )
<0 with f50 as the loading surface function;q̇ j is the general-
ized strain rate field corresponding to the generalized stress fi
Qj , in a stable material defined by Drucker’s postulate.

In the following analyses, the external surface pressure loa
divided into two parts

F j5Pj1 f j , (9)

wheref j is a time-independent field force, such as gravity, andPj
is a time-dependent external pressure pulse acting on a struc
member.

3 Lower Bound on Response Time

By using Eq.~8!, Eq. ~7! with Qj5Qj* , may be written as,

E
L
cj u̇j

c dL1E
S
~F j2mṅ j !u̇ j

c dS5E
S
Qj* q̇ j

c dS<E
S
Qj

cq̇j
c dS,

(10)
Journal of Applied Mechanics
ding
ral

and
nt.
and
al
n-

cu-

d in
r
and

n-

ld,
nd
the

al

s

a
r
ed

eld,

d is

tural

where,Qj
c is associated withq̇i

c through Drucker’s postulate o
material stability.u̇ j

c is any postulated time-independent kinema
cally admissible velocity field, and therefore, the correspond
quantitiesq̇ j

c andQj
c are also time-independent.

Integrating Eq.~10! from time t50, when plastic deformations
start, to the timet5t f , when plastic deformations cease, gives

t f>t f* 5

E
L
I j

au̇j
c dL1E

S
I j

bu̇j
c dS1E

S
mn j

0u̇ j
c dS

D~Qj
c ,u̇ j

c!2E
S
f j u̇ j

c dS

(11)

in which

D~Qj
c ,u̇ j

c!5E
S
Qj

cq̇j
c dS,

I j
a5E

0

t f

cj dt and I j
b5E

0

t f

Pj dt

are the total energy dissipation rate of the postulated virtual
locity field, the total external impulse on the boundary,L, and the
total external impulse in the interior area,S, of the two-
dimensional structural member,2 respectively.n j

0 is the initial ve-
locity field of the structural member.

An alternative way of obtaining a lower bound on the structu
response time is to consider the rate of work done by a se
statically admissible loadings@13,21#,3 cj

s , F j
s5Pj

s1 f j and their
corresponding generalized stresses,Qj

s , on the postulated virtua
velocity field, u̇ j

c . Equation~7! may then be written as

E
L
cj

su̇j
c dL1E

S
F j

su̇j
c dS5E

S
Qj

sq̇j
c dS (12)

in which, u̇ j
c and q̇ j

c as well as their associated generaliz
stresses,Qj

c , are time-independent. Now, consider the stress s
as the statically admissible loads approach the static colla
forces (cj* andF j* ) for the postulated virtual deformation mode
In regions wherei q̇ j

ci.0, lim(Qj
s)5Qj

c,cj
s→cj* ,F j

s→F j* ; here,
i i denotes the natural norm of the tensor, Eq.~12! gives

E
L
cj* u̇ j

c dL1E
S
F j* u̇ j

c dS5E
S
Qj

cq̇j
c dS (13)

which, when using Eqs.~9! and ~10!, leads to the inequality

E
L
cj* u̇ j

c dL1E
S
Pj* u̇ j

c dS>E
L
cj u̇j

c dL1E
S
Pj u̇j

c dS

2E
S
mṅ j u̇ j

c dS (14)

when f j* 5 f j . Integrating Eq.~14! from t50 to t5t f gives

t f>t f* 5

E
L
I j

au̇j
c dL1E

S
I j

bu̇j
c dS1E

S
mn j

0u̇ j
c dS

E
L
cj* u̇ j

c dL1E
S
Pj* u̇ j

c dS

, (15)

which is identical to Eq. ~11! because the assumed tim
independent velocity field,u̇ j

c , and the associated static collap
forces,cj* andF j* , have the same stress field in the region whe
i q̇i

ci.0 @21#, so that Eq.~13! becomes

2For short intensive pulse loading, the structural response time,t f , is usually
longer than the loading time.

3We treat all problems in the same gravity field, therefore,f j
s5 f j .
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cj* u̇ j

c dL1E
S
Pj* u̇ j

c dS5D~Qj
c ,u̇ j

c!2E
S
f j u̇ j

c dS.

Usually, the gravitational force can be neglected when co
pared with the impact loading, so that Eq.~11! or Eq.~15! may be
written as

t f>t f* 5

E
L
I j

au̇j
c dL1E

S
I j

bu̇j
c dS1E

S
mn j

0u̇ j
c dS

D~Qj
c ,u̇ j

c!
. (16)

From investigations on the bending response of structural
ments, Youngdahl@5# suggested that the structural response du
tion may be approximated by

I e'Py~ t f2ty!, (17)

in which I e is the impulse associated with the pressure load
P(t), as defined by Eq.~1!; ty is the time when the structura
plastic response starts4 and Py is the static plastic bending col
lapse load. It is well known that this approximation, althou
proposed empirically, often predicts response times which ag
with the exact analytical predictions for structural bending
sponses. Analytical results for beams, circular plates and cylin
cal shells@9–11# have shown that this approximation is still a
plicable when transverse shear effects are considered. There
Py may be understood in general as a static plastic collapse l

Now, Eq. ~17! is rewritten as

t f'
I e

Py
(18)

when ty50, and we shall prove thatI e /Py is also a lower bound
on the response time.

The response time from Eq.~15! satisfies

t f>t f* 5

E
S
~ I j

b1mn j
0!u̇ j

c dS

E
S
Pj* u̇ j

c dS

(19)

when the virtual velocity field,u̇ j
c , on L vanishes.

For the dynamic plastic response of structural members, suc
beams, circular plates, and cylindrical shells, when subjected t
axisymmetrically and uniformly distributed pressure pulse load
together with an initial velocity, the two-dimensional integratio
in Eq. ~19! may be reduced to a one-dimensional integration, i

t f>t f* 5

E
x
Iẇc dx

E
x
Pyẇ

c dx

(20)

where,x should be replaced byr for circular plates, andI is the
total impulse of the external pressure force together with the
tial momentum of the structural element;Py is the static collapse
loading for the assumed virtual transverse velocity field,ẇc.

Therefore,

t f>t f* 5
I

Py
(21)

becausePy and I are independent of spatial coordinate,x.
Equation ~21! may be considered as a theoretical basis

Youngdahl’s approximation. Furthermore, Eq.~21! suggests that
Youngdahl’s approximation may be written as

I 5I e1I 05Pyt f* (22a)

4Without losing generality,ty is assumed to be zero in this paper, which mea
that response time is measured from the start of plastic deformation.
174 Õ Vol. 72, MARCH 2005
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t f>t f* 5
I e1I 0

Py
, (22b)

where,I 05mn0 andn0 is a uniformly distributed initial transverse
velocity. Equation~22b! with I 050, is the same as Eq.~18!,
which is Youngdahl’s estimate for the final response time.

When the distribution of the pressure pulse is dependent on
spatial coordinate,x, the lower bound on the response time will b
influenced by the selectedẇc field.

4 Lower Bound on Maximum Final Displacement

Integrating Eq.~10! from t50 to t5t f* leads to

E
L
S E

0

t f*
cj u̇j

c dtD dL1E
S
S E

0

t f*
Pju̇j

c dtD dS

2E
S
S E

0

t f*
mṅ j u̇ j

c dtD dS<E
S
S E

0

t f*
Qj

cq̇j
c dtD dS (23)

when neglecting the gravitational forcef j , and where,t f* is de-
termined by the equality in Eq.~16!. Now, u̇ j

c is assumed to be
time dependent with the form

u̇ j
c5U̇ j

c~xk!T~ t !, (24)

where, the modeU̇ j
c(xk) is time independent and satisfies th

kinematic boundary conditions,xk is a coordinate, andT(t) is a
time-dependent amplitude. For infinitesimal deformations,
generalized strain rate fieldq̇ j

c and dissipation function,
D(Qj

c ,u̇ j
c), are also separable, i.e.,

q̇ j
c5T~ t !Ėj

c (25a)

whereĖj
c is associated withU̇ j

c , and

D~Qj
c ,u̇ j

c!5D~U̇ j
c!T~ t !, (25b)

in which,

D~U̇ j
c!5E

S
Qj

cĖj
c dS. (26)

Furthermore,T(t) is assumed to take the form

T~ t !512
t

t f*
, for 0<t<t f*

and

T~ t !50, for t.t f* . (27)

Now, Eq. ~23! may be expressed as

E
L
I j

a~ t f* !U̇ j
c dL1E

S
I j

b~ t f* !U̇ j
c dS2E

L

c̄j~ t f* !U̇ j
c

t f*
dL

2E
S

P̄j~ t f* !U̇ j
c

t f*
dS1E

S
mn j

0U̇ j
c dS2

1

t f*
E

S
muj~ t f* !U̇ j

c dS

<
1

2
D~U̇ j

c!t f* (28)

in which, n j5u̇ j , n j
05n j u t50 , and

I j
a~ t !5E

0

t

cj~ t !dt, (29a)

I j
b~ t !5E

0

t

Pj~ t !dt, (29b)ns
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c̄ j~ t !5E
0

t

tcj~ t !dt (29c)

and

P̄j~ t !5E
0

t

tPj~ t !dt. (29d)

Equation~28! may be rewritten as

E
S
muj~ t f* !U̇ j

c dS>t f* S E
L
I j

a~ t f* !U̇ j
c dL1E

S
I j

b~ t f* !U̇ j
c dS

1E
S
mn j

0U̇ j
c dS2E

L

c̄j~ t f* !U̇ j
c

t f*
dL

2E
S

P̄j~ t f* !U̇ j
c

t f*
dS2

D~U̇ j
c!t f*

2 D (30)

Generally speaking, the assumed time-dependent velocity fi
in Eq. ~16! may differ fromU̇ j

c(xk) in Eq. ~24!, which means that
t f* may be determined from another postulated time-indepen
velocity field. It was suggested in@21,23# that the same time-
independent velocity field is used to determinet f* . Therefore,
from Eq. ~16!, Eq. ~30! may be expressed in the form

1

t f*
E

S
muj~ t f* !U̇ j

c dS>E
L
I j

a~ t f* !U̇ j
c dL1E

S
I j

b~ t f* !U̇ j
c dS

1E
S

1

2
mn j

0U̇ j
c dS2E

L

c̄j~ t f* !U̇ j
c

t f*
dL

2E
S

P̄j~ t f* !U̇ j
c

t f*
dS2

1

2 EL
I j

a~ t f !U̇ j
c dL

2
1

2 ES
I j

b~ t f !U̇ j
c dS, (31)

which is slightly different from the results obtained in@21,23#
which ignore the difference betweent f* and t f .

It is necessary to chooseU̇ j
c in Eq. ~31! in order to obtain the

maximum lower bound of the final displacement. This is an
treme value problem of functions. It was found in@23# that the
accuracy of the bounds depends on the difference between
stresses associated with assumed velocity fields and the a
stress distribution in a continuum.

Furthermore, we should determine which quantity is in fa
being bounded. References@20,21,23# treated the three compo
nents of U̇ j

c separately by using (U̇1
c,0,0), (0,U̇2

c,0), and
(0,0,U̇3

c). From Eq.~31! and the above assumed form ofU̇ j
c , we

can obtain the lower bounds for each maximum component,
they are not the lower bounds for each component of the m
mum final displacement in a medium. In fact, the existing meth
limits the application range of the lower bound theorem. An alt
native procedure is used here to obtain a lower bound for
maximum final displacement at a point or small region in a c
tinuum. If the direction of the maximum final displacement and
location are known, the direction ofU̇ j

c at this point may be cho-
sen to be the same as the direction of the maximum final displ
ment. Now, by using the mean value theorem for an integral,
~31! predicts

id j
f i>id j i>

t f* G~U̇ j
c ,t f* ,t f !

E
S
miU̇ j

cidS

, (32)
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where, id j
f i5max$iuj(xk ,tf)i,xkPS%, id j i5max$iuj(xk ,tf* )i,xkPS%,

and

G~U̇ j
c ,t f* ,t f !5right side of Eq. ~31!. (33)

If the components ofU̇ j
c are taken as zero except within

particular region, the lower bound on the maximum final displa
ment withinS is obtained from Eq.~32!.

5 Elimination of Pulse Shape Effects on Lower Bound
For structural elements, such as beams, circular plates, and

lindrical shells when subjected to an axisymmetric transverse
namic loading, the lower bound on the maximum final transve
displacement discussed in Sec. 4 may be simplified as

wf>
t f*

2*xgmẇc dx
S E

x
2gI b~ t f* !ẇc dx2E

x
gI b~ t f !ẇ

c dx

1E
x
gmn0ẇc dx22E

x

g P̄~ t f* !ẇc

t f*
dxD (34)

where ẇc is the kinematically admissible transverse veloci
where

g5b for beams
(35)

g52px for circular plates

and

g52pR for cylindrical shells

in which b is the width of a beam andR is the mean radius of a
thin cylindrical shell.

It was shown in Sec. 3 that Youngdahl’s suggestion@5#, t f*
't f , is based on a lower bound of the structural response time
this case,I b(t f* )'I b(t f) and P̄(t f* )' P̄(t f), and therefore, Eq.
~34! reduces to

wf>
t f

2*xgmẇc dx
S E

x
gI b~ t f !ẇ

c dx1E
x
gmn0ẇc dx

22E
x

g P̄~ t f !ẇ
c

t f
dxD , (36)

whereI b, P̄ are given by Eqs.~29b! and~29d!, andt f is estimated
from Eq. ~22b!. Whenty50, thenI b, P̄ and t f in Eq. ~36! can be
expressed as functions ofI e and Pe defined by Youngdahl@5,6#,
which have the following form

I e5E
0

t f

P~ t !dt (37a)

and

Pe5
I e

2

2*0
t f tP~ t !dt

(37b)

according to Eqs.~1!–~3!. Therefore, a lower bound for the fina
deflection at a selected location depends only onI e , Pe , and the
distribution of the initial velocity field as well as the selecte
kinematically admissible velocity field,ẇc, which offers a theo-
retical foundation of Youngdahl’s empirical suggestions that t
correlation parameters can represent a general uniformally dis
uted pulse pressure loading.

If the initial velocity field is also uniformly distributed, Eq.~36!
can be further simplified into

wf>
t f

2m S I b~ t f !1I 02
2P̄~ t f !

t f
D ,
MARCH 2005, Vol. 72 Õ 175
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wf>
~ I e1I 0!2

2mPy
F12

I e
2Py

Pe~ I e1I 0!2G (38)

When there is no initial velocity distribution, i.e.,I 050, then Eq.
~38! can be expressed in the following form

wf>I e
2G~Pe! (39)

The equality of Eq.~39! has been observed in many cas
@5,6,8,9–12,24#. A recent study based on an elastic-plastic SD
model also shows the validity of this general dependence of
final deflection on the two correlation parameters,I e andPe @26#.

6 Conclusions
Youngdahl’s correlation parameter method for eliminating

influence of the loading shape on the dynamic plastic respons
structures was examined in the present paper by using s
bound theorems that have been developed for rigid, perfectly p
tic continua. In particular, bounds on the final displacement
the structural response time were presented for two-dimensi
rigid-plastic structural members, which include the effects of
initial velocity field and a time-dependent surface traction as w
as body forces. It is shown that the bound theorems supp
theoretical basis for Youngdahl’s empirical correlation parame
method for estimating the structural response of various struct
members. A lower bound on the maximum final displacement
tained when using Youngdahl’s correlation parameters is inse
tive to the pulse loading shapes for structural elements subje
to axisymmetrically loaded pressure pulses.

Nomenclature

cj 5 generalized force applied on boundaryL
D 5 rate of the internal energy dissipation, defined

by Eq. ~4!

Ė 5 rate of the external energy dissipation, define
by Eq. ~5!

f j 5 field force, such as gravitational force, ex-
pressed as a pressure for two-dimensional
structural members

F j 5 total external pressure load
H 5 thickness of a structural member
I 5 I e1I 0

I 0 5 mn0
I e 5 correlation parameter defined by Eq.~1!

I j
a , I j

b 5 defined by Eq.~11!
I j

a(t), I j
b(t) 5 defined by Eqs.~29a,b!

L 5 boundary of a two-dimensional structural
member represented by the occupied areaS

P(t) 5 pressure pulse loading history
Pe 5 correlation parameter defined by Eq.~2!
Pj 5 external pressure pulse loading, defined by E

~9!
qj 5 generalized strains
q̇ j

c
5 generalized strain rate field associated withu̇ j

c

Qj 5 generalized stresses
r 5 radial coordinate for a circular plate
S 5 the occupied area of a two-dimensional struc

tural member
t 5 time

tmean 5 defined by Eq.~3!
t f 5 time when structural response ceases
t f* 5 defined as the right hand side of inequality

~11!
ty 5 time when structural plastic response starts
uj 5 generalized displacement
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u̇ j
c 5 kinematically admissible velocity field

n0 5 initial transverse velocity of the structural
member

n j 5 generalized velocity
w 5 transverse displacement

wf 5 final transverse displacement
x 5 longitudinal coordinate for beams and cylindr

cal shells or radial coordinate for circular
plates

m 5 rH
r 5 density

Superscript

c 5 kinematically admissible
s 5 statically admissible
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A Second Look at the
Higher-Order Theory for Periodic
Multiphase Materials
In this communication, we present a reformulation, based on the local/global stiff
matrix approach, of the recently developed higher-order theory for periodic multiph
materials, Aboudi et al. [‘‘Linear Thermoelastic Higher-Order Theory for Periodic Mu
tiphase Materials,’’ J. Appl. Mech.,68(5), pp. 697–707]. This reformulation reveals tha
the higher-order theory employs an approximate, and standard, elasticity approach t
solution of the unit cell problem of periodic multiphase materials based on direct volu
averaging of the local field equations and satisfaction of the local continuity condition
a surface-averge sense. This contrasts with the original formulation in which diffe
moments of the local equilibrium equations were employed, suggesting that the the
a variant of a micropolar, continuum-based model. The reformulation simplifies the
vation of the global system of equations governing the unit cell response, whose s
substantially reduced through elimination of redundant continuity equations employ
the original formulation, allowing one to test the theory’s predictive capability in m
demanding situations. Herein, we do so by estimating the elastic moduli of per
composites characterized by repeating unit cells obtained by rotation of an infinite sq
fiber array through an angle about the fiber axis. Such unit cells possess no plan
material symmetry in the rotated coordinate system, and may contain a few or m
fibers, depending on the rotation angle, which the reformulated theory can easily ac
modate. The excellent agreement with the corresponding results obtained from the
dard transformation equations confirms the new model’s previously untested pred
capability for a class of periodic composites characterized by nonstandard, m
inclusion repeating unit cells lacking planes of material symmetry. Comparison o
effective moduli and local stress fields with the corresponding results obtained from
original Generalized Method of Cells, which the higher-order theory supersedes, con
the need for this new model, and dramatically highlights the original model’s shortc
ings for a certain class of unidirectional composites.@DOI: 10.1115/1.1831294#
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1 Introduction
The higher-order theory for periodic multiphase materials i

recently developed micromechanics model for the respons
multiphase materials with arbitrary periodic microstructur
Aboudi et al.@1–3#. The model’s analytical framework is base
on the homogenization theory for periodic materials~cf.
Kalamkarov and Kolpakov@4#!, but the method of solution for the
local displacement and stress fields within the repeating unit
characterizing the material’s periodic microstructure utilizes c
cepts previously employed in constructing the higher-order the
for functionally graded materials~FGMs! @5#. The use of the ad-
jectivehigher-orderin the model’s name refers to the higher-ord
displacement field representation within the subvolumes of
unit cell’s discretized microstructure relative to that used in
Generalized Method of Cells~GMC! micromechanics model, Pa
ley and Aboudi@6#, which the new model supersedes. The line
displacement field approximation employed in the construction
GMC, together with the manner of satisfying the local equilibriu
and continuity conditions, results in the absence of so-called s
coupling which provides the required bridge between macrosc

1To whom correspondence should be addressed.
Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF

MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the Applied Mechanics Division, March 18, 20
final revision, July 26, 2004. Associate Editor: D. Kouris. Discussion on the pa
should be addressed to the Editor, Prof. Robert M. McMeeking, Journal of App
Mechanics, Department of Mechanical and Environmental Engineering, Unive
of California—Santa Barbara, Santa Barbara, CA 93106-5070, and will be acce
until four months after final publication in the paper itself in the ASME JOURNAL OF
APPLIED MECHANICS.
Copyright © 2Journal of Applied Mechanics
a
of

s,
d

cell
n-

ory

er
the
he
-
ar
of

m
ear
pi-

cally applied normal~shear! stresses and the resulting microscop
shear~normal! stresses. This shear coupling is a natural con
quence of the second-order displacement field approxima
within the unit cell’s subvolumes employed in the construction
the higher-order theory, and dramatically improves the accur
of estimating the local stress fields relative to GMC. In light of t
similarities involving unit cell discretization and satisfaction
the field and continuity equations employed in both models,
higher-order theory recently has been renamed the High-Fide
Generalized Method of Cells or HFGMC.

HFGMC’s capability of accurately capturing local stress a
inelastic strain fields has been demonstrated for simple peri
microstructures characterized by orthogonal planes of mate
symmetry through exact analytical and numerical solutions@1–3#.
In addition, limited data has been generated for unidirectio
composites with locally irregular microstructures~Pindera et al.
@7#!. It is for such composites that the power of this new hig
fidelity model becomes evident due to the importance of sh
coupling in the presence of locally irregular microstructures
demonstrated by the above study, further highlighting the diff
ences between the two models’ predictive capabilities.

In the original formulation of HFGMC, a two-level discretiza
tion of the repeating unit cell’s microstructure was employed,
volving division into generic cells that were further subdivide
into four subcells in the case of periodic materials with continuo
reinforcement along a common direction~Fig. 1!. This two-level
discretization process unnecessarily complicated the satisfac
of the stress equilibrium equations within individual subcells, a
complished in a circuitous manner by satisfying the different m
ments of the local equilibrium equations in a volumetric sen

3;
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sity
pted
005 by ASME MARCH 2005, Vol. 72 Õ 177
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These manipulations, in turn, suggested that the higher-o
theory is a variant of a micropolar, micromechanics-based c
tinuum theory, which is not the case. The satisfaction of
surface-averaged traction continuity conditions between adja
generic cells was also complicated by the two-level unit c
discretization.

The objective of the present communication is twofold. Fir
we demonstrate that the underlying framework of HFGMC
based on an approximate, and quite standard, elasticity appr
involving direct volume-averaging of the subcell stress equi
rium equations in conjunction with the imposition of displaceme
and traction continuity conditions in a surface-average se
across adjacent subcell faces. This is accomplished by first
plifying the unit cell volume discretization using solely subcells
the fundamental building blocks of a periodic material’s micr
structure~Fig. 2!. This simplification makes it possible to refo

Fig. 1 A generic cell „q ,r … with four subcells „b,g… employed in
the two-level discretization of the unit cell in the original
higher-order theory for multiphase periodic materials, pres-
ently known as HFGMC. Adapted from Fig. 2 in Aboudi et al.
†1‡.

Fig. 2 „a… A continuously reinforced multiphase composite
with a periodic microstructure in the x 2 – x 3 plane constructed
with repeating unit cells. „b… Discretization of the repeating unit
cell into subcells employed in the reformulation of HFGMC.
178 Õ Vol. 72, MARCH 2005
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mulate the theoretical framework of HFGMC using the loc
global stiffness matrix approach originally proposed by Bufler@8#
for the elastic analysis of isotropic layered media, and exten
by Pindera@9# to layered anisotropic composites. The reformu
tion is based on the construction of a local stiffness matrix relat
the surface-averaged displacements to the corresponding sur
averaged tractions of the subcell, with the surface-averaged
placements becoming the fundamental unknown quantities. T
construction also highlights the often unrecognized difference
tween HFGMC and a finite-element approach to the solution
the corresponding unit cell problem. Subsequent assembly of
individual stiffness matrices into the global stiffness matrix, whi
governs the response of the entire unit cell, eliminates redun
subcell continuity equations, thereby producing a significant
duction in the overall system of equations relative to the origi
formulation. The same approach had been employed by Ba
and Pindera@10# in reformulating the original higher-order theor
for FGMs.

The reformulation of HFGMC makes it possible to efficient
investigate the response of highly discretized unit cells wh
mimic realistic material microstructures. This, in turn, facilitat
testing of the method’s predictive capability in most demand
settings. The second objective, therefore, addresses this issu
particular, given the past experience, it is expected that the in
sic shear-coupling feature of HFGMC will play a key role
correctly capturing the elastic moduli of unidirectional composi
characterized by unit cells that lack orthogonal planes of mate
symmetry. This may occur due to the rotation of a regular array
continuous fibers about the fiber axis, rather than locally irregu
~albeit periodic! microstructures that had been previously inves
gated without comparison to a known standard@7#. Therefore,
HFGMC is employed herein to determine the effective moduli a
local stress fields in unidirectional composites characterized b
repeating unit cell with a square fiber array loaded by aver
stresses that do not coincide with the orthogonal planes of m
rial symmetry due to the above-mentioned rotation. The unit c
for a particular rotation angle typically may contain a large nu
ber of fibers~in contrast with just one for the square array in t
principal material coordinate system!, which makes the reformu-
lated HFGMC particularly well suited due to large numb
of rectangular subcells required to model realistic geome
details~such as circular fibers, for instance!. The considered unit
cell discretizations cannot be readily handled using the orig
formulation.

The predictions of the reformulated HFGMC model for th
elastic moduli of two types of unidirectional composites as a fu
tion of the rotation angle are compared with the results obtai
from the transformation equations for an orthotropic material
tated by an angle about the fiber axis. Such rotation produce
elastic stiffness or compliance matrix that represents a monoc
material with just one plane of material symmetry~the plane per-
pendicular to the fiber axis! in the rotated coordinate system. Th
provides a critical test on the self-consistency of the newly dev
oped HFGMC model previously untested in this manner. To
authors’ knowledge, such test has not been attempted previo
using other micromechanics models. The two types of unidir
tional composites contain the same fiber volume fraction but ra
cally different fiber/matrix moduli ratios representative of a gla
epoxy system and a porous aluminum matrix. Comparison w
the corresponding GMC predictions are also provided to furt
justify the development of the new model by highlighting th
original model’s limitations for certain classes of composites.

2 Theoretical Framework
The theoretical framework of the original version of HFGM

has been described in detail by Aboudi et al.@1–3#, and thus only
a brief synthesis will be provided herein in order to make it po
sible to follow the efficient reformulation’s derivation. The high
fidelity model combines concepts from the homogenization the
Transactions of the ASME
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and the higher-order theory for functionally graded materials. T
homogenization theory is employed to construct the correct fo
of the displacement field representation in the discretized dom
of the repeating unit cell which represents the periodic materi
microstructure; to identify the governing field equations for t
local problem of the repeating unit cell; and to construct app
priate boundary conditions. The construction of the displacem
field is based on a two-scale expansion of the form

ui~x,y!5u0i~x,y!1du1i~x,y!1d2u2i~x,y!1¯ (1)

wherex5(x1 ,x2 ,x3) are the global or macroscopic coordinate
y5(y1 ,y2 ,y3) are the local or microscopic coordinates defin
with respect to the repeating unit cell, and the different or
terms characterized by the powers ofd arey-periodic. The size of
the unit cell characterized by the parameterd is small relative to
the overall material dimensions such thatyi5xi /d. Thus a unit
displacement at the local scale corresponds to a displaceme
orderd on the global scale.

The above displacement field representation, together with
relationyi5xi /d between the two spatial scales, leads to the f
lowing strain field decomposition for periodic materials given
terms of the average and fluctuating strainsē i j (x) and e i j8 (x,y),
respectively:

e i j 5 ē i j ~x!1e i j8 ~x,y!1O~d! (2)

The average and fluctuating~local! strains are derived from the
corresponding displacement componentsūi andui8 , as

ē i j ~x!5
1

2 S ]ūi

]xj
1

]ū j

]xi
D , e i j8 ~x,y!5

1

2 S ]ui8

]yj
1

]uj8

]yi
D (3)

The above strain decomposition makes it possible to express
displacement field in the form

ui~x,y!5 ē i j xj1ui81O~d2! (4)

whereē i j are the known or applied macroscopic strains. This fo
is employed in constructing an approximate displacement field
the solution of the cell problem.

For specified values of the average strainsē i j , the fluctuating
displacementsui8 must satisfy: the local stress equilibrium equ
tions within the individual subvolumes into which the repeati
unit cell is discretized in a manner that mimics the actual mic
structure of the periodic multiphase material; the traction and
placement continuity conditions between the individual subv
umes; and the periodic boundary conditions prescribed at
boundaries of the repeating unit cell. The solution methodolo
for the chosen approximation ofui8 , which follows the higher-
order theory for FGMs, is based on volume-averaging of the lo
stress equilibrium equations in the individual subvolumes, a
surface-averaging of the traction and displacement continuity c
ditions at the interfaces separating the individual subvolumes
well as the periodic boundary conditions. Herein, this is carr
out efficiently using the local/global stiffness matrix approach
scribed next.

3 Efficient Reformulation of the Cell Problem
The local analysis is performed on the repeating unit cell r

resentative of a periodic material’s microstructure in thex2–x3
plane@Fig. 2~a!#, with continuous reinforcement along thex1 axis.
The periodic microstructure is made up of any number of pha
arbitrarily distributed within the unit cell so as to produce ful
anisotropic behavior in thex2–x3 plane. The unit cell is appropri
ately discretized into subcells, designated by~b,g!, so as to mimic
the material’s periodic microstructure, as shown in Fig. 2~b! for
the unit cell highlighted in Fig. 2~a!. In this case, 1003100
equally dimensioned subcells were used to capture the three
forcement shapes with sufficient fidelity, noting that such refi
ment would be computationally prohibitive in the original form
lation. The indicesb51, . . . ,Nb andg51, . . . ,Ng , which span
Journal of Applied Mechanics
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the unit cell along the localy2 and y3 axes, identify the~b,g!
subcell in they2–y3 plane. The subcell dimensions along they2
andy3 axes arehb and l g , respectively, such that

H5(
b51

Nb

hb and L5(
g51

Ng

l g

whereH and L are the overall unit cell dimensions along the
axes.

Following the displacement field representation within the u
cell of a periodic material given by Eq.~4!, the displacement field
in each~b,g! subcell is written as follows:

ui
~b,g!5 ē i j xj1ui8

~b,g! (5)

Given the continuous reinforcement along thex1 axis, the fluctu-
ating componentsui8

(b,g) of the displacement field that arise du
to the heterogeneity of the medium are functions of the lo
coordinates (ȳ2

(b) ,ȳ3
(g)) attached to the subcell’s center@Fig. 2~b!#.

These fluctuating components are approximated in each~b,g!
subcell by the same second-order, Legendre-type polynomial
pansion in the local coordinates as that employed in the orig
formulation

ui8
~b,g!5Wi ~00!

~b,g!1 ȳ2
~b!Wi ~10!

~b,g!1 ȳ3
~g!Wi ~01!

~b,g!

1
1

2 S 3ȳ2
~b!22

hb
2

4 DWi ~20!
~b,g!1

1

2 S 3ȳ3
~g!22

l g
2

4 DWi ~02!
~b,g!

(6)

where i 51, 2, 3 andWi (mn)
(b,g) are the unknown microvariables as

sociated with each subcell. Using the above fluctuating field r
resentation in the strain–displacement relations,

e i j
~b,g!5 ē i j 1

1

2 S ]ui8
~b,g!

] ȳ j
~• !

1
]uj8

~b,g!

] ȳi
~• ! D (7)

the strain components in each~b,g! subcell are obtained in the
form

e11
~b,g!5 ē11

e22
~b,g!5 ē221W2~10!

~b,g!13ȳ2
~b!W2~20!

~b,g!

e33
~b,g!5 ē331W3~01!

~b,g!13ȳ3
~g!W3~02!

~b,g!

(8)

e12
~b,g!5 ē121

1

2
@W1~10!

~b,g!13ȳ2
~b!W1~20!

~b,g!#

e13
~b,g!5 ē131

1

2
@W1~01!

~b,g!13ȳ3
~g!W1~02!

~b,g!#

e23
~b,g!5 ē231

1

2
@W2~01!

~b,g!13ȳ3
~g!W2~02!

~b,g!1W3~10!
~b,g!13ȳ2

~b!W3~20!
~b,g!#

The subcell stress components are then expressed in terms o
unknown microvariablesWi (mn)

(b,g) and the applied macroscopi
strainsē i j using the above relations in the Hooke’s law

s i j
~b,g!5Ci jkl

~b,g!ekl
~b,g! (9)

For orthotropic subcells considered herein, the stiffness ten
C(b,g) is characterized by nine independent elements in the p
cipal material coordinate system formed by the intersections
three orthogonal planes of material symmetry coincident with
subcell faces.

In the original formulation, the unknown microvariablesWi (mn)
(b,g)

were determined by satisfying different moments of the lo
stress equilibrium equations in a volumetric sense, and the
placement and traction continuity conditions between subcells
generic cells, together with the periodic boundary conditions, i
surface-averaged sense. In the reformulation, the surface-aver
MARCH 2005, Vol. 72 Õ 179
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Fig. 3 A view of a subcell illustrating the convention employed in designating the surface-
averaged displacement and traction components employed in the reformulation of HFGMC
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fluctuating displacements are the fundamental unknowns tha
related to the surface-averaged tractions through a local su
matrix constructed in the manner described below.

3.1 Local Stiffness Matrix. We begin the construction o
the local stiffness matrix for a~b,g! subcell by defining the re-
quired two sets of surface-averaged quantities. First, the tract
at the subcell’s outer faces are expressed in terms of stre
through Cauchy’s relations

t i
n~b,g!

5s j i
~b,g!nj

~b,g! (10)

wheren(b,g) is the unit normal to a given face of the~b,g! subcell.
The corresponding surface-averaged traction components ar
fined in the standard manner

t̄ i
26~b,g!5

1

l g
E

2 l g/2

l g/2

t i
n~b,g!S 6

hb

2
,ȳ3

~g!Ddȳ3
~g! (11)

t̄ i
36~b,g!5

1

hb
E

2hb/2

hb/2

t i
n~b,g!S ȳ2

~b! ,6
l g

2 Ddȳ2
~b! , i 51,2,3

(12)

where the superscriptj 6( j 52,3) denotes the direction of th
normal to the positive~1! or negative~2! face of the~b,g! sub-
cell ~Fig. 3!. Similarly, the surface-averaged fluctuating displac
ment components are determined from

ūi8
26~b,g!5

1

l g
E

2 l g/2

l g/2

ui8
~b,g!S 6

hb

2
,ȳ3

~g!Ddȳ3
~g! (13)

ūi8
36~b,g!5

1

hb
E

2hb/2

hb/2

ui8
~b,g!S ȳ2

~b! ,6
l g

2 Ddȳ2
~b! , i 51,2,3

(14)

where ūi8
j 6(b,g) is the fluctuating surface-averaged displacem

in the ith direction evaluated on the face of the~b,g! subcell with
normal in the6 j th direction~Fig. 3!.

The displacement field approximation at the subcell level giv
by Eq. ~6! contains a total of 15 unknownWi (mn)

(b,g) microvariables
in each subcell. Since a total of 12 surface-averaged displ
ments must be related to 12 surface-averaged tractions throug
local stiffness matrix for each~b,g! subcell, three additional equa
tions are required in order to express all 15 unknown microv
ables in terms of the surface-averaged displacements. These
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equations are obtained by satisfying the stress equilibrium eq
tions in each subcell in a volumetric sense. It is convenient
express the local stress equilibrium equations in terms of
surface integrals of traction components as these yield direc
lations for the various surface-averaged tractions used in
reformulation

E
S~b,g!

t i
n~b,g!

dS50, i 51,2,3 (15)

It is clear that the reformulation eliminates the need to consi
the first and second moments of these equations, simplifying
volume-averaging procedure of the equilibrium equations to
zeroth moments, thereby revealing HFGMC to be a dir
volume-averaging technique.

The above three sets of equations form the kernel of the re
mulated HFGMC’s theoretical framework and set the stage for
construction of the local stiffness matrix for the~b,g! subcell. We
proceed to do this by first defining the axial~out-of-plane! and
transverse~in-plane! surface-averaged traction, displacement, a
microvariable vectors for the~b,g! subcell as follows:

t̄axial
~b,g!5@~ t̄1

21 , t̄1
22 , t̄1

31 , t̄1
32!~b,g!#T

ūaxial8~b,g!5@~ ū18
21 ,ū18

22 ,ū18
31 ,ū18

32!~b,g!#T (16)

Waxial
~b,g!5@~W1~10! ,W1~20! ,W1~01! ,W1~02!!

~b,g!#T

t̄trans
~b,g!5@~ t̄2

21 , t̄2
22 , t̄3

21 , t̄3
22 , t̄2

31 , t̄2
32 , t̄3

31 , t̄3
32!~b,g!#T

ūtrans8~b,g!5@~ ū28
21 ,ū28

22 ,ū38
21 ,ū38

22 ,ū28
31 ,ū28

32 ,ū38
31 ,

ū38
32!~b,g!#T (17)

Wtrans
~b,g!5@~W2~10! ,W2~20! ,W3~10! ,W3~20! ,W2~01! ,W2~02! ,

W3~01! ,W3~02!!
~b,g!#T
Transactions of the ASME



t
s

where the superscript T denotes the transpose. We note tha
microvariable vectorsWaxial

(b,g) and Wtrans
(b,g) contain only the first-

and second-order quantitiesWi (mn)
(b,g) . Then, substituting Eqs.~8!–

~10! into Eqs.~11! and ~12!, performing the required integration
and assembling the resulting equations in matrix form, we ob
two uncoupled relations for the axial and transverse quantitie
l

Journal of Applied Mechanics
t the

,
ain

t̄axial
~b,g!5Caxial

~b,g!Waxial
~b,g!1C̄axial

~b,g!ēaxial (18)

t̄trans
~b,g!5Ctrans

~b,g!Wtrans
~b,g!1C̄trans

~b,g!ē trans (19)

where
Caxial
~b,g!53

C66
3hb

2
C66 0 0

2C66
3hb

2
C66 0 0

0 0 C55
3l g

2
C55

0 0 2C55
3l g

2
C55

4
~b,g!

C̄axial
~b,g!5F 2C66 0

22C66 0

0 2C55

0 22C55

G ~b,g!

Ctrans
~b,g!5

l

C22
3hb

2
C22 0 0 0 0 C23 0

2C22
3hb

2
C22 0 0 0 0 2C23 0

0 0 C44
3hb

2
C44 C44 0 0 0

0 0 2C44
3hb

2
C44 2C44 0 0 0

0 0 C44 0 C44
3l g

2
C44 0 0

0 0 2C44 0 2C44
3l g

2
C44 0 0

C23 0 0 0 0 0 C33
3l g

2
C33

2C23 0 0 0 0 0 2C33
3l g

2
C33

m

~b,g!
C̄trans
~b,g!53

C12 C22 C23 0

2C12 2C22 2C23 0

0 0 0 2C44

0 0 0 22C44

0 0 0 2C44

0 0 0 22C44

C13 C23 C33 0

2C13 2C23 2C33 0

4
~b,g!

and ēaxial5@ ē12,ē13#
T and ētrans5@ ē11,ē22,ē33,ē23#

T.

The first-order,Wi (10)
(b,g) , Wi (01)

(b,g) , and second-order,Wi (20)
(b,g) ,

Wi (02)
(b,g) , microvariables in Eqs.~18! and ~19! are subsequently

expressed in terms of the fluctuating surface-averaged disp

ments ū8(b,g) and the zeroth-order microvariablesWi (00)
(b,g) by
ace-

employing Eqs.~6! in Eqs.~13! and~14!, performing the averag-
ing procedure, and some additional algebraic manipulations,

F W1~10!

W1~20!

W1~01!

W1~02!

G ~b,g!

53
1

hb
2

1

hb
0 0

2

hb
2

2

hb
2 0 0

0 0
1

l g
2

1

l g

0 0
2

l g
2

2

l g
2

4 F ū18
21

ū18
22

ū18
31

ū18
32

G ~b,g!

2F 0
4

hb
2

0
4

l g
2

GW1~00!
~b,g! (20)
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ged

mac-
trac-

ents

ex-
n-

the
unit
dal

ge

ing
nd
ce-
ndary

n ei-
t the

dis-
own

to

ing
rnal

trac-
lated
o-

di-

om-
F W2~10!

W2~20!

W3~10!

W3~20!

G ~b,g!

53
1

hb
2

1

hb
0 0

2

hb
2

2

hb
2 0 0

0 0
1

hb
2

1

hb

0 0
2

hb
2

2

hb
2

4 F ū28
21

ū28
22

ū38
21

ū38
22

G ~b,g!

23
0 0

4

hb
2 0

0 0

0
4

hb
2

4 FW2~00!

W3~00!
G ~b,g!

(21)

F W2~01!

W2~02!

W3~01!

W3~02!

G ~b,g!

53
1

l g
2

1

l g
0 0

2

l g
2

2

l g
2 0 0

0 0
1

l g
2

1

l g

0 0
2

l g
2

2

l g
2

4 F ū28
31

ū28
32

ū38
31

ū38
32

G ~b,g!

23
0 0

4

l g
2 0

0 0

0
4

l g
2

4 FW2~00!

W3~00!
G ~b,g!

(22)

The zeroth-order microvariables are then expressed in terms o
fluctuating surface-averaged displacements by employing E
~18! and ~19! in conjunction with Eqs.~20!–~22! in the three
equilibrium equations expressed in terms of surface-avera
tractions that are obtained from Eqs.~15!. Performing the required
integration and simplifying yields

W1~00!
~b,g!5

C66
~b,g!

2C̄11
~b,g!

~ ū18
211ū18

22!~b,g!

1
hb

2C55
~b,g!

2l g
2C̄11

~b,g!
~ ū18

311ū18
32!~b,g! (23)

W2~00!
~b,g!5

C22
~b,g!

2C̄22
~b,g!

~ ū28
211ū28

22!~b,g!

1
hb

2C44
~b,g!

2l g
2C̄22

~b,g!
~ ū28

311ū28
32!~b,g! (24)

W3~00!
~b,g!5

C33
~b,g!

2C̄33
~b,g!

~ ū38
311ū38

32!~b,g!

1
l g
2C44

~b,g!

2hb
2C̄33

~b,g!
~ ū38

211ū38
22!~b,g! (25)

where
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C̄11
~b,g!5C66

~b,g!1
hb

2

l g
2

C55
~b,g! , C̄22

~b,g!5C22
~b,g!1

hb
2

l g
2

C44
~b,g! ,

C̄33
~b,g!5C33

~b,g!1
l g
2

hb
2

C44
~b,g!

The above relations allow one to express the surface-avera
tractions given by Eqs.~18! and ~19! exclusively in terms of the
fluctuating surface-averaged displacements and the applied
roscopic strains. The axial and transverse surface-averaged
tions t̄1

j 6(b,g) ( j 52,3) and t̄ i
j 6(b,g) ( i , j 52,3) are related to the

corresponding fluctuating surface-averaged displacem
ū18

j 6(b,g) ( j 52,3) andūi8
j 6(b,g) ( i , j 52,3) through the local stiff-

ness matricesL (b,g) andK (b,g) as shown below:

t̄axial
~b,g!5L ~b,g!ūaxial

~b,g!1C̄axial
~b,g!ēaxial (26)

t̄trans
~b,g!5K ~b,g!ūtrans

~b,g!1C̄trans
~b,g!ētrans (27)

where the elements of the local stiffness matrices are given
plicitly in terms of the mechanical properties and subcell dime
sions in the Appendix.

The above construction clarifies the differences between
present approach and a finite-element-based solution of the
cell problem. In particular, surface-averaged rather than no
quantities are employed in the construction of theL (b,g) and
K (b,g) local stiffness matrices, and subcell equilibrium in the lar
is enforced directly instead of a variational principle.

3.2 Global Stiffness Matrix. The local stiffness matrices
are used to construct the global stiffness matrix by first apply
interfacial traction and displacement continuity conditions, a
then periodic boundary conditions, all imposed in a surfa
averaged sense across adjacent subcell interfaces and bou
subcells. At thebth interface separating~b,g! and ~b11,g! sub-
cells, the three fluctuating surface-averaged displacements o
ther side of the interface must be equal. The same holds true a
gth interface separating~b,g! and ~b,g11! subcells. These conti-
nuity conditions are enforced by setting the corresponding
placement components to common unknown quantities as sh
below:

ūi8
21~b,g!5ūi8

22~b11,g!5ūi8
2~b11,g! (28)

ūi8
31~b,g!5ūi8

32~b,g11!5ūi8
3~b,g11! , i 51,2,3 (29)

The above equations hold true atb51, . . . ,Nb21 and g
51, . . . ,Ng21 subcell interfaces, respectively. This gives rise
3(Nb21)Ng13(Ng21)Nb unknown interfacial surface-
averaged displacements within the unit cell. The remain
6(Nb1Ng) surface-averaged displacements at the exte
boundaries of the unit cell

ūi8
2~1,g! , ūi

82~Nb11,g! , ūi8
3~b,1! , ūi

83~b,Ng11! , i 51,2,3
(30)

are related to the corresponding surface-averaged boundary
tions. These surface-averaged boundary quantities are re
through the periodic boundary conditions which will be incorp
rated into the global stiffness matrix in the last step.

Proceeding in a similar manner, the traction continuity con
tions ~or the interfacial equilibrium conditions! at thebth andgth
interfaces are ensured by

t̄ i
21~b,g!1 t̄ i

22~b11,g!50 (31)

t̄ i
31~b,g!1 t̄ i

32~b,g11!50, i 51,2,3 (32)

The above two sets of equations are written in terms of the c
mon interfacial surface-averaged displacementsū18

2(•,•) , ū18
3(•,•) ,
Transactions of the ASME
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ū28
2(•,•) , ū28

3(•,•) , ū38
2(•,•) , ū38

3(•,•) using Eqs.~26! and ~27! and
the displacement continuity conditions given by Eqs.~28! and
~29!. For i 51 we have

L12
~b,g!ū18

2~b,g!1~L11
~b,g!1L22

~b11,g!!ū18
2~b11,g!1L21

~b11,g!ū18
2~b12,g!

1L14
~b,g!ū18

3~b,g!1L13
~b,g!ū18

3~b,g11!1L24
~b11,g!ū18

3~b11,g!

1L23
~b11,g!ū18

3~b11,g11!52~C66
~b,g!2C66

~b11,g!!ē12 (33)

L32
~b,g!ū18

2~b,g!1L31
~b,g!ū18

2~b11,g!1L42
~b,g11!ū18

2~b,g11!

1L41
~b,g11!ū18

2~b11,g11!1L34
~b,g!ū18

3~b,g!1~L33
~b,g!

1L44
~b,g11!!ū18

3~b,g11!1L43
~b,g11!ū18

3~b,g12!

52~C55
~b,g!2C55

~b,g11!!ē13 (34)

while for i 52, 3, Eqs.~31! and ~32! become

K12
~b,g!ū28

2~b,g!1~K11
~b,g!1K22

~b11,g!!ū28
2~b11,g!1K21

~b11,g!ū28
2~b12,g!

1K16
~b,g!ū28

3~b,g!1K15
~b,g!ū28

3~b,g11!1K26
~b11,g!ū28

3~b11,g!

1K25
~b11,g!ū28

3~b11,g11!1K18
~b,g!ū38

3~b,g!1K17
~b,g!ū38

3~b,g11!

1K28
~b11,g!ū38

3~b11,g!1K27
~b11,g!ū38

3~b11,g11!

5~C12
~b,g!2C12

~b11,g!!ē111~C22
~b,g!2C22

~b11,g!!ē22

1~C23
~b,g!2C23

~b11,g!!ē33 (35)

K34
~b,g!ū38

2~b,g!1~K33
~b,g!1K44

~b11,g!!ū38
2~b11,g!1K43

~b11,g!ū38
2~b12,g!

1K36
~b,g!ū28

3~b,g!1K46
~b11,g!ū28

3~b11,g!1K35
~b,g!ū28

3~b,g11!

1K45
~b11,g!ū28

3~b11,g11!1K38
~b,g!ū38

3~b,g!1K48
~b11,g!ū38

3~b11,g!

1K37
~b,g!ū38

3~b,g11!1K47
~b11,g!ū38

3~b11,g11!

52~C44
~b,g!2C44

~b11,g!!ē23 (36)

K52
~b,g!ū28

2~b,g!1K51
~b,g!ū28

2~b11,g!1K62
~b,g11!ū28

2~b,g11!

1K61
~b,g11!ū28

2~b11,g11!1K54
~b,g!ū38

2~b,g!1K53
~b,g!ū38

2~b11,g!

1K64
~b,g11!ū38

2~b,g11!1K63
~b,g11!ū38

2~b11,g11!

1K56
~b,g!ū28

3~b,g!1~K55
~b,g!1K66

~b,g11!!ū28
3~b,g11!

1K65
~b,g11!ū28

3~b,g12!52~C44
~b,g!2C44

~b,g11!!ē23 (37)

K72
~b,g!ū28

2~b,g!1K71
~b,g!ū28

2~b11,g!1K82
~b,g11!ū28

2~b,g11!

1K81
~b,g11!ū28

2~b11,g11!1K74
~b,g!ū38

2~b,g!1K73
~b,g!ū38

2~b11,g!

1K84
~b,g11!ū38

2~b,g11!1K83
~b,g11!ū38

2~b11,g11!

1K78
~b,g!ū38

3~b,g!1~K77
~b,g!1K88

~b,g11!!ū38
3~b,g11!

1K87
~b,g11!ū38

3~b,g12!

5~C13
~b,g!2C13

~b,g11!!ē11

1~C23
~b,g!2C23

~b,g11!!ē221~C33
~b,g!2C33

~b,g11!!ē33 (38)

Equations ~33!–~38! provide us with a total of 3(Nb21)Ng
13(Ng21)Nb equations in terms of the common interfaci
surface-averaged displacements and the surface-averaged
placements at the external boundaries of the unit cell. The a
and transverse surface-averaged displacements appear sepa
Journal of Applied Mechanics
l
dis-

xial
rately

in the first and second set of these equations, respectively. He
they are assembled into two global stiffness matrices in the m
ner described next.

Assembly and Structure of the Global Stiffness Matrices.We
initially assemble the global stiffness matrices by assuming
the unit cell’s boundary is subjected to prescribed surfa
averaged tractions. The assembly thus includes the boundary
~1,g!, (Nb ,g) and ~b,1!, (b,Ng), which provide the additional
6(Nb1Ng) equations involving the boundary surface-averag
tractions and displacements, in addition to the interfacial conti
ity conditions described above. The final systems of equati
relating the axial and transverse quantities are symbolically w
ten as

FL11 L12

L21 L22
G F ū18

2

ū18
3G5F t̄1

2

t̄1
3G1FDc11 0

0 Dc22
G F ē12

ē13
G (39)

F K11 0 K13 K14

0 K22 K23 K24

K31 K32 K33 0

K41 K42 0 K44

GF ū28
2

ū38
2

ū28
3

ū38
3
G5F t̄2

2

t̄3
2

t̄2
3

t̄3
3
G

1F DC11 DC12 DC13 0

0 0 0 DC24

0 0 0 DC34

DC41 DC42 DC43 0

GF ē11

ē22

ē33

ē23

G (40)

where

ūi8
25@ ūi8

2~1! , . . . ,ūi
82~Ng!

#

with ūi8
2~g!5@ ūi8

2~1,g! , . . . ,ūi
82~Nb11,g!

#, ~ i 51,2,3!

ūi8
35@ ūi8

3~1! , . . . ,ūi
83~Nb!

#

with ūi8
3~b!5@ ūi8

3~b,1! , . . . ,ūi
83~b,Ng11!

#, ~ i 51,2,3!

and the structure of the surface-averaged traction vectorst̄ i
2 and t̄ i

3

is similar to the above surface-averaged interfacial displacem
vectors. In this case, however, the only nonzero surface-avera
traction components are those associated with the boundary
cell external surfaces as shown below. This follows from the
terfacial traction continuity conditions given by Eqs.~31! and
~32!.

t̄ i
25@ t̄ i

2~1! , . . . ,t̄ i
2~Ng!

#

with t̄ i
2~g!5@ t̄ i

22~1,g!,0, . . . ,0,t̄ i
21~Nb11,g!

#, ~ i 51,2,3!

t̄ i
35@ t̄ i

3~1! , . . . ,t̄ i
3~Nb!

#

with t̄ i
3~b!5@ t̄ i

32~b,1!,0, . . . ,0,t̄ i
31~b,Ng11!

#, ~ i 51,2,3!

The size of the global stiffness matrix in the first system
equations, which consists of four submatrices, is@2NbNg1(Nb
1Ng)#3@2NbNg1(Nb1Ng)#. The global stiffness matrix in the
second system of equations, whose size is@4NbNg12(Nb
1Ng)#3@4NbNg12(Nb1Ng)#, consists of twelve nonzero sub
matrices. The diagonal submatricesL i i andK i i , whose structures
are similar, relate the surface-averaged tractions to displacem
in their respective directions and have entries concentrated a
the diagonal. The off-diagonal submatricesL i j and K i j , whose
structures are also similar, represent coupling of the surfa
averaged quantities in they2 and y3 directions and have entrie
scattered throughout. The structure of the diagonal and
diagonal submatrices in both systems of equations is the sam
that in the reformulated higher-order theory for FGMs and h
been described in detail by Bansal and Pindera@10#.
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Finally, the column submatrices Dc11, Dc22, and
DC11, . . . ,DC43, which are multiplied by the macroscopi
strains on the right-hand side of Eqs.~39! and~40!, represent the
differences in the elastic stiffness elementsCi j

(bg) between adja-
cent subcells in they2 and y3 directions, as shown on the righ
hand side of the traction continuity equations given by Eqs.~33!
and ~34! and Eqs.~35!–~38!.

Reduction of the Global Stiffness Matrices.The global stiff-
ness matrices given in Eqs.~39! and~40! are further reduced using
periodicity conditions on the surface-averaged displacements
tractions imposed on the external surfaces of the boundary
cells around the repeating unit cell. The periodicity conditions
the surface-averaged boundary displacements are

ūi8
2~1,g!5ūi

82~Nb11,g! , ūi8
3~b,1!5ūi

83~b,Ng11! , ~ i 51,2,3!
(41)

Similarly, the periodicity conditions for the surface-averag
boundary tractions are

t̄ i
2~1,g!1 t̄ i

2~Nb11,g!
50, t̄ i

3~b,1!1 t̄ i
3~b,Ng11!

50, ~ i 51,2,3!
(42)

The imposed periodicity conditions~41! and ~42! eliminate the
traction vectors on the right-hand sides of Eqs.~39! and~40!, and
provide us with the necessary 6NbNg relations for the 6NbNg
unknown subcell surface-averaged displacements, i.e., 3Nb
21)Ng13(Ng21)Nb unknown common interfacial surface
averaged displacements along with 3(Nb1Ng) unknown surface-
averaged displacements at the external boundaries of the repe
unit cell. These relations are obtained from Eqs.~39! and~40! by
combining and deleting appropriate rows and columns of
original stiffness matrices appearing in these equations.

The resulting reduced equations relate the unknown surf
averaged interfacial and boundary displacements to the app
macroscopic strains through the reduced stiffness matrices.
final reduction of these singular matrices involves constraining
corner subcell faces to eliminate rigid body motion. In view of t
imposed periodicity conditions on the surface-averaged boun
displacements, constraining the external surfaces of one co
subcell and just one appropriate external surface of two co
subcells at opposite ends of the diagonal is sufficient.

3.3 Homogenized Constitutive Equations. The average
strains in each subcell are related to the average macrosc
strains through Hill’s strain concentration tensor@11#, as

ē~b,g!5A~b,g!ē (43)

The average subcell strains are obtained by averaging Eqs~8!
over the subcell volume, yielding expressions in terms of the m
roscopic strainsēi j and the first-order microvariablesWi (mn)

(b,g) .
These microvariables are then expressed in terms of the interf
surface-averaged displacements using Eqs.~20!–~25!. The solu-
tion of the reduced systems of equations yields the interfacial
boundary surface-averaged displacements as a function of
macroscopic strains. This allows us to obtain the average s
components in each subcell in terms of the macroscopic strain
practice, we determine the elements of the strain concentra
tensorA(b,g) for each subcell numerically by applying one com
ponent of the macroscopic strainē at a time. For instance, apply
ing ē1151 and all others zero, and then solving the reduced s
tems of equations to obtainē(b,g) for each subcell, we obtain th
first column of the strain concentration tensor using Eq.~43!. The
remaining elements of the strain concentration tensorA(b,g) are
obtained by successively applying the remaining macrosco
strain components one nonzero component at a time.

The average stress in each subcell is given by
184 Õ Vol. 72, MARCH 2005
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s̄~b,g!5C~b,g!ē~b,g! (44)

in view of the fact that the material occupying a given~b,g!
subcell is homogeneous. Using Eq.~43! to expressē(b,g) in terms
of the macroscopic strains, we obtain

s̄~b,g!5C~b,g!A~b,g!ē (45)

Averaging the subcell stresses over the entire repeating unit
we then obtain the macroscopic stress in terms of the macrosc
strains for the composite in the form

s̄5
1

HL (
g51

Ng

(
b51

Nb

hbl gC~b,g!A~b,g!ē (46)

which can be written in the form of a macroscopic constituti
equation for the unit cell response as follows

s̄5C* ē (47)

whereC* represents the effective elastic stiffness matrix for t
repeating unit cell and is given by

C* 5
1

HL (
g51

Ng

(
b51

Nb

hbl gC~b,g!A~b,g! (48)

4 Numerical Results
We test the high-fidelity model’s predictive capability by dete

mining the effective moduli of a unidirectional composite, with
square array of fibers in thex2–x3 plane, as a function of the
rotation angleu about the fiber axisx1 . The moduli in the rotated
coordinate system are then compared with the standard tran
mation equations which provide the correct answer. We also g
erate the local stress fields within a repeating unit cell for a r
resentative rotation angle. To highlight the advantages and n
for HFGMC, the moduli as well as the local stress fields predic
by this model are compared with the corresponding GMC resu
This comparison illustrates the importance of including the effe
of shear coupling in heterogeneous materials.

Figure 4 shows the investigated square array of fibers wit
fiber volume fraction of 0.35, extending to infinity in thex2–x3
plane. Both the fiber and the matrix phases are isotropic. To
plify the influence of shear coupling, we consider two cases w
radically different contrasts between the fiber and matrix prop
ties. In the first case, the matrix is an epoxy resin and the fibers
glass with typical elastic moduli that produce the Young’s mod
ratio Ef /Em520. In the second case, we consider an alumin
matrix weakened by holes which are simulated by very compli
inclusions that yield the Young’s moduli ratioEf /Em50.01. The
actual constituent moduli values are given in Table 1.

As shown in Fig. 4, five different repeating unit cells are an
lyzed that produce homogenized properties of the same fiber a
relative to five coordinate systems generated by rotating the p
cipal material coordinate system through an angleu about the
fiber axis. These are arranged in two rows such that the numbe
fibers in each repeating unit cell increases in each row from lef
right. As observed, the rotation angle does not increase mono
cally with increasing number of fibers. The first repeating unit c
in the first row of Fig. 4 with the circular fiber in the center, fo
which u50 deg, represents the infinite square fiber array in
principal material coordinate system in light of the fact that t
orthogonal planes of material symmetry passing through the fi
center coincide with the globalx1–x2–x3 coordinate system.
Clearly, this is the simplest unit cell. The remaining unit ce
were constructed by connecting the center of a reference fibe
the center of the fiber a certain number of fibers to the right of
reference fiber and up. This specified both the rotation angle
the length of the lower inclined edge of the unit cell. Completi
the square in the same manner produced the entire unit cell fo
particular rotation angle. Thus the four rotation angles were
tained from the relationsu5tan21$1/4,1/2,3/4,1%, where the de-
Transactions of the ASME
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nominator represents the number of fiber distances to the righ
the reference fiber, and the numerator the number of fibers up.
fiber distance is the horizontal or vertical distance between a
cent fiber centers. It is evident that the generated unit cells are
basic building blocks of the same fiber array in the five conside
coordinate systems, which include the principal material syst
It is also clear that three out of the five do not possess plane
material symmetry. This results in anisotropic behavior in
x2–x3 plane, necessitating the use of periodic boundary con
tions which is an intrinsic feature of the high-fidelity mode
framework.

The actual unit cells in the four rotated coordinate systems u
in the calculations are shown in Fig. 5 in discretized form. Tabl
provides information on the actual microstructural discretizat
used for each unit cell, the number of fibers and the volume fr
tion of the fiber phase. We note that the fiber volume fract
within each unit cell varied slightly from the nominal fraction o
0.35 due to the use of square subcells to approximate the
shape. The actual number of subcells in each unit cell was dict
by the need to capture the circular fiber shape with suffici
detail given the required number of fibers and the targeted fi
volume fraction. In the case of the unit cell in the principal ma
rial coordinate system with a single fiber in the center~not
shown!, the repeating unit cell was discretized into 1003100 sub-
cells in the x2–x3 plane. The same number was used for t

Fig. 4 A representation of an infinite array of inclusions in
square packing, showing five repeating unit cells which repre-
sent the same array in different coordinate systems rotated by
the indicated angles about the fiber axis

Table 1 Material properties of the fiber and matrix
constituents

Material Young’s modulus~MPa! Poisson’s ratio

Glass fiber 70,000 0.25
Epoxy matrix 3,500 0.35
Compliant fiber 700 0.33
Aluminum matrix 70,000 0.33
Journal of Applied Mechanics
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repeating unit cells rotated by 26.57 deg and 45.0 deg about thx1
axis, while 1503150 subcells were employed for the unit ce
rotated by 14.04 deg and 36.87 deg.

The unit cell in the principal material coordinate system with
single fiber in the center~u50 deg, Fig. 4! produces homogenized
elastic stiffness matrixC* of the form

C* 53
C11* C12* C13* 0 0 0

C12* C22* C23* 0 0 0

C13* C23* C33* 0 0 0

0 0 0 C44* 0 0

0 0 0 0 C55* 0

0 0 0 0 0 C66*

4 (49)

whereC12* 5C13* , C22* 5C33* , C55* 5C66* due to the cubic symmetry
but C44* Þ 1

2(C22* 2C23* ) due to the absence of isotropy in thex2–x3
plane. This stiffness matrix is used in the transformation equati

C̄* ~u!5T1C* T2
21 (50)

to generate the corresponding homogenized stiffness matrix in
rotated coordinate system independently of the micromechan
based solution for the homogenized stiffness matrix of a unit
in the same rotated coordinate system. The transformation m
cesT1 andT2 for the rotation angleu about thex1 axis are

T153
1 0 0 0 0 0

0 m2 n2 2mn 0 0

0 n2 m2 22mn 0 0

0 2mn mn m22n2 0 0

0 0 0 0 m 2n

0 0 0 0 n m

4 ,

T253
1 0 0 0 0 0

0 m2 n2 mn 0 0

0 n2 m2 2mn 0 0

0 22mn 2mn m22n2 0 0

0 0 0 0 m 2n

0 0 0 0 n m

4
wherem5cosu andn5sinu. They relate stress and engineerin
strain quantities in the principal coordinate system,s ande, to the
corresponding quantities in the rotated~primed! coordinate sys-
tem, s8 and e8 ~i.e., s85T1s and e85T2e) and are used to
derive Eq.~50! from Hooke’s law in the principal material coor
dinate system. Under the above transformation, the homogen
stiffness matrixC̄* ~u! acquires the following form in the rotate
coordinate system
MARCH 2005, Vol. 72 Õ 185
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Fig. 5 Detailed volume discretizations of the four repeating unit cells in the rotated coor-
dinate systems employed to accurately capture the geometric details within each unit cell
ed
ding

ro-
C̄* ~u!53
C̄11* C̄12* C̄13* 0 0 0

C̄12* C̄22* C̄23* C̄24* 0 0

C̄13* C̄23* C̄33* C̄34* 0 0

0 C̄24* C̄34* C̄44* 0 0

0 0 0 0 C̄55* C̄56*

0 0 0 0 C̄56* C̄66*

4 (51)

whereC̄12* 5C̄13* , C̄22* 5C̄33* , C̄55* 5C̄66* , andC̄24* 52C̄34* .

Table 2 Geometric and microstructural details of the investi-
gated repeating unit cells

RUC rotation
angle

No. of
fibers

Subcell
discretization

Fiber volume
fraction

u5tan21(
0
1)50 deg 1 1003100 0.3468

u5tan21(
1
4)514.04 deg 17 1503150 0.3476

u5tan21(
1
2)526.56 deg 5 1003100 0.3440

u5tan21(
3
4)536.87 deg 25 1503150 0.3511

u5tan21(
1
1)545 deg 2 1003100 0.3504
ARCH 2005
The knowledge of the effective stiffness matrix in the rotat
coordinate system makes it possible to generate the correspon
transformed compliance matrix from the inverse relationship

S̄* ~u!5@C̄* ~u!#21 (52)

The elements of the transformed compliance matrixS̄* ~u! are then
used to determine the effective engineering properties in the
tated coordinate system as follows:

Ē11* ~u!5
1

S̄11*
, Ē22* ~u!5

1

S̄22*
, Ē33* ~u!5

1

S̄33*

n̄12* ~u!52
S̄12*

S̄11*
, n̄13* ~u!52

S̄13*

S̄11*
, n̄23* ~u!52

S̄23*

S̄22* (53)

Ḡ23* ~u!5
1

S̄44*
, Ḡ13* ~u!5

1

S̄55*
, Ḡ12* ~u!5

1

S̄66*

h̄2,23* ~u!5
S̄24*

S̄44*
, h̄3,23* ~u!5

S̄34*

S̄44*
, h̄23,2* ~u!5

S̄24*

S̄22*
,

h̄23,3* ~u!5
S̄34*

S̄33*
Transactions of the ASME
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whereĒii* (u) are the three Young’s moduli,n̄ i j* (u) ( iÞ j ) are the

major Poisson’s ratios,Ḡi j* (u) ( iÞ j ) are the three shear modul
and h̄ i ,23* , h̄23,i* are Lekhnitskii’s coefficients of mutual influenc
of the first and second kind, respectively, Lekhnitskii@12#. These
coefficients provide a measure of the extent of anisotropy in
x2–x3 plane introduced by the rotation angleu about the fiber
axis. The coefficients of the first kind represent ratios of transve
normal to transverse shear strains due to transverse shear lo
only. Similarly, the coefficients of the second kind represent ra
of transverse shear to transverse normal strains due to trans
normal loading only.

In the following two sections, micromechanical analyses of
five repeating unit cells shown in Figs. 4 and 5 are conducte
generate the homogenized stiffness matrix elements of the
unidirectional composites in the rotated coordinate systems, w
are then used to determine the corresponding compliance m
elements from Eqs.~52!, and ultimately the engineering modu
from Eqs.~53!. The transformation equations, Eqs.~50!, serve as
the gold standard for comparison purposes. These require
knowledge of the stiffness matrix elements in the principal ma
rial coordinate system, which are obtained from the microm
chanical analysis of the simple unit cell with the single fiber in t
center.

4.1 GlassÕEpoxy Unidirectional Composite. Figure 6 il-
lustrates the dependence of the engineering moduli on the rota
angleu for the glass/epoxy system with the Young’s moduli ra
Ef /Em520. The predictions generated by HFGMC for th
Young’s and shear moduli have been normalized by the co
sponding values in the principal material coordinate system~with
u50 deg!, while the Poisson’s ratios and the mutual influen
coeffcients are presented unnormalized. The predictions of
original GMC model, which have also been normalized by
corresponding engineering moduli in the principal material co
dinate system obtained from HFGMC, are included in the figu
The transformation equation predictions for the engineer
moduli follow the predictions for the stiffness matrix elemen
~not shown, see Bansal and Pindera@13# for details!. That is,
while C̄11* , C̄12* , and C̄66* are insensitive to the rotation angleu,
the elementsC̄22* , C̄23* , and C̄44* exhibit substantial dependenc
The dependence of the coupling elementsC̄24* and C̄34* on the
rotation angle is also substantial, albeit the actual magnitudes
much smaller.

As observed in Fig. 6, the correlation between the HFGMC a
transformation equation predictions is remarkable for the t
Young’s and shear moduli, and the two major Poisson’s ratios
particular, the axial Young’s modulusE11* (u) remains nearly con-
stant for the differently oriented unit cells, as does the major P
son’s ration12* (u) and the out-of-plane shear modulusG12* (u), as
suggested by the absence of variation of the corresponding
ness matrix elements. The in-plane moduli, on the other ha
exhibit substantialu dependence. While the transverse modu
E22* (u) decreases with increasing rotation angle, the transv
Poisson’s ration23* (u) and the transverse shear modulusG23* (u)
increase. For the rotation angleu545 deg, the decrease in th
transverse Young’s modulus is more than 15% of the princ
material coordinate system value. For the same rotation angle
increase in the transverse shear modulus and Poisson’s ra
more dramatic, with increases of approximately 30% and 25
respectively. Equally remarkable is the correlation for the coe
cients of mutual influenceh2,23* , h3,23* , h23,2* , and h23,3* , which
couple the normal and shear responses. These coefficients g
measure of the extent of anisotropy in thex2–x3 plane caused by
the absence of material planes of symmetry.

In contrast, the GMC predictions are markedly inferior, with t
exception of the Young’s modulusE11* (u). In particular, the trans-
verse modulusE22* (u) in the low off-axis angle range differs from
Journal of Applied Mechanics
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the transformation and high-fidelity model predictions by ov
20%. The differences in the out-of-plane shear modulusG12* (u)
are also on the order of 20% in the entire off-axis range exclud
u50 deg. An even greater difference is obtained for the transve

Fig. 6 Normalized engineering moduli of the glass Õepoxy uni-
directional composite as a function of the rotation angle u
about the fiber axis. Comparison of GMC and HFGMC predic-
tions with the transformation equations.
MARCH 2005, Vol. 72 Õ 187



188
Fig. 7 ŠColor ‹ Comparison of s22 , s33 , and s23 stress fields „MPa… within the unit cell of the glass Õepoxy unidi-
rectional composite rotated by 26.57 deg about the fiber axis and subjected to the average normal strain ē22
Ä0.1%: HFGMC „left column … and GMC „right column … predictions
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shear modulusG23* (u) for rotation angles greater than 30 deg d
to GMC’s failure to predict any variation for all rotation angle
The differences between the HFGMC and GMC models
rooted in the absence of shear coupling caused by the use
linear displacement field in the latter model, which results in c
stant strain and stress fields in the individual subcells. The ap
cation of traction continuity conditions in an average sense
tween individual subcells within each row and column of subce
renders the corresponding traction components constant
magnitudes dictated by the most compliant subcell. In the cas
the transverse shear stress, this effect is further enhanced an
sults in a uniform shear stress throughout the entire repeating
cell. The comparison of microscale stress fields discussed be
illustrates this point more clearly.

To illustrate the influence of shear coupling, microscale str
distributions predicted by HFGMC and GMC are compared
the unit cell rotated byu526.57 deg about the fiber axis an
subjected to transverse normal and transverse shear loading.
lar results have been observed for other rotation angles,~Bansal
and Pindera@13#!. Figure 7 compares the microscales22, s33,
ands23 stress fields for loading by the average transverse nor
strain ē2250.1%, with the remaining faces of the repeating u
cell traction-free in the average sense. Thes22 stress distribution
predicted by HFGMC exhibits small departures from uniform d
tribution within the individual fibers, with magnitudes substa
tially greater than in the surrounding matrix due to the large fib
matrix moduli mismatch. High stress concentrations are evid
along certain segments of the fiber/matrix interfaces which ma
may not be due to the stepwise discretization of the circular in
face. This aspect requires further investigation which is bey
the scope of the present study~see Bednarcyk et al.@14# for re-
lated discussion about the mesh sensitivity of HFGMC!. Thes33
stress distributions within the individual fibers, which are subst
tially smaller than thes22 distributions, also exhibit small depa
tures from uniform distributions. In the matrix phase, howev
this stress component is not insignificant relative tos22. Signifi-
cant s33 stress concentrations are present in the matrix phas
the fiber/matrix interfaces at points along the fiber diame
planes lined up with the load axis. Significants23 stress magni-
tudes are also evident in oval regions surrounded by four fib
aligned with the rotated fiber rows. In contrast, the normals22 and
s33 stress distributions generated by GMC exhibit parallel s
patterns along they2 andy3 directions, respectively. Little varia
tion in the respective stress magnitudes is observed in the adja
strips and the low magnitudes relative to the high-fidelity resu
produce a low value of the average normal stresss̄22, thereby
resulting in a low value of the transverse Young’s modulus for t
rotation angle observed in Fig. 6. Further, the transverse s
stresss23 is identically zero due to the absence of shear coupli

Figure 8 compares the microscales23 ands22 stress fields for
loading by the average transverse shear strainē2350.1%, with the
average stresses other thans̄23 set to zero. This loading case high
lights the differences in the two stress distributions predicted
GMC and HFGMC models. The uniforms23 stress distribution
throughout the entire unit cell irrespective of location~i.e.,
whether the particular point lies within the hard fiber or mu
softer matrix phase! predicted by GMC is a direct consequence
the imposition of shear traction continuity in the surface-aver
sense across subcell interfaces in they2 andy3 directions, given
the linear displacement field approximation within each subc
The low magnitude of this stress component relative to the H
GMC prediction produces a substantially lower value of the tra
verse shear modulus observed in Fig. 6. The linear displacem
field approximation also uncouples the shear and normal st
fields at the local level, thereby producing vanishings22 stresses
in the individual subcells. In contrast, the second-order displa
ment field approximation employed in HFGMC is sufficient
correctly capture the stress transfer mechanism between the
phases, enabling the fibers to carry substantially higher s
Journal of Applied Mechanics
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stresses, thereby producing a higher average shear stress th
repeating unit cell can support for the same applied average s
strain. This results in the higher effective transverse shear mo
lus seen in Fig. 6. The second-order displacement field appr
mation also couples the normal and shear stress fields at the
level, resulting in the observeds22 stress distribution that is
nearly uniform in the individual fibers and highly nonuniform
the matrix phase. The matrixs22 stress nonuniformity is charac
terized by substantial stress concentrations at opposite loca
around the fiber/matrix interface that are aligned with the diam
ral fiber planes coincident with the rotated fiber rows.

4.2 Aluminum Weakened by Axially Oriented Cylindrical
Porosities. Figures 9 through 11 present the corresponding
sults for the aluminum matrix with substantially softer cylindric
inclusions. In this case, the Young’s moduli ratio isEf /Em
50.01. For such a low ratio, the compliant cylindrical inclusio
effectively behave as porosities.

Figure 9 illustrates the dependence of the engineering mo
on the rotation angleu. The transformation equation prediction
follow the trends presented in Fig. 6 for the glass/epoxy comp
ite, but the variations are now greater. As before, the transfor
tion equations predict variations only for the transverse mod
and the mutual influence coefficients. In particular, the transve
Young’s modulusĒ22* (u) decreases by nearly 40% at the rotati
angle of 45 deg relative to its value in the principal material c
ordinate system, compared to just a little more than 15% for
glass/epoxy system. The increase in the transverse mod
Ḡ23* (u) is almost 100%. The increase in the transverse Poiss
ratio n̄23* (u) is even more dramatic, being around 150%. The
large variations with the rotation angle are captured very well
HFGMC. In contrast, the original GMC model results are co
pletely erroneous for almost all engineering moduli at nonz
rotation angles. The exceptions are the axial Young’s modu
Ē11* (u) and the related Poisson’s ration̄12* , which are predicted
very accurately for all rotation angles. In the case of pure ax
loading in the porosity direction, the matrix phase is continuo
along this direction, and is thus effective in supporting the en
axial load without the need for stress transfer through the sh
normal coupling mechanism, while the transverse contrac
which affectsn̄12* occurs unconstrained due to porosity’s presen

The above results are explained by microscale stress distr
tions predicted by the two models presented in Figs. 10 and 11
in the case of the glass/epoxy composite, these distributions h
been generated for the repeating unit cell rotated byu526.57 deg
and subjected to transverse normal and transverse shear loa
Figure 10 compares the microscales22, s33 ands23 stress fields
in this repeating unit cell for loading by the average transve
normal strainē2250.1%. The detrimental effect of the shear co
pling’s absence in GMC on these stress components is cle
observed, with thes22 stress field characterized by essentia
uniform and very low magnitudes, and thus a low transve
Young’s modulusĒ22* (u) seen in Fig. 9. The same holds true f
the s33 stress field, while the transverse shear stresss23 vanishes
completely. In contrast, the shear coupling effects necessar
internally support the applied transverse load are clearly evid
in the HFGMC predictions for the three stress fields. Highly no
uniform distributions are observed for the three stress compon
in the matrix phase, characterized by significant concentration
the porosity/matrix interfaces at specific locations as in the p
ceding case.

Similar trends in the stress distributions predicted by the t
models are observed for loading by the average transverse s
strain ē2350.1%. This is seen in Fig. 11, which compares t
microscales23 and s22 stress fields within the considered un
cell. As expected from the solution of the Kirsch problem for
single cylindrical cavity, large concentrations of the normal str
s22 are observed at the porosity/matrix interface due to the tra
verse shear loading in the HFGMC predictions. These are actu
MARCH 2005, Vol. 72 Õ 189
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Fig. 8 ŠColor ‹ Comparison of s23 and s22 stress fields „MPa… within the unit cell of the glass Õepoxy unidirectional
composite rotated by 26.57 deg about the fiber axis and subjected to the average shear strain ē23Ä0.1%: HFGMC
„left column … and GMC „right column … predictions
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higher than the corresponding transverse shear stress conc
tions. The GMC model is incapable of capturing these nonunifo
stress fields, and the presence of porosities results in uniform
very low magnitudes of the transverse shear stress, produci
very low value of the transverse shear modulusḠ23* (u) seen in
Fig. 9. Furthermore, the normal stresss22 completely vanishes in
contrast to the HFGMC result.

5 Discussion
As illustrated in the foregoing, for a unit cell without planes

material symmetry parallel to the fiber axis, the microscale str
fields predicted by the original GMC model exhibit two chara
teristic patterns in the plane normal to the fiber axis. The nor
s22 ands33 stress distributions are characterized by parallel st
whose magnitude and sign depend on the applied stress ori
tion and the fiber/matrix Young’s modulus ratio. For large rat
the patterns are visibly distinct, while for very low ratios th
mimic porosities the patterns are obscured by the very low nor
stress magnitudes. Similar strip patterns are observed for unit
with a single fiber in the center, which possess two orthogo
planes of material symmetry~Pindera et al.@7# and Bednarcyk
et al. @14#!. In such cases, the strip patterns are wider and fe
Õ Vol. 72, MARCH 2005
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due to the absence of overlapping fibers aligned with the l
axis. In contrast, the shear stresss23 distributions are uniform
within the rotated unit cells as well as within unit cells in th
principal material coordinate system. As discussed herein,
elsewhere, these patterns are a direct result of the absence of
coupling and lead to inaccurate microscale stress fields, with
exception of the second invariant of the stress deviator, whic
predicted sufficiently well to enable accurate modeling of t
macroscopic response of unidirectional metal matrix compos
~cf. Arnold et al.@15,16# and Iyer et al.@17#!. As also shown for
the porous aluminum case, these characteristic stress distribu
produce highly inaccurate engineering moduli in the rotated co
dinate system.

In order to mitigate the negative impact of the shear coupl
absence, an alternative manner of determining the unit cell
sponse, and thus the engineering moduli, in the rotated coordi
system based on the GMC model can be chosen. First, the ap
normal or shear strain in the rotated coordinate system is tr
formed to the principal coordinate system in order to determ
the response in this reference frame. The resulting strains
stresses are then transformed back to the rotated coordinate
tem in order to determine the elastic moduli. In fact, this is t
Transactions of the ASME
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basis for the transformation equations given by Eq.~50!, and
should yield the same result as direct application of strains in
rotated coordinate system if the micromechanics model is s
consistent. This is clearly the case for the HFGMC model. In
case of GMC, however, the observed characteristic stress pat
indicate that this is going to be only partially successful in t
presence of very compliant inclusions. In particular, transform

Fig. 9 Normalized engineering moduli of the aluminum matrix
weakened by cylindrical porosities as a function of the rotation
angle u about the fiber axis. Comparison of HFGMC and GMC
predictions with the transformation equations.
Journal of Applied Mechanics
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the applied macroscopic strain to the principal material coordin
system will not negate the fact that the transverse shear respo
and thus the transverse shear modulus, will be incorrectly p
dicted in the presence of porosities. Specifically, the transve
shear modulus will be zero, rendering the resulting macrosco
shear stress zero. Therefore, this contribution will be absent w
transforming the stresses to the rotated coordinate system, the
producing a result that will differ from the transformation equ
tions by an amount that depends on the rotation angle or
magnitude of the absent transverse shear stress in the prin
material coordinate system. However, the dramatic differences
tween GMC predictions and transformation equations observe
Fig. 9 for the porous aluminum case will be reduced because
contribution of the normal stresses in the principal material co
dinate system will not be completely eliminated even in the pr
ence of porosities. This method of calculating the engineer
moduli in the rotated coordinate system is in fact equivalent to
use of transformation equations based on the moduli calculate
the GMC model in the principal material coordinate system. T
different results obtained from the GMC-based calculatio
which depend on whether the calculations are made in the rot
or unrotated coordinate system, point to a fundamental prob
that limits this model’s range of applicability. This limitation ha
been overcome by the high-fidelity version, which can be use
accurately model the response of a wide range of periodic m
rials with or without planes of material symmetry in arbitra
coordinate systems.

For example, the reformulated HFGMC can now be appl
with confidence to the important and rapidly growing area of m
cromechanics of random heterogeneous media with detailed
crostructures. This can be carried out by assigning random di
bution of phases within the repeating unit cell to produce a loca
random but macroscopically periodic material model~cf. Baxter
et al. @18#, Graham-Brady et al.@19#!. Alternatively, a broader
class of random materials can be considered by relaxing the p
odicity conditions in favor of homogeneous traction and displa
ment boundary conditions applied to a representative volume
ement, as discussed by Ostoja-Starzewski@20#.

We close this section by briefly discussing the differences
similarities between the reformulated HFGMC and the fini
element approach that is often employed in analyzing the resp
of composite materials from micromechanics considerations un
specific loadings. First, as mentioned in Sec. 3.1, the construc
of the local stiffness matrix based on the employed local/glo
stiffness matrix reformulation clearly highlights the differences
the theoretical framework of the two methods given the fact t
both are based on similar volume discretizations of a mate
microstructure. However, the discretization capability of the ref
mulated HFGMC is more limited at present since it is bas
strictly on rectangular subcells in contrast to the finite-elem
approach. Consequently, a greater number of subcells is requ
to model the type of microstructures investigated herein fo
comparable level of geometric fidelity and local stress field ac
racy. This limitation will be mitigated in the future by the deve
opment of a local stiffness matrix for trapezoidal subcells. W
mention, however, that for the same volume discretization o
highly heterogeneous microstructure based on rectangular
cells, together with the same order of displacement field appr
mation within individual subcells or elements, the traction con
nuity between subcells/elements with large material prope
contrast is better satisfied by HFGMC relative to t
displacement-based finite element formulation. This has b
demonstrated by Bansal and Pindera@10# in the context of the
higher-order theory for functionally graded materials which form
the basis for HFGMC. We also mention that the extent of discr
zation can be relaxed if the macroscopic response is the
output of interest, as demonstrated recently by Bednarcyk e
@14# in the context of simulating the inelastic response
titanium-based composites with local damage in the form of fib
MARCH 2005, Vol. 72 Õ 191



192
Fig. 10 ŠColor ‹ Comparison of s22 , s33 , and s23 stress fields „MPa… within the unit cell of aluminum matrix with
cylindrical porosities rotated by 26.57 deg about the porosity axis and subjected to the average normal strain ē22
Ä0.1%: HFGMC „left column … and GMC „right column … predictions
Õ Vol. 72, MARCH 2005 Transactions of the ASME
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Fig. 11 ŠColor ‹ Comparison of s23 and s22 stress fields „MPa… within the unit cell of aluminum matrix with cylindrical
porosities rotated by 26.57 deg about the porosity axis and subjected to the average shear strain ē23Ä0.1%: HFGMC
„left column … and GMC „right column … predictions
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matrix debonding using the original formulation of HFGMC. Th
price for this, of course, is the loss of local stress field accura

Further, the closed-form expression for the macroscopic con
tutive equation of a homogenized material obtained from HFGM
in the form of Hooke’s law@Eqs.~47! and~48!#, given in terms of
the repeating unit cell microstructural details and phase proper
holds for any arbitrary loading. It can thus be employed in
stand-alone manner in the development and optimization of
material systems which typically involves the application of co
bined external loading in arbitrary proportions, or as a subrou
in a larger structural mechanics program in the context of mu
scale analysis not easily implementable using standard com
cial finite-element codes. The reformulation of HFGMC presen
herein simplifies the construction of the final system of equati
through the closed-form expressions for the elements of the l
stiffness matrix for an arbitrary subcell and a straightforward
sembly procedure of the global stiffness matrix, facilitating t
model’s implementation and accessibility that were previou
lacking. In closing, HFGMC occupies a middle ground betwe
the highly accurate, but less robust and typically load-history s
cific, commercial finite-element codes and the robust and effici
but substantially less accurate, micromechanics analytical mo
such as the widely used GMC.
nal of Applied Mechanics
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6 Summary and Conclusions
The reformulation of the High-Fidelity Generalized Method

Cells, based on a simplified volume discretization involving on
subcells as the fundamental subvolumes together with the us
the local/global stiffness matrix approach, facilitates the analy
of unit cells with complex microstructural details characteristic
realistic microstructures of multiphase materials. This is a dir
result of the elimination of redundant continuity condition
present in the original formulation, which in turn produces su
stantial reduction in the size of the system of equations govern
the unit cell response. The reformulation also reveals the h
fidelity micromechanical analysis to be an approximate elasti
technique based on the direct enforcement of subcell equilibr
equationsin the large and the imposition of displacement an
traction continuity conditions in a surface-averaged sense ac
interfaces between adjacent subcells. This, in turn, simplifies
derivation of the volume-averaged equilibrium equations gove
ing the individual subcell response as well as the derivation of
traction continuity conditions.

In the present investigation, the reformulation was employed
determine the elastic moduli of a square array of stiff fibers e
bedded in a substantially more compliant matrix, representativ
MARCH 2005, Vol. 72 Õ 193
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a unidirectional glass/epoxy composite, under rotation about
fiber axis. A stiff matrix weakened by cylindrical porosities w
also considered. The rotation about the fiber axis necessitate
analysis of unit cells in the rotated coordinate system, represe
tive of the same square array, which may contain many fibers
contrast with the single fiber within the unit cell in the princip
material coordinate system. Such unit cells typically do not p
sess planes of material symmetry, rendering them anisotrop
the rotated coordinate system. The elastic moduli of such
cells can also be obtained from the standard transformation e
tions once the effective composite properties have been calcu
in the principal material coordinate system. These transforma
equations can therefore be employed to validate the predic
capability of a micromechanics model that admits periodic bou
ary conditions required in the absence of material planes of s
metry. The effective moduli predicted by the HFGMC based
the unit cells in the rotated coordinates systems have been sh
herein to correlate extremely well with the transformation eq
tions for both material systems considered. In contrast, the pre
tions of the original GMC exhibited substantial departures fr
the transformation equations for the glass/epoxy system, w
became unacceptably large for the porous aluminum. This
direct result of the absence of shear coupling in the origi
method which produces erroneous results when normal/shea
teraction dominates in the presence of porosities or inclus
phases that are substantially more compliant than the ma
phase. The high-fidelity version circumvents this problem, alb
at an increased computational cost which, however, is mitigate
a certain extent by the implemented reformulation. The microsc
stress distributions generated by both models for different unia
loading situations provided additional insight supporting the p
dicted moduli results.
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Appendix: Local Stiffness Matrices
Explicit expressions for the nonzero elements of the local s

ness matrix for the~b,g! subcell, given in terms of the subcell’
geometric and mechanical properties, are listed below for load
by normal and shear tractions in they2–y3 plane

K11
~b,g!5K22

~b,g!5
C22

~b,g!

hb
S 423

C22
~b,g!

C̄22
~b,g!D

K12
~b,g!5K21

~b,g!5
C22

~b,g!

hb
S 223

C22
~b,g!

C̄22
~b,g!D
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~b,g!5K16

~b,g!5K25
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~b,g!52
3C22

~b,g!C44
~b,g!hb

C̄22
~b,g!l g

2

K17
~b,g!52K18

~b,g!52K27
~b,g!5K28

~b,g!5
C23

~b,g!

l g

K33
~b,g!5K44

~b,g!5
C44

~b,g!

hb
S 423

l g
2C44

~b,g!

hb
2C̄33

~b,g!D
K34

~b,g!5K43
~b,g!5

C44
~b,g!

hb
S 223

l g
2C44

~b,g!

hb
2C̄33

~b,g!D
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K35
~b,g!52K36

~b,g!52K45
~b,g!5K46

~b,g!5
C44

~b,g!

l g

K37
~b,g!5K38

~b,g!5K47
~b,g!5K48

~b,g!52
3C33

~b,g!C44
~b,g!

hbC̄33
~b,g!

K51
~b,g!5K52

~b,g!5K61
~b,g!5K62

~b,g!52
3C22

~b,g!C44
~b,g!

l gC̄22
~b,g!

K53
~b,g!52K54

~b,g!52K63
~b,g!5K64

~b,g!5
C44

~b,g!

hb

K55
~b,g!5K66

~b,g!5
C44

~b,g!

l g
S 423

hb
2C44
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l g
2C̄22
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l g
S 223

hb
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l g
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~b,g!

hb
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~b,g!5K74
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~b,g!5K84

~b,g!52
3C33

~b,g!C44
~b,g!l g

C̄33
~b,g!hb

2

K77
~b,g!5K88

~b,g!5
C33

~b,g!

l g
S 423

C33
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~b,g!D

K78
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~b,g!5
C33

~b,g!

l g
S 223

C33
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C̄33
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The elements of the local stiffness matrix for loading by sh
tractions in they1–y2 andy1–y3 planes are given below

L11
~b,g!5L22

~b,g!5
C66

~b,g!

hb
S 423

C66
~b,g!

C̄11
~b,g!D

L12
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~b,g!5
C66

~b,g!

hb
S 223

C66
~b,g!
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3C55C66
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2
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~b,g!5L41
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~b,g!52
3C55C66

~b,g!

C̄11
~b,g!l g

L33
~b,g!5L44

~b,g!5
C55

~b,g!

l g
S 423

hb
2C55

~b,g!

l g
2C̄11

~b,g! D
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An Investigaton of Minimum-
Weight Dual-Material
Symmetrically Loaded Wheels
and Torsion Arms
A cylindrically symmetric layout of two opposite families of logarithmic spirals is sho
to define the layout of minimum-weight, symmetrically loaded wheel structures, w
different materials are used for the tension and compression members, respective
ferred to here as dual-material structures. Analytical solutions are obtained for b
structure weight and deflection. The symmetric solutions are shown to form the bas
torsion arm structures, which when designed to accept the same total load, have ide
weight and are subjected to identical deflections. The theoretical predictions of stru
weight, deflection, and support reactions are shown to be in close agreement to the
obtained with truss designs, whose nodes are spaced along the theoretical spiral l
lines. The original Michell solution based on 45 deg equiangular spirals is shown to b
very close agreement with layout solutions designed to be kinematically compatible
the strain field required for an optimal dual-material design.@DOI: 10.1115/1.1831295#
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1 Introduction
The layout of a minimum-volume spoked wheel subjected

pure torsional loading, uniformally distributed around its peri
eter, is well established in the literature. Michell@1# showed that
the layout lines for the spokes must follow 45 deg equiangu
spirals with the opposite families of spirals crossing orthogona
and carrying equal uniaxial strain at any point in tension a
compression. Following a half-century of neglect, Hemp@2# and
his colleagues, Chan@3#, and Chan@4#, at the Cranfield College o
Aeronautics in the U.K., laid down a formal mathematical ba
for the investigation of Michell structures. In particular Hemp@5#
showed how the requirement of a cylindrically symmetric layo
where at any radial position compression and tension spokes
low lines with the same curvature, defines the 45 deg equiang
or logarithmic-spiral solution, for a material with equal strength
tension and compression. When the spiral layout lines are tr
lated into a wheel design the result has an undeniable elegan
illustrated in Fig. 1.

Michell’s work would have been remarkable had it been co
fined only to materials which have the same strength in tens
and compression. However, Michell developed his criterion
minimum volume in the general context of a material having d
ferent limiting stress values in tension and compression~referred
to here as bi-yield materials!. Rozvany@6#, in a paper which rec-
ognizes Michell’s role as the creator of all of the essential e
ments of modern optimum structural design, has shown that M
ell’s optimality conditions for bi-yield materials are only valid fo
a very restricted class of structures; namely those which are s
cally determinate.

Hemp @5# described a set of modified the conditions for min
mum volume of bi-yield material structures, which he nam
‘‘Michell’s sufficient conditions’’ to maintain the attribution to
Michell for his pioneering work in the field. ‘‘Michell’s sufficient
conditions’’ were not recognized in the literature as being fun
mentally different than Michell’s original conditions until the ex

1Visiting Scholar from the Department of Industrial Engineering, Chulalongk
University, Bangkok 10330, Thailand.

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the Applied Mechanics Division, May 14, 200
final revision, July 21, 2004. Associate Editor: K. M. Lietchi.
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amination of the optimality criteria by Rozvany@6#. It should be
mentioned that much of the progress in Michell structure des
has resulted from the demonstrations independently by Hemp@2#
and Prager@7#, that the structural layout problem for two
dimensional Michell frameworks is identical to the determinati
of the layout of the slip lines in plain-strain metal deformatio
Hemp @5# also established a complete analytical framework
the evaluation of volume, force distributions, and displaceme
of bi-yield optimum structures.

With the exception of Prager@7#, all of the work described
above is concerned with the design of structures for minim
volume. If a structure is manufactured from a single material th
this is of course equivalent to minimum-weight design. Howev
if the structure tensile members are made from a different mate
than the compression members then the solutions for minim
volume and minimum weight are in general different. The est
lishment by Prager@7# of an optimality criterion for this dual-
material structure design problem appears to have been c
pletely overlooked in the literature on Michell structures. Prage
work was applied specifically to reinforced concrete structur
and for this reason the general nature of the work may not h
been recognized. Srithongchai and Dewhurst@8# have shown, that
for a class of statically indeterminate cantilevers, Prager’s o
mality criterion leads to minimum weight predictions which a
slightly less than those obtained from Michell’s original work.

Two of the proposed minimum-volume solutions in Michell
paper@1# are not statically determinate; namely the plane tors
wheel and the spherical torsion frame. These examples are th
fore optimal only for a single material structure with equ
strength in tension and compression. The main goal of the pre
work is to investigate the solution for minimum-weight symmet
cally loaded wheels for dual-material designs. The general co
tions for optimality of dual material structures are reviewed
Sec. 2. In Sec. 3, the general layout for a dual-material wh
structure is established. It is shown that, for a specific combina
of radial and tangential loading, the force diagram is the prec
inverse of the structure layout. The geometry of the force diagr
is the mirror image of the structure layout, and the outer circle
the force diagram corresponds to the inner circle of the struct
Under these conditions the combination of structure and fo
diagrams allows an analytical weight solution to be obtain
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which has remarkable similarity to Michell’s original analytic
solution. For completeness in Sec. 3, an analytical expression
wheel deflection is also obtained. In Sec. 4 discrete truss wh
and torsion arms are analyzed for the dual-material condi
(sT /rT)/(sC /rC)53. It is shown that in all cases the Prag
solution has a smaller weight than the corresponding Michell
lution, in agreement with the optimality criterion. However, th
differences in all cases are remarkably small.

2 General Conditions for Optimality of Dual-Material
Structures

Prager’s conditions for a dual-material structural layout@7#,
comprising both compression and tension members, to be opti
can be restated in a similar manner to that used by Hemp@5# for
bi-yield materials as follows:

i. A virtual deformation of the space in which the structure li
must give strains of (s«/r)/(sT /rT) in all the tension members
and (s«/r)/(sC /rC) in all the compression members, and n
direct strain in any region of the space must have a value out
of these limits.

ii. The virtual deformation must satisfy the kinematic cond
tions imposed on the structure.

The proof then follows that no other structure, with limitin
stress magnitudessT , sC , and densitiesrT , rC in tension and
compression, respectively, can support the same loads wi
smaller weight of material. Prager@7# presented the result as ju
a ‘‘straightforward extension of the general theory of plastic d
sign.’’ Srithongchai and Dewhurst@8# laid down a direct proof of
Prager’s criterion using the elegant approach established by H
@5#.

To simplify the equations which follow,s/r andsT /rT will be
assumed equal, and the virtual strain magnitudes in tension
compression members respectively will be given by« and l«,
wherel5(sT /rT)/(sC /rC).

Figure 2 illustrates the intersection of tension memberac and
compression memberbc with a small sectionab of a rigid bound-
ary. If these are subjected to principal strains« andl«, then since
the angle at the displaced node positionc8 must remain a right
angle, it can readily be verified that

g5tan21~l1/2!, (1)

v52« tan~g!, (2)

where the negative sign in Eq.~2! denotes clockwise rotation
These boundary conditions were defined by Hemp@5# for the
general case of intersection of curved structure members wi
curved rigid boundary. It can also be verified that the deflection
c to c8 is given by

Fig. 1 Prototype pure torsion wheel manufactured by free-
form laser sintering
Journal of Applied Mechanics
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d5Dr«~11tan2 g!, (3)

h5S 2g2
p

2 D , (4)

whered is the deflection magnitude, andh the angle in Fig. 2.
Interestingly, this angle value appears as a key to the determ
tion of the analytical dual-material wheel solution in the ne
section.

Hemp @5# showed that, even with his more general conditio
defined above, an optimum network must still satisfy the equi
gular property that the angle turned through by all compress
members between any pair of tension members is constant
vice versa. This is exactly the property of the lines of maximu
shear in plain-strain slip-line field theory~Hill @9#!. Hemp @2#
identified this mathematical coincidence, and Johnson@10# took
the analogy further by demonstrating that the force diagram
minimum-weight structures can be drawn in such a way as to
identical to the velocity diagram~Green @11#! in slip-line field
theory. This allowed the tools which had been developed for s
line field theory to be applied to the two-dimensional optim
structure layout problem; see for example Johnson et al.@12#,
Dewhurst@13#, and Srithongchai et al.@14#.

As a consequence of the equiangular property, and utilized
tensively in the construction of slip-line fields~Hill @9#!, a Michell
structure layout must satisfy the geometrical property that the
dii of curvature of crossing tension lines change by the dista
traveled along compression lines and vice versa. At any point
network of layout lines, this property can be represented as

]R

]b
52S;

]S

]a
52R, (5)

whereR andS are the radii of curvature of tension and compre
sion layout lines respectively. The negative sign in Eq.~5! occurs
because the radius of curvature is counted negative for a cl
wise turning layout line. Coordinatesa and b define the angles
turned by the tension and compression members respectively
any base point. For convenience the layout lines for tension
compression members will be referred to asa- andb-lines respec-
tively. Coordinatesa and b are both counted positive from th
base point.

3 General Layout of Minimum-Weight Torsion Wheel
For the layout of a bi-yield material torsion wheel it is clear,

pointed out by Rozvany@6#, that the spokes must form consta

Fig. 2 Elemental truss members adjacent to boundary
MARCH 2005, Vol. 72 Õ 197
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anglesg and p/22g with the circular boundary and with an
circle having the same center. It will be shown below that t
condition is satisfied if the radii of curvature of the tension a
compression spokes are in constant ratio throughout the struc
Assume the constant ratio has value2k; see Fig. 3. Equation~5!
then becomes

]R

]b
5

1

k
R;

]S

]a
5kS, (6)

with general solution

R~a,b!52Akekaeb/k; S~a,b!5Aekaeb/k. (7)

These can be recognized as the radii of curvature of logarith
spirals, with polar equations

r 5r 0eka; r 5r 0eb/k, (8)

where

k5cot~ga!, (9)

and ga is the constant intersection angle ofa spirals with the
radial direction. Thea spirals andb-spirals cross everywhere a

Fig. 3 Field of orthogonal logarithmic spirals
198 Õ Vol. 72, MARCH 2005
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right angles as required since 1/k5cot(p/22ga)5cot(gb), where
gb is the constant intersection angle ofb-spirals with the radial
direction; see Fig. 3.

If coordinate points~a,0! and ~0,b!, in Fig. 3, are on the same
polar radius,r, then from Eqs.~8!:

b5k2a, (10)

also the polar anglef, in Fig. 3, can readily be seen to be the su
of a andb,

f5a1b. (11)

At any point in the network (rdf)25(Rda)21(Sdb)2, and to-
gether with Eqs.~9! and ~10! this gives

A5r 0~111/k2!1/2. (12)

Finally the radii of curvature of the individual tension and com
pression members starting from point 0 in Fig. 3 are given by

R~a!52r 0~11k2!1/2eka; S~b!5r 0~111/k2!1/2eb/k (13)

and from Eqs.~1! and ~9!, for a specific bi-yield material

k5A~sC /rC!/~sT /rT!. (14)

If these layout lines are used to define a full wheel struct
then it can be established that the corresponding force diag
comprises the same two families of logarithmic spirals. The lay
diagram and the corresponding force diagram are illustrated
Figs. 4~a! and 4~b!.

Consider spiralab, in Fig. 4~a!, which will be assumed to be an
a-line defining the layout of a tension spoke. Curvecb is the
b-line which converges to the same positionb at the outer perim-
eter. The force diagram is drawn in such a way that its curves
everywhere orthogonal to the corresponding structure layout lin
Referring to Fig. 4~b! it can be seen that the force diagram is t
geometrical inverse of the structure diagram. The inner and o
diameters of the force diagram correspond to the outer and in
diameters of the wheel respectively. Also the direction of rotat
of both families of spirals has reversed. Curvea8b8 in the force
diagram defines the distribution of force carried by the compr
sion members at right angles to the tension memberab. Similarly
c8b8 defines the distribution of force carried by the tension me
bers normal tocb.

Assume the polar angle between pointsa and c has valuef,
and ab, cb turn through anglesu and c, respectively. Arbitrary
Fig. 4 „a… Selected layout curves for a general logarithmic spiral wheel structure, „b… asso-
ciated force diagram
Transactions of the ASME
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point, p, at angular positiona on ab corresponds to pointp8 in
the force diagram at angular positionu-a on curveb8a8.

The difference between the polar angle of corresponding po
in the two diagrams can readily be shown to be

h52ga2~p/2!. (15)

This defines the angle between the circumferential and ra
components of loading at any point in the structure. The cl
geometrical similarity of layout and force diagrams for Miche
structures is well documented in the literature. It seems from
present case that this similarity extends to dual-material st
tures, using Prager’s optimality conditions.

Let the magnitude of the distributed load per unit length arou
the inner wheel circumference be given byf 0 . From the force
diagram it can be seen that total force magnitude 2pr 1* , around
the outer circumference of the force diagram, will be distribu
uniformally around the inner circumference of the wheel,
length 2pr 0 . The value off 0 is thus given by

f 05r 1* /r 0 . (16)

Similarly the magnitude of the distributed force per unit leng
around the wheel outer circumference is given by

f 15r 0* /r 1 . (17)

Since the angle of this loading, to the circumferential direction
the constant value given in Eq.~15!, moment equilibrium about
the wheel center gives

2pr 0
2f 0 cos~2ga2p/2!52pr 1

2f 1 cos~2ga2p/2!, (18)

substituting forf 0 and f 1 , gives

r 1* /r 0* 5r 1 /r 0 . (19)

Since the angular sweeps of the spirals, and the ratio of
radii, are the same for both diagrams, the spirals in the fo
diagram must be identical but opposite logarithmic spirals to th
in the structure itself; a result which is not defined by just t
orthogonal relationship of the two diagrams.

Returning now to arbitrary pointp in Fig. 4~a!, the force acting
on a narrow bundle of compression elements adjacent to la
line de in the neighborhood ofp is

d f 5R* ~u2a!da, (20)

where R* defines the radius of curvature of spiralb8a8 in the
force diagram. A short length of the bundle can be defined as

d l 5S~b!db, (21)

whereSdefines the radius of compression spoke layout curvede.
If the maximum allowable stress in the structure compress

members is given bysC , then the weight of this short bundle o
compression elements can be given by

dWC5
rC

sC
R* ~u2a!S~b!dadb. (22)

To integrate this expression throughout the structure it is usefu
substitute one of the spiral angles for the polar angle. Refer
back to Eqs.~10! and ~11!, db can be represented as

db5df/~111/k2!. (23)

Substituting forR* , S, anddb, the total weight of compression
elements is given by

WC5
rCr 0r 0*

sC
E

0

2pE
0

u

$~11k2!1/2ek~u2a!%$~1

11/k2!1/2e~k2a!/k%da
df

~111/k2!
, (24)
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ints

dial
se
ll
the
uc-

nd

ed
of

th

is

the
rce
se

he

out

ion
f

l to
ing

which integrates to the simple expression

WC5
2prCr 0r 1*

sC
lnS r 1

r 0
D . (25)

The weight of tension members, using radii of curvature fun
tions S* andR can be obtained in identical fashion, and leads
the same weight solution withrC /sC replaced byrT /sT . It is
useful to define loading parameter

G52pr 1r 0* 52pr 0r 1* . (26)

The total wheel weight is then

W5WC1WT5S rC

sC
1

rT

sT
DG lnS r 1

r 0
D . (27)

This result is satisfyingly identical in form to the result obtain
by Michell for the case whereG represents pure torsional loading

From Prager’s condition ~i! in Sec. 2, the virtual
work per unit weight of the structure is (sT /rT)«T
5(sT /rT)@(s«/r)/(sT /rT)# in all the tension members an
(sC /rC)@(s«/r)/(sC /rC)# in all the compression members
equal tos«/r throughout the structure. Hence, if the inner radi
is assumed fixed, and the outer perimeter has deflectiond f in the
direction of the applied loading, then equating virtual strain e
ergy gives

2pr 0* d f5s«S 1

sC
1

1

sT
DG lnS r 1

r 0
D . (28)

Substituting for (sT /rT)/(sC /rC) from Eqs.~9! and~14!, andG
from Eq. ~26!, Eq. ~28! reduces to

d f5«T~11tan2 ga!r 1 lnS r 1

r 0
D , (29)

or the equivalent expression with«C andgb .
The deflection of a Michell structure depends only on t

boundary conditions, the magnitude of the strains«C , «T , and the
geometry of the layout lines. Within limits, it is independent of t
magnitude of the applied force or its direction, or the number
distribution of forces along the structure boundary. When the
plied forces, for a given structural layout, are changed, the fo
diagram will change and the cross-sectional area at every re
of the structure will be different for minimum weight. The cros
sections will be chosen to give the limiting stress values, and
the deflections will be unchanged.

In the next section we will compare the above results, a
Michell’s original wheel solution, with truss designs of wheel a
torsion arm structures.

4 Truss Structure Approximations
Michell structural forms are robust in the sense that discr

truss structures, whose nodes lie on the Michell layout lines, h
strength and stiffness to weight ratios near the theoretical o
mum values even when the node spacing is relatively large.
example, Srithongchai et al.@14# designed and manufactured a
aluminum alloy test beam, with nodes positioned at 22.5 deg
crements along the network of Michell layout curves. Experime
tal loading of the beam provided stiffness values and yield load
almost perfect agreement with the optimal values determined f
the layout equations. The converse is also true. Using Prag
method@15#, for optimizing trusses with a finite number of mem
bers, truss forms emerge in close agreement to Michell layo
Figure 15, in the review paper by Rozvany et al.@16#, shows an
excellent example of this in the design of a 24-member cantile
truss. In this section approximate truss designs will be evalua
for a symmetrically loaded wheel structure, and for alternat
layouts of a torsion arm structure.

4.1 Wheel Truss Structure. Figure 5 illustrates one quarte
of a wheel structure whose nodes lie on 60 deg and 30 deg e
MARCH 2005, Vol. 72 Õ 199
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angular spirals. The directions of the forces indicate that the
deg spiral spokes are the tension members, and so from Eq.~1! the
structure corresponds to the optimal solution withg5p/3 and
(sT /rT)/(sC /rC)53. The design comprises 16 pairs of spokes
angular spacingp/8. The inner wheel radius,r 0 , is taken to be
1.0, and the outer wheel radius has been selected so that one
of opposite spokes span one quarter of the wheel; see spokeac
andbc in Fig. 5. Using Eqs.~10!, ~11!, and~14!, k5A1/3, f5p/2
and the total angle turned through along the tension layout spi
ac, is thus 3p/8. The outer wheel radius,r 1 , is given by

r 15exp@A1/3~3p/8!#51.9742.

A force of 1000/16 units, labeledf 1* in Fig. 5, was applied to each
of the 16 nodes around the external perimeter. In each case
inclination of the force to the wheel circumference,h1 in Fig. 5,
was set equal to 30 deg corresponding to the value defined by
~15!. The ratio of limiting stress to density values were assume
be sT /rT530,000,sC /rC510,000 units. The method of joint
was first applied to determine the force valuef in each structural
member. The unit weight of each tension member was then s
the value off /(33104) and each compression member tof /104.
The truss weight was calculated, by summing the product
length and unit weight for each member, to give

Wtruss5( l Tf /~sT /rT!1( l Cf /~sC /rC!.

Calculations are given in Table 1 for one tension spoke and
compression spoke. Using these calculated values, the total w
truss weight is,

Wtruss5~16!~84.63!/30 0001~16!~84.32!/10 000

50.045110.134950.1800.

Fig. 5 Quadrant of truss wheel structure

Table 1 Truss wheel weight calculations

Tension members Compression members

length, l force, f l f length, l force, f l f

0.3693 57.23 21.14 0.2139 98.61 21.0
0.4378 48.30 21.15 0.2536 83.15 21.0
0.5190 40.77 21.16 0.3006 70.11 21.0
0.6152 34.42 21.18 0.3563 59.10 21.0

total: 84.63 total: 84.32
200 Õ Vol. 72, MARCH 2005
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For comparison, the theoretical weight from Eq.~27! is, substitut-
ing 1000 for 2pr 0* ,

Wmin5S 1

104
1

1

~3!~104!
D ~1000!~1.9742!ln~1.9742!

50.044810.134350.1791.

The radial and tangential deflections,u andv, respectively, of the
wheel perimeter were then determined. Deflection calculati
were carried out, using of the structural analysis progr
MASTAN2™ ~2000!, which operates as a toolbox in the matr
analysis programMATLAB ™ ~vers 5.3!. Elastic modulus values for
the tension and compression members were assumed to bET

533106 andEC5(1/3)3106; giving strain values«T50.01 and
«C50.03 corresponding to Prager test strains. The truss de
tions calculated byMASTAN2 were

u520.014 63; v520.053 92.

These correspond to a resultant deflection of 0.055 87 at an a
of 15.18 deg to the wheel perimeter. The truss deflection in
direction of the applied load is thus

d f ,truss5@~0.014 63!21~0.053 92!2#1/2 cos~14.82°!

50.054 01.

For comparison, applying Eq.~29! gives theoretical deflection,

d f50.01@11tan2~60°!#1.9742 ln~1.9742!50.053 71,

which is in remarkable agreement with the approximate tr
value.

In the truss analysis, the 16 nodes on the inner circumfere
were constrained not to translate. The reaction forces on th
nodes, labeled magnitudef 0* at angleh0 in Fig. 5, where calcu-
lated to be

f 0* 5123.54; h050.5257.

For comparison with the continuum model in Sec. 3, the discr
truss forcesf 0* and f 1* are related to the continuous force distr
butions f 0 and f 1 by

f 0* 5S p

8
r 0D f 0 ; f 1* 5S p

8
r 1D f 1 . (30)

Equations~15! and ~19! thus give

f 0* 5~r 1 /r 0! f 1* 51.974231000/165123.39,

and

h052~p/3!2~p/2!50.5236.

Note, that the values off 0* and h0 are not dictated by externa
equilibrium and so provide further validation of the theoretic
model.

4.2 Torsion Arm Truss Structures. The term ‘‘torsion
arm’’ is used here for brevity to describe structures which
more correctly defined as cantilevers with circular supports. F
ure 6 shows a torsion arm structure corresponding to a portio
the wheel structure in the last section. The force values,f, carried
by each structural member for the indicated applied tip load
given on the figure. It should be noted in passing that while
wheel structures can expand outwards without bound, a limita
exists on the design of spiral network torsion arms since the s
of the angles turned through by the outer flanges~a1b in Fig. 3!
cannot be greater than 2p. Beyond this range, the optimal layou
may be a combination of a tie bar and spiral net of the ty
described by Prager and Rozvany@17#. Such combinations may
also be used to in situations where the angle of the applied tip
would be such as to put both outer flanges in tension or comp
sion @17#.

9
9
8
6
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The lengths of the elements in Fig. 6 can be obtained fr
Table 1 and so as before the truss weight can readily be show
be

Wtruss5( l Tf /~sT /rT!1( l Cf /~sC /rC!50.04510.135

50.180,

exactly the same as the complete wheel weight. This is of co
expected since the total loading is the same and the node de
tions must be the same; see the discussion following Eq.~29!. For
the comparisons which follow, dimensionless weight measu
W* , will be used, where

W* 5WY FFLS rT

sT
1

rC

sC
D G .

The applied load in Fig. 6 corresponds to angleh530 deg. The
weight of the structure was recalculated for the load of 1000 u
at h values of215, 0, 15, and 45 deg. The dimensionless wei
values are given in column 2 of Table 2.

For comparison, column 3 gives the dimensionless weight
ues for the corresponding Michell torsion arm. This structure,
shown in Fig. 7, is laid out along 45 deg spirals according
Michell’s solution. To provide the same cantilever length ofL
51.9742, the angular sweep of the outer spirals is 38.9711
and polar angle between successive spokes equal to 19.485
provides four elements with equiangular spacing as shown.
lengths of successive members moving radially outwards
0.2617, 0.3104, 0.3679, and 0.4360. The truss member forces
responding toh50 are included in Fig. 7; only tensile forces a
given since the compression values are identical by symmetr

Fig. 6 Truss approximation of Prager torsion arm

Table 2 Truss comparison of Prager and Michell dimension-
less weights for sT ÕsCÄ3

Load angle,h Prager torsion arm Michell torsion arm

215 0.6116 0.6119
0 0.6831 0.6835

15 0.7078 0.7083
30 0.6840 0.6849
45 0.6138 0.6148
Journal of Applied Mechanics
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It can be seen in Table 2 that for all five loading cases
Prager solution is less than the Michell one in accordance with
optimality criterion. However, the differences are surprising
small.

One final comparison was felt to be worthwhile; namely t
weight allocation to tension and compression members for
theoretical and truss approximation cases. These are give
Table 3 below. Note that columns 2 and 3 represent differ
loading cases, and that Eq.~27! becomes Michell’s equation whe
h50. The intention of Table 3 is thus to compare separately
Michell and Prager trusses with the theoretical minimum wei
values.

5 Discussion and Conclusions
A general theoretical model has been presented for the layou

a spoked wheel or moment arm structure, which is kinematic
compatible with the Prager test strains for different materials
tension and compression. Analytical predictions based on
model have been shown to be in remarkable agreement with
calculated weights, deflections, and reaction forces of appr
mate truss structures, whose nodes are placed on the theor
layout lines.

An analytical solution obtained in Sec. 3 for structure weight
applicable to a specific combination of radial and circumferen
loading, and has identical mathematical form to Michell’s origin
solution.

Comparisons of dual-material truss structures based on M
ell’s original layout, and on the more general layouts satisfy
Prager’s optimality criterion, indicate only small differences b
tween the weights of the two structure types. However, in ev
case analyzed, with different tension and compression mate
properties, Prager’s structure has lower weight than the co
sponding Michell structure in accordance with Prager’s optima
criterion.

Fig. 7 Truss approximation of Michell torsion arm

Table 3 Comparison of theoretical and truss weight allocation

Dimensionless weight
(sT /rT)/(sC /rC)53

Michell truss
~h50!

Prager truss
~h530°!

Theoretical values
from Eq. ~27!

Tension members 0.1709 0.1715 0.1700
Compression members 0.5126 0.5125 0.5101
MARCH 2005, Vol. 72 Õ 201
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The small difference in weight of the alternative Michell an
Prager solutions allows selection to be made on the basis of o
requirements. For example, the Michell truss in Fig. 7 was rea
lyzed with the same 30 deg inclined loading as in the Prager t
~Fig. 6!, to determine that for this case the Michell truss is ju
0.13% heavier than the Prager one. However, the compres
member carrying the smallest load of 163 units in the Pra
design, in the same position in the Michell design carries
lightest compression load with a value of only 59 units. W
similar cross-sectional shapes, the Michell design thus cont
compression members having a slenderness ratio approxim
three times the most slender members in the Prager desig
both trusses, in-plane global instability is initiated by buckling
those particular members with rotation of their inner joint invo
ing the collapse of connected members. Thus the Prager layo
much more robust than the Michell one for this loading conditio
and cross-sectional shape optimization to suppress bucklin
more likely to be successful for the former case. For other in
nations of the applied load, the Michell layout may of course
preferable for the execution of a stable design. In other situat
the selection between alternative layouts may be made on
basis of material cost. It is tempting to conclude that any pair
complimentary spiral angles can be used to obtain a whole fam
of structures with approximately equal efficiency. Surprising
this is not the case. For the condition (sT /rT)/(sC /rC)53 spiral
nets other than 45/45~Michell! or 30/60 ~Prager! can lead to
structure weights which are significantly heavier. It seems t
Michell almost got it all perfectly right.

For cases where the densities of tension and compression m
bers are the same, the problem reduces to that of a bi-yield m
rial structure and minimum weight is the same condition as m
mum volume. In these cases the criterion reduces to
‘‘sufficient conditions’’ described by Hemp@5#, and the structures
should be referred to as Hemp trusses.

Recent work by one of the authors@18# has shown that the
generalized logarithmic spiral wheel layout also satisfies the
quirements of maximum stiffness, or the optimal combination
strength and stiffness per unit weight.
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Nomenclature

a, b 5 arbitrary angles along tension and compression
members

d 5 resultant displacement or displacement in load
direction

« 5 arbitrary strain value
«T , «C 5 tensile strain in all of the tensile members and

compressive strain in all of the compressive me
bers

F 5 externally supported loads
f 5 forces carried by the structural members, or forc

at node points around wheel hub and outer peri
eter

g 5 intersection angle with support boundary
k 5 ratio of radius of curvature of tension and com-

pression members
202 Õ Vol. 72, MARCH 2005
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L 5 length between lower support point and tip point
for cantilever

l 5 length of structural members
l 5 ratio of stress divided density values
f 5 polar angle
r 5 arbitrary weight per unit volume

rT , rC 5 weight per unit volume of tension and compres-
sion members

h 5 angle of applied load
r 5 arbitrary radial position on wheel structure

r * 5 arbitrary radial position on force diagram
R, S 5 radii of curvature of tensile members and com-

pression members
s 5 arbitrary stress value

sT , sC 5 maximum allowable tensile and compressive
stresses in a structure

u, v 5 radial and tangential displacements
W 5 total weight of structure

WT , WC 5 weights of tensile and compressive members
W* 5 dimensionless weight of structure
u, c 5 angular span of tensile and compressive membe

v 5 rotation of a structural member
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The Mechanical Response of
Freestanding Circular Elastic
Films Under Point and Pressure
Loads
This paper provides a comprehensive description of the mechanical response of free
ing circular elastic films subjected to point and pressure loads. Regimes of behavior,
as plate, linear membrane, and nonlinear membrane, are identified in terms of tw
mensionless variables that allow the creation of a single map that indicates approp
closed-form solutions. This map provides a theoretical framework to design experim
and interpret film behavior for all orders of magnitude of: film thickness-to-span ra
deflection, loads, prestretch, and elastic properties. The normalization approach pro
the means to quickly identify appropriate simplifications to the nonlinear governing e
tions, and identify applicable analytical solutions. Numerical results are used to illust
behavior in transition regions, e.g., the transition for a given plate thickness from sma
large deflections under increasing load. Critical loads, thickness and prestretch are
tified which indicate when asymptotic plate or membrane solutions are accu
Asymptotic and numerical results are presented which illustrate finite-sized region
bending-influenced deformation near point loads and clamped edges. Theoretical p
tions for the width of these regions enable us to estimate the validity of analytical s
distributions, and in turn the maximum strains in the film. These results help avo
brittle fracture or ductile yielding of the film by identifying physical parameters that li
strains to an acceptable level.@DOI: 10.1115/1.1827246#
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1 Introduction

The testing of freestanding films via transverse loading is
coming increasingly common, for many reasons, notably:~i! mi-
crofabrication techniques, such as reactive ion etching and
cused ion beam milling, have greatly expanded the range
freestanding geometries that can be created, and~ii ! instrumenta-
tion such as nanoindenters and atomic force microscopes
decreased the lower limits of force and displacement resolut
enabling the characterization of nanoscale films@1,2#. Further-
more, indentation of clamped films provides unique advanta
such as probing of a biaxial stress state and greater contro
material creep and ratcheting@3#. The relatively simple state o
deformation~in contrast to indentation of bonded films! implies
that experiments can be interpreted relatively quickly in terms
simple mechanics solutions, that is, closed-form solutions
plates or membranes.

Despite the long history of plate and membrane theory de
opment, there is no single source that can be used to ident
priori which theory~e.g., plate versus membrane! is appropriate
for a given film characterized by: thickness, span, prestrain
elastic properties. Since such physical characteristics are o
dictated by the application of interest rather than chosen dire
it is often not possible to conduct a test in a regime where plate~or
membrane! behavior is ensured. Thus, the primary motivation
this paper is to provide maps that enable one to determine a p

1To whom correspondence should be addressed.
Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF

MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the Applied Mechanics Division, May 23, 200
final revision, June 17, 2004. Associate Editor: Z. Suo. Discussion on the p
should be addressed to the Editor, Prof. Robert M. McMeeking, Journal of App
Mechanics, Department of Mechanical and Environmental Engineering, Unive
of California—Santa Barbara, Santa Barbara, CA 93106-5070, and will be acce
until four months after final publication in the paper itself in the ASME JOURNAL OF
APPLIED MECHANICS.
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whether linear plate or membrane behavior is anticipated, whe
large deflection computations are necessary, the range of fo
and displacements that are expected, etc.

There is a wide range of literature on the mechanics of t
films subjected to point and pressure loads; works focusing on
load-displacement relationships are summarized in Table 1.
and large, these efforts focus on obtaining asymptotic limits
behavior ~e.g., bending dominated plate response! and provide
relatively little guidance for identifying ranges of plate thicknes
load and prestrain that allow the application of these simplify
assumptions. The work of Sheplak and Dugundji@4# is a notable
exception that explicitly studies the transition between plate
membrane behavior for pressure loads.

Solutions for point-loading that include both bending a
stretching ~i.e., membrane behavior! are particularly sparse
@5–7#—and do not exist if one includes prestrain. An importa
contribution of this paper is to identify the size of the bendin
influenced region near point loads. For very thin films, the me
brane limit wherein displacements are proportional to the c
root of load~i.e.,d}P1/3) is readily observed experimentally~e.g.,
pressure loads@8#, point-loads @9#!. However, while load-
displacement relationships may be accurately captured by m
brane theory, the predicted strain under point loads~e.g., an in-
denter tip! is singular. This creates significant problems wh
trying to estimate if the film will fracture or experience significa
plastic deformation. The boundary layer analysis in this pa
allows one to estimate the reasonableness of the analytical s
expressions, thereby giving a closer estimate to the maxim
strain in the film.

The focus here is on results for point loads applied to circu
clamped thin films. Clamped is the most easily realized bound
condition in experiments, while axisymmetry reduces the num
of variables needed for a comprehensive parametric study an
increasingly accessible at the micro- and nanoscales~e.g., Ref.
@1#!. The work presented here makes three significant and
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Table 1 Summary of literature addressing point and pressure loading of thin films

Linear ~pure
bending or pretensioned

membrane!

Nonlinear~bending and stretching!

Small rotations Large rotations

Theory

Point load 7~s/h!

5, 7, 12, 13~s!

6 ~s!
11, 12~s!
4, 12 ~s! None

Pressure load 7~s/h! 4, 12, 14, 15, 17,
19~s!7, 9 ~s/h!

8, 16, 18, 28~h!
Experiments

Point load 11, 23~s!
9 ~s/h! None21, 22~h!

20 ~s!
Pressure load 21, 22~h! 8, 16, 18, 25, 26,

28~h!
None

14, 24~s!
9 ~s/h!

s—circular film, h—rectangular/square film.
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contributions to thin film mechanics. First, we outline a norm
ization procedure that clearly indicates the connection betw
physical variables~load, thickness, prestretch, and span! and neg-
ligible ~or non-negligible! terms of the nonlinear governing equ
tions. This enables us to succinctly state appropriate simpli
forms of the governing equations for all possible scenarios, wh
all originate from a single set of governing equations. Second,
present maps that partition the space of physical variables
regimes where analytical solutions are accurate, and identify
ranges of physical variables for which numerical solutions
needed. Finally, we present a boundary layer analysis that ena
one to estimate the physical size of bending-influenced defor
tion near point-loads and clamped edges. These estimates allo
to calculate when the strain distributions in the film can be r
sonably computed using asymptotic analytical expressions. T
contributions should greatly facilitate the design and interpreta
of experiments on thin films.

To provide a comprehensive set of results for circular films,
summarize equivalent asymptotic results for pressure loading~i.e.,
bulge testing! in the appendix; further details of the transition
between the asymptotic limits for pressure loading are provide
Ref. @4#. One may reasonably expect that the regimes of plate
membrane behavior identified for the circular plate may be u
fully extended to square plates with dimensions approxima
equal to the circle radius.

2 Governing Equations
We consider an isotropic elastic circular film subjected to

transverse point/pressure load. Figure 1 shows relevant dim
sions and variables used to describe the film behavior. We ass
small strains, such that the deformation of the film can be
scribed adequately by thesimplified Reissner theory~e.g., Ref.
@10#!. The compatibility and equilibrium equations obtained fro
this theory are

ALrF12r sin2~b/2!50 (1)

D~Lrb1b2sinb!2rF sinb1r 2q cosb50 (2)

whereb is the angle of rotation andF is a stress variable, define
as F[rNr , whereNr is the conventional stress resultant in t
radial direction. Hence,F has units of force. The variableq is the
vertical shear stress resultant. For a downward point load of m
nitudeP at the center of the film,q5P/2pr ; for a uniform down-
ward pressure denoted byp, the vertical shear stress resultant
q5pr/2. These relationships, as well as the relationship rela
bending moment to rotation, are shown schematically in Fig. 1
Eqs.~1! and ~2!
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Lr5r 2
d2

dr2
1r

d

dr
21 (3)

is a homogenous linear differential operator,D is the bending
stiffness, andA is the stretching compliance of the film defined

D5
Eh3

12~12v2!
and A5

1

Eh
(4)

Here,E is the elastic modulus of the film,h is the film thickness
andv is the film’s Poisson ratio. Detailed derivations of Eqs.~1!
and ~2! can be found in Ref.@10#.

If we ignore, as in~1!, small extensional load terms, then th
extensional strains are given by

er5A~r 21F cosb1q sinb2vF8!2«0 (5)

and

eu5A@F82v~r 21F cosb1q sinb!#2«0 (6)

where prime denotes differentiation with respect tor. «0 is a small
positive prestrain that could be caused by several factors, inc
ing thermal expansion mismatch or residual stresses that o
during the manufacturing and processing of the film. The verti
deflection of the film~positive downward! is given by

Fig. 1 Schematic illustration of the dimensions and variables
used in the analysis of a thin circular film subjected to a point
load
Transactions of the ASME
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sinb~s!ds (7)

where the deflection of the plate at the circular edge (r 5a) is
assumed to vanish. The boundary conditions associated with~1!
and ~2!, for a clamped plate, are

$b,u%→0 as r→0 and b~a!5u~a!50 (8)

whereu5reu is the radial, in-plane displacement. For a simp
supported plate, it is the radial moment that vanishes at the e
rather than the slope; everything else remains the same. Dep
ing on the magnitude of the external loads, the relative thickn
h/a and the magnitude of the prestrain«0 , the solutions of the
governing Eqs.~1! and ~2! will exhibit different asymptotic be-
haviors ash/a→0, as discussed in detail in subsequent sectio

3 Regimes of Behavor and Asymptotic Solutions
The governing equations can be rewritten to highlight the re

tive importance of bending and stretching contributions. The p
pose of the following normalization is to cast the governing eq
tions in terms of two dimensionless parameters:a, a function of
pre-stretch and film thickness, andg, a function of load and film
thickness. Using physical parameters, the relevant reduced~sim-
plified! governing equations can be quickly identified in terms
a and g, along with an error estimate for dropping bending
stretching terms. Thus, one may estimate the type of respons
a given set of properties/loads without recourse to full numer
solutions.

Let N[$P/2p,pa2/2%; the understanding here and hencefo
is that the first term in the braces is for point loading and
second term is for pressure loading. We use the following dim
sionless variables and parameters

r 5ar̄, s5AN/a, «25
AD

a2
5

h2

12~12v2!a2
!1,

(9a)
k5~12v !21, r 2q5aN$ r̄ , r̄ 3%

In addition, we introduce a dimensionless parameterd to normal-
ize the rotation and stress function, by setting

b5«dg, 0<d, (9b)

F5aEh~k«0r̄ 1«2d f ! (9c)

whered is set such thatf, g5O(1). Notethat d is a nonphysical
parameter that is chosen to highlight particular terms of Eqs.~1!
and~2!, as will be discussed in detail. To account for the relat
influence of the prestrain«0 and the dimensionless loads
~whether due to a point load or a uniform pressure!, we set

«05«a where 0,a (10a)

and

s5«g where 0<g. (10b)

Put another way,a5 log« «0 and g5 log« s. It should be empha-
sized that since«!1, the logarithm function implies that~a,g!
will decrease as («0 ,s) increase. Thus any combination of th
prestrain«0 , external loads and thickness-to-span ratio$i.e., «
5@12(12v2)#21/2h/a% corresponds to a point in the first quadra
of the ag plane, as illustrated in Fig. 2.

The compatibility and normal equilibrium Eqs.~1! and~2! now
take the form

Lr̄ f 1~1/2! r̄ g2 sinc2~«dg/2!50 (11)

2«21d2g@Lr̄g1~1/6!«3dg3 dinc~«dg!#1 r̄ ~k«ar̄

1«2d f !«d2gg sinc~«dg!5$ r̄ , r̄ 3%cos~«dg! (12)

where
Journal of Applied Mechanics
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sinu
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u2

6
1O~u4!, usincuu<1 (13)

and

dincu56S 12sincu

u2 D 512
u2

20
1O~u4!, udincuu<1

(14)

The boundary conditions are

$g, r̄ f 82v f %→0 as r̄→0 (15a)

and

g~1!5 f 8~1!2v f ~1!50. (15b)

The free parameterd used to normalize the rotation angleb is
chosen so that as«→0, one or more terms on the left of~12!
balance theO(1) term on the right. This choice will depend o
given values ofa andg, i.e., given values of«0 , s, andh/a. We
note that if the exponentsg and d are such that«21d2g→0 as
«→0 then, in general, there must be boundary~i.e., at the clamped
edge, nearr 5a) or pole layers~i.e., underneath the point load
nearr 50).

These layers represent small regions where the termLr̄g can no
longer be neglected; otherwise the boundary conditions of z
slope cannot be enforced. Neglect of theLr̄g term corresponds to
the asymptotic limit of membrane behavior wherein the loa
displacement response does not depend on the bending stif
D. While the displacements are finite~even under the point load—
i.e., the pole!, the rotations~and, hence, strains! at the pole are
not. Inclusion of bending terms, even for extremely thin films
very large deflections—i.e., regardless of how small term theLrg
term is in Eq.~12!—creates small regions of finite rotation an
finite strains. The extent of these boundary or pole regions is
critical interest when interpreting or designing experiments, si
they represent regions of strain~and stress! concentration that ul-
timately lead to film rupture. This is discussed in detail in Secs
and 6.

Before describing the quantitative details of possible simplifi
governing equations and their analytical solutions, it is worth d
cussing the qualitative implications of the earlier normalizati

Fig. 2 Parameter space delineating between regions of plate
behavior „1…, linear „or pre-stretched … membrane behavior „2…,
and nonlinear membrane behavior „3…. Note that increasing pre-
stretch and load „«o and P… corresponds to decreasing a and g,
respectively.
MARCH 2005, Vol. 72 Õ 205
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procedure. Knowing thickness/span ratio, prestretch, and app
load, one can calculatea andg, subsequently calculate the coe
ficients of the terms in Eqs.~11! and ~12!, and immediately esti-
mate their relative importance. From this, simplified govern
equations can be identified that have closed-form analyt
solutions.

The utility of this approach lies in the comprehensive covera
afforded by the normalization. Competition between two physi
parameters~to create either the same or different effects! can be
readily assessed, since all relevant physical effects~except com-
pressive prestretch! are incorporated intoa and g. For example,
when testing nanoscale films with atomic force microscopy
nanoindentation, the dominant factor governing film respons
prestretch~which result in linear plate behavior! or decreasing
film thickness~which results in non-linear membrane behavior!—
can be estimated immediately.

The three regions in Fig. 2 correspond to classical plate
membrane solutions. Again, since«!1, decrease in prestretch an
load correspond to increase ina and g respectively, and vice-
versa. In the extreme thata and g are much greater than unity
stretching and prestretch effects are negligible and the film
respond according to classical plate solutions, such as thos
Timoshenko and Woinosky-Krieger@7# for small deflections. This
is labeled region 1 in Fig. 2. Region 2 corresponds to large va
of prestretch, where membrane stretching dominates bending
one obtains classical linear membrane results. In this region,a,2
and g.3. Thus, both regions 1 and 2 correspond to linear lo
deflection relationships,albeit for different reasons. Region 3 is
bounded bya.2 andg,3; prestretch is negligible and membran
stretching dominates bending. This results in Schwerin-type s
tions wherew}P1/3. It should be noted that closed form solution
are tractable only for a limited range in regions 2 and
~membrane-like behavior!; the limit g→0 corresponds to ex
tremely large loads, and thus large rotations and highly nonlin
governing equations.

The boundaries between the regions reflect scenarios wher
two or more of the terms in Eqs.~11! and~12! are equally impor-
tant; hence, they reflect transitions between two types of respo
For example, consider the case with zero prestrain and a fixed
thickness. This corresponds toa5`. The response to increasin
load corresponds to decreasingg, i.e., moving down the right-
hand side of Fig. 2. This scenario involves the transition fr
plate-like behavior at very small loads to nonlinear membra
~Schwerin! behavior at larger loads. As will be illustrated in su
sections below, boundaries between regions 1 and 3 and 2 a
correspond to governing equations that are not amenable to
lytical solutions. If one computes values fora andg from physical
parameters in a given test that lie near one of the boundarie
Fig. 2, this indicates that two effects are equally important a
numerical solutions are required. By contrast, a single solu
exists for regions 1 and 2 for large values ofg ~i.e., small loads!
and across thea52 boundary. This solution clearly illustrates th
increasing prestretch has the same stiffening effect as increa
thickness.

3.1 Region 1: Linear Plate Theory With No Prestrain
This region is defined by the inequalitiesa.2, and g.3. We
choosed5g22, such that the normalized angle of rotation of t
film is g[b/«d5b/«g22. The governing Eqs.~11! and~12! with
error terms take the form

Lr̄ f 1~1/2! r̄ g25O~«2g24! (16)

2Lr̄g5$ r̄ , r̄ 3%1O~«a22,«2g26! (17)

Note that fora.2 andg.3, the error terms are of order much le
than unity. The solution to the earlier equations with error ter
neglected and subject to the boundary conditions~15! is

g~ r̄ !52
1
2r̄ ln r̄ (18a)
206 Õ Vol. 72, MARCH 2005
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f ~ r̄ !5S r̄ 3

512D @28~ ln r̄ !2112~ ln r̄ !27#1F 927v
512~12v !G r̄

(18b)

In terms of the angle of rotation of a radial fiber, this is eas
recognized as the plate solution that appears in various texts~e.g.,
Ref. @7#!

b~ r̄ !52
3~12v2!

p S Pa

Eh3D r̄ ln r̄ (19)

Integration of Eq.~19! yields the load-deflection relation

w~0!

a
5

3~12v2!

4p S Pa

Eh3D (20)

Thus, region 1 corresponds to classical plate theory; physic
stretching in the plane of the film is negligible compared to be
ing deformation. Nonlinear kinematics are also negligible: that
loads are small enough~or thickness is large enough! to allow the
assumption of small deflections. The strain distribution in the fi
is discussed in Sec. 6.

3.2 Region 2: Linear „Prestretched… Membrane Theory
With Pole and Boundary Layers. This regime is defined by
the inequalitiesa,2, andg.3a/2, as shown in Fig. 2. The pa
rameterd is chosen to beg2a. The governing equations are~16!
and

2«22aLr̄g1kr̄2g5$ r̄ , r̄ 3%1O~«2g23a! (21)

The underlined term in Eq.~21! indicates a boundary- or pole
layer term. ‘‘Boundary-layer’’ refers to a narrow annulus near t
edge of the film, while a ‘‘pole-layer’’ is a small disk at the cent
of the film. For point loads, singularities occur at the pole in t
membrane solution when the bending termLr̄g is neglected. Al-
though boundary layers exist for both point and pressure loa
pole layers exist only for point loads. In general, the analysis
pole layers is more complicated than that for boundary laye
This is discussed in detail in Sec. 5.

Neglecting the underlined term in Eq.~21!, the solution to Eqs.
~16! and ~21!, subjected to the boundary conditions in~15!, is

g~ r̄ !5
«0

«2

1

k F I 1~k r̄ !

I 1~k! FK1~k!2
1

kG2FK1~k r̄ !2
1

k r̄ G G (22a)

wherek is given by

k2512«0~11v !S a

hD 2

(22b)

and I 1 andK1 are, respectively, the modified Bessel’s function
the first and second kind. Note that Eq.~22a! reduces to Eq.~18a!
in the limit that the prestrain goes to zero, i.e.,k→0. Thus, Eq.
~22a! represent a general solution for both regions 1 and 2.
terms of physical parameters this yields the following solution
a prestretch membrane

b~ r̄ !5S 6Pa~12v2!

pEh3 D 1

k H I 1~k r̄ !

I 1~k! F I 1~k r̄ !2
1

kG
2FK1~k r̄ !2

1

k r̄ G J . (23)

The midpoint deflection of the film must be found using Eq.~23!
in a numerical evaluation of Eq.~7! with sinb replaced byb ~an
approximation consistent with the small rotations in the pl
limit !. This solution is identical to that presented by Hong et
@11# and Wan et al.@12#; the prestress in the film~N! in their work
is related to the prestrain («0) used here by:N5Eh«0 /(12v).
Similar solutions for pressure loads are given in the Appendix
Transactions of the ASME
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Physically, region 2 corresponds to scenarios where:~i! the
stiffness generated by prestrain is comparable~or greater than! to
the bending stiffness, and~ii ! loads are still small enough to avoi
large deflections. It is important to note that one obtains a lin
load-deflection relationship. In the region to the right of the ki
in the boundary, bending stiffness dominates; to the left, prestr
is the underlying source of linear behavior. Thus, in region 2, b
film thickness and prestretch must be known accurately to de
mine if response is bending or stretch dominated. Note that in
limit that k→0, Eq. ~23! asymptotes to Eq.~19!.

3.3 Region 3: Nonlinear Föppl „Small Rotation… Mem-
brane Theory With Pole and Boundary Layers. This region
appears on the lower right of Fig. 2, and is defined by the
equalities 2g/3,a, andg,3. The parameterd is chosen to beg/3,
so that the normalized angle isg[b/«g/3. The governing equa-
tions are~16! and

2«222g/3Lr̄g1 r̄ f g5$ r̄ , r̄ 3%1O~«a22g/3,«2g/3! (24)

A single term particular solution to Eqs.~16! and ~24! is ob-
tained whenO(«222g/3) terms are neglected. This is Schwerin
classic solution@13–28#

g~ r̄ !5S 16

9r̄ D
1/3

, (25a)

and

f ~ r̄ !5S 9r̄

16D
1/3

. (25b)

In terms of physical parameters, this yields

b~r !5S 8P

9pEhrD
1/3

(26a)

F~r !5
P

2pb~r !
5

3

4 S P2Ehr

3p2 D 1/3

(26b)

and

w~0!

a
5S 3P

pEahD
1/3

(27)

It should be emphasized that this particular solution satisfies
boundary conditions only for a single value of prestretch~for a
given Poisson’s ratio!, determined by substitution into Eq.~15!.
When Poisson’s ratio isv51/3, the particular solution meets th
boundary conditions for«050. This fact is very often overlooked
when a particular solution is obtained by combining Eqs.~16! and
~24!. For Poisson’s ratios other than one-third andzero prestrain,
we numerically integrated the Eqs.~16! and ~24! to obtain the
following approximate membrane solution for point loads

w~0!

a
5 f ~v !S P

EahD
1/3

(28)

where f (v)'1.049120.1462v20.15827v2. Similar membrane
solutions for pressure loading of a circular film with zero prestr
are given in the appendix.

Physically, region 3 corresponds to scenarios where ben
stiffness is neglible in comparison to the stiffness generated
stretching arising from large deflections. In this region, loads
large enough~or thickness small enough! that membrane behavio
dominates even prestretch. For smaller loads or very large va
of prestretch, deflections will be small and one returns to regio

3.4 Boundaries Between the Regions and Limiting Case
On the boundary between regions 1 and 2 in Fig. 2,a52 and
g.3. The parameterd is chosen to bed5g22. For these cases
the governing equations are~16! and

2Lr̄g1kr̄2g5$ r̄ , r̄ 3%1O~«2g26! (29)
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This represents a specific case of Eq.~21!, where the prestrain and
thickness/span ratio are related by:«05«25h2/(12(12v2)a2).
Thus, along~or near! this boundary the individual roles of pre
strain and thickness are difficult to determine, as one obtains
ear response due to either:~i! bending dominated deformation
i.e., classic plate behavior where prestrain does not play a sig
cant role, or~ii ! stretching dominated deformation, i.e., line
membrane behavior where bending does not play a signific
role. This rather straightforward result clearly illustrates that
structural stiffness of the film will be a nonunique combination
prestrain and thickness effects~since the same solution is ob
ained for multiple combinations of prestrain and thickness!. The
ability to identify these combinations without a comprehens
parameter study clears up considerable ambiguity in interpre
experiments.

The other two boundaries~between regions 2 and 3, and re
gions 1 and 3! yield governing equations that cannot be solv
analytically, and must be integrated numerically subject to
boundary conditions outlined earlier. While one may alwa
choose to integrate the full equations given as Eqs.~11! and~12!,
the simplified governing equations may prove useful for devel
ing approximate or series solutions near these boundaries.

On the boundary between regions 2 and 3, i.e., that separa
pretensioned linear membrane response from nonlinear memb
behavior, 0,a,2 andg53a/2. We choosed5a/2 to normalize
the rotation. The governing equations are then~16! and

2«22aLr̄g1 r̄ ~kr̄1 f !g5$ r̄ , r̄ 3%1O~«a! (30)

The transition behavior that occurs across the boundary separ
regions 2–3 is considered in the next section~look ahead to
Fig. 3!.

The boundary between regions 1 and 3 represents the axis
metric von Kármán equations without prestrain. On this bounda
a.2, g53, andd is simply taken as unity. The governing equ
tions are~16! and

2Lr̄g1 r̄ f g5$ r̄ , r̄ 3%1O~«a22,«2! (31)

Alternatively, the von Ka´rmán equations with pre-strain are ap
propriate at the common boundary point of regions 1, 2, and
wherea52, g53, andd51. In this case, the governing equation
are ~16! and

2Lr̄g1 r̄ ~kr̄1 f !g5$ r̄ , r̄ 3%1O~«2! (32)

Fig. 3 Load-deflection relationships for a thin film with several
values of pre-stretch; the inset depicts where these cases fall
in the behavior map given as Fig. 2
MARCH 2005, Vol. 72 Õ 207
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The von-Kármán plate equations are thus a subset of the s
plified Reissner equations~Eqs.~1! and ~2!!. Note that both sim-
plified Reissner theory and von-Ka´rmán plate theory assume sma
strain behavior. But Reissner theory allows for moderate to la
rotations, whereas von-Ka´rmán plate theory is only for small ro-
tations~i.e., whenb2!1). This is the subtle distinction betwee
the two theories. Again, Eqs.~31! and~32! cannot be solved ana
lytically; the coupling betweeng and f is such that there is no
simple closed-form solution. Numerical results illustrating the
lutions for these points are shown in the next section.

4 Transitions Between Regimes: Numerical Solutions
Since experiments involve a range of applied loads~and possi-

bly film thickness or pre-strain!, it is possible that a given experi
ment spans multiple regions in Fig. 2. In this case, numer
simulations are required to solve Eqs.~1! and ~2! for the load-
deflection relationship~or strains in the film!, subject to the
boundary conditions implied by Eqs.~5!–~8!. In this section, we
compare numerical solutions for load-displacement relations
with closed-form solutions valid in the asymptotic limit of large
small loads~and/or film thickness!. A relaxation method was use
to solve the coupled nonlinear ordinary differential equations
is briefly described in Sec. B of the Appendix.

4.1 General Cases With Finite Prestrain. We first con-
sider the caseswith prestrain—i.e., the entire range of behavio
illustrated in Fig. 2. Examples of transition behavior for seve
values of prestretch and a single film thickness are shown in
3. The load-displacement behavior goes from linear~plate! behav-
ior at small loads to nonlinear~membrane! behavior at large loads
The behavior shown in Fig. 3 appears as a vertical line in the m
given in Fig. 2 since prestretch and film thickness are held c
stant. This is illustrated in the inset of Fig. 3. Note again th
increasing load corresponds to decreasingg; hence, the loading
direction of the line in the inset goes from top to bottom. Sim
larly, decreasing prestrain corresponds to increasinga such that
zero prestrain corresponds toa5`.

Results such as those shown in Fig. 3 can be used to cons
numerical boundaries that correspond to the analytical bounda
given in Fig. 2, as shown in Fig. 4. The transition region betwe
the linear and nonlinear response was determined by compa
numerical load-deflection curves with asymptotic solutions. T

Fig. 4 Boundaries in the behavioral map determined by com-
paring numerical and asymptotic solutions: the shaded regions
correspond to load Õpre-stretch combinations for which analyti-
cal solutions have less than 10% error
208 Õ Vol. 72, MARCH 2005
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boundaries represent the combination of loads, film thickness
prestrain for which there is 10% disagreement between nume
and analytical load-displacement relationships.

Thus, the load-deflection relationship for points above the tr
sition region will be within 10% of the linear plate or prestretch
membrane solutions.~Note that both of these are obtainable fro
the single rotation solution given as Eq.~23!.! Points below the
transition region will be within 10% of the nonlinear membra
response~i.e., Schwerin solution in Eq.~27!!. The line marking
the bottom boundary of this nonlinear membrane region~i.e.,
g'0.7! is the critical load after which the rotations are no long
negligible. For larger loads, the analytical membrane solut
~which is derived assuming small rotations! does not remain valid.
More about this boundary is described later in this section.

Using Fig. 4, one can identify the limits of test parameters
ensure that a closed-form solution will be applicable. Natura
one can plot similar lines representing boundaries for differ
film thickness, Poisson’s ratio or percentage error. It is import
to note that the regime where nonlinear analytical solutions~i.e.,
Schwerin-type approximations! are applicable does not exist fo
all values ofh/a. The hatched area in Fig. 4 labeled ‘‘nonline
response:w;P1/3’’ becomes narrower ash/a increases; forh/a
;0.075, it disappears altogether. This means that as the loa
increased, the response moves directly from the plate regime
the large deflection regime. This is further explained in Sec. 4

4.2 Critical Loads, Prestretch, and Thickness That Indi-
cate Asymptotic Behavior. Figures 3 and 4 represent a sam
pling of results for several film thickness and prestretch. A m
comprehensive tabulation of the transition region for different fi
thickness and prestrain is shown in Figs. 5 and 6, which ag
represent the combinations of load, prestretch, and thickn
where the numerical solutions deviate from analytical solutio
The hatched regions in Figs. 5 and 6 correspond to the trans
from linear plate behavior to nonlinear membrane behavior.
low this transition region is the linear response region, where
~23! can be accurately applied. Above the transition region is
nonlinear membrane region, where Eq.~27! ~Schwerin’s mem-
brane solution! becomes valid.

The numerical results presented so far assume that the rota
are small compared to unity. For films that are especially thin
that are under especially large loads, it is natural to ask if
simplified axisymmetricvon Kármán Eqs. ~16! and ~32! that ne-

Fig. 5 Illustration of combinations of load and pre-stretch for
which asymptotic solutions are accurate: the shaded region
represents the plate-to-membrane transition regime where no
accurate analytical solution exists
Transactions of the ASME
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glect large rotations donot predict the same behavior as the fu
Reissner’sEqs.~1! and~2! that allow large rotations. To establis
a guideline for loads and film thickness combinations that diff
entiate these two results, a comparison of load-displacem
curves was made between numerical solutions of~1! and~2! ~i.e.,
large rotations!, and numerical solutions of Eqs.~16! and ~32!,
~i.e., small rotations!.

Figure 7 illustrates the critical load for which the full numeric
solution deviates;10% from the simplified small rotation solu
tion. The critical transitions between asymptotic plate and me
brane solutions are shown as well. Zero prestretch is assu
since moderate prestretch has little influence on behavior at t
high loads. It can be seen that above a thickness/span rat
about 0.075, the transition curve from small to large rotations f
below the transition curve to the analytical membrane soluti
Since the analytical membrane solution is derived assuming s
rotations, this means that beyond this point, the analytical m
brane solution~Eq. ~27!! no longer is valid. The true load deflec
tion behavior can only be obtained by integrating the full Rei
ner’s equations~Eqs. ~1! and ~2!! and not the simplified von

Fig. 6 Illustration of combinations of load and film thickness
for which asymptotic solutions are accurate: the shaded region
represents the plate-to-membrane transition regime where no
accurate analytical solution exists

Fig. 7 Illustration of combinations of load and film thickness
for which small rotation assumptions are accurate: the shaded
region represents combinations where small rotation mem-
brane analytical solutions are accurate. For h ÕaÈ0.075, there
is no accurate small rotation analytical membrane result.
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Kármán equations~Eqs. ~16! and ~32!!. Hence, in Fig. 7, the
hatched region represents the region of validity for Schwer
analytical solution. Forh/a50.01, this transition from small to
large rotations is illustrated in Fig. 4 as the lower boundary
g'0.7.

4.3 Zero Prestretch. With zero prestretch,a→` and the
boundary condition~6! is homogeneous. In this case, the on
possible transition in Fig. 2 is the transition from linear pla
behavior~region 1! to nonlinear membrane behavior~region 3!.
For small rotations, a single parameter

l54p2«2g265@12~12v2!#3S Pa2

Eh4D 2

(33)

can be used to account for all values of film thickness, load,
elastic properties. For large rotations, the nonlinear trigonome
terms in Eqs.~11! and ~12! do not allow one to remove the pa
rameter« via normalization. Figure 8 plots the center-span defl
tion versusl for both clamped and simply supported films. Th
deflection is normalized by the classical nonlinear membrane
sult ~save a constant prefactor!. As such, the results asymptote
a constant value for large loads corresponding to the memb
limit. The results for very thin films~i.e., large values ofl! are
independent of the boundary conditions at the outer edge, s
bending resistance becomes negligible. We again emphasize
Schwerin’s one-term particular solution~Eq. ~27!! is strictly only
valid for zero prestretch andv51/3. A similar form for zero pre-
stretch and other Poisson’s ratios, determined by fitting numer
simulations, is given by Eq.~28!.

5 Asymptotic Behavior Near Point-Loads and Edges
As noted earlier, whenever the coefficient of the different

operatorLr̄g is small, then boundary and pole layers will exist. T
determine the width of the boundary layer at the edge of
clamped film, we setr̄ 512«mj, assumej5O(1), and deter-
mine the exponentm so that,to lowest order, the resulting form of
~12! is free of the small parameter«. The width of the resulting
boundary layer~in the dimensionless coordinater̄ ) is O(«m).
Thus, the solutions of~21!, ~24!, and ~30! will exhibit boundary
layers whose respective widths areO($«12a/2,«12g/3%) and
O(«12a/2).

To determine the width of a pole layer, we setr 5mr and then
determinem so that the resulting forms of~11! and~12!, to lowest
order, are free of«. Note that, in determining pole layers, it i

Fig. 8 Universal results for cases with several pre-stretch il-
lustrating transition from plate to membrane behavior
MARCH 2005, Vol. 72 Õ 209
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essential we consider the limiting form of~12!, which, sinceg
5O(1), is alwaysLr f 50. Since bending, represented by the fi
group ofg terms in~12!, is important near the center of the film
the extensional strains remain finite there. This, in turn, imp
that

f 5Ar1O~«m!, r5O~1! (34)

whereA is an unknown constant. Thus, in~24! and~30! the widths
of the pole layers are, respectively,O(«12g/3) and O(«12a/2),
whereas in~21!, where the width of the pole layer does not d
pend on the form off, its width is O(«12a/2). These boundary
layers are illustrated by numerical results discussed in the
section.

6 Maximum Stresses and Strains
An important issue that arises when testing freestanding

films is the deformation of the film beneath the load. For very t
films subjected to a transverse point load, membrane theory
dicts singular yet integrable rotations that lead to a finite displa
ment at the center. The result is completely reasonable lo
displacement behavior, yet infinite rotations~and strains! under
the load point. Of course, in plate theory, there are finite-si
regions near the load point~pole layer! and the clamped edg
~boundary layer! where bending is important, as described
Sec. 5.

The extent of these bending influenced regions is illustrate
Fig. 9, which shows normalized rotation distributions given as

f5
b

~2p«g!1/3
5S Eah

P D 1/3

b. (35)

Results are shown for zero prestretch and different values ol.
The Schwerin membrane solution~i.e., the asymptotic limit in
which l→` or g→01! is also shown. Near the point load an
outer boundary, bending influences the response and the ang
rotation goes to zero because of symmetry and clamped boun
conditions, respectively. This is more clearly observed in the in
which depicts the same information using a log-scale to highli
the behavior near the load point. From the pole- and bound
layer analysis in Sec. 5, the width of these asymptotic regions
of the orderO(«12g/3)5O((4p2/l)1/6). These theoretical esti
mates agree well with the numerical solution shown in Fig. 9.

Figure 10 shows the distribution of total radial strain in the fil
calculated by adding bending strain in the outer fiber of the fi
(h/2)(db/dr), to the extensional strain given as Eq.~5!. Results
are shown for a large value ofl, which leads to load-deflection

Fig. 9
210 Õ Vol. 72, MARCH 2005
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behavior that is accurately matched by membrane soluti
~which neglect bending!. Localized bending deformation influ
ences the results near the pole and close to the clamped
edge; however, the majority of the span is dominated by stretch
deformation. This is clearly illustrated by the agreement betw
Schwerin’s analytical solution and the total and extensional stra
determined via numerical solution. Hence, for large values ol,
i.e., the membrane limit, the strain away from the pole and bou
ary layers can be estimated using the solutions given as~26!, with
the result

« r5
2

3 S P2

3E2h2a2p2D 1/3

r̄ 22/3. (36)

The corresponding circumferential strain to this analytical so
tion is zero.

Conversely, for smaller loads or thicker films~i.e., small values
of l!, extensional strains are negligible and the strain distribut
is accurately given by the classical plate solution. Equations~18!
and~19! yield the following for strain distribution in a plate unde
point loading

« r5«u5
12~12v2!

8p S P

Eh2D ~11 ln~ r̄ !! (37)

Note that both asymptotic limits~linear plate theory and non
linear membrane theory! produce strain distributions that are sin
gular under the point load. Deformation inside the pole a
boundary layers is highly localized and requires complex thr
dimensional analysis to determine the strains and rotation.

The transition between bending and stretching regimes is il
trated in Fig. 11 by plotting the strain atr /a50.5 as a function of
l. The two asymptotic limits are given by Eqs.~36! ~largel! and
~37! ~smalll!. In both limits, the total strain is slightly larger tha
the asymptotic predictions as it represents the sum of both b
ing and extensional terms. For nonzero prestrain, a reason
estimate for the maximum strain in the film is either the pre-str
itself or the strain calculated using Eq.~37!, whichever is greater.

As long as the characteristic length of the indenter is larger t
the width of the pole layer~given in Sec. 5 of the paper!, the
earlier expressions can be used to estimate strain in the film. H
ever, if the size of the indenter is of the order of the width of t
bending dominated pole layer, the strains surrounding the con
must be determined by considering a finite contact region and
solving for the strains at the edge of the contact.

Fig. 10
Transactions of the ASME
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7 Concluding Remarks
The solutions presented in this paper, both numerical and

lytical, represent a comprehensive framework that describes
effects of prestretch, film thickness, span elastic properties,
loads on the mechanical response of freestanding circular fi
These effects are captured by a single two-variable map that
cates when the nonlinear governing equations can be simpli
The map should be useful in the development and interpretatio
mechanical tests that scan multiple length scales, since appr
ate solutions can be identified a priori. Using a combination
these maps and numerical solutions, specific combinations
load, prestrain, and thickness have been identified for which a
lytical solutions are applicable.
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Appendix

A Analytical Solutions for Uniform Pressure Loading

A.1 (Region 1) Linear Plate Theory With No Prestra
Solving the governing Eqs.~16! and~17! for pressure loading, one
obtains

g~ r̄ !52
1

8
r̄ ~12 r̄ 2! (A1)

and

f ~ r̄ !5S r̄ 3

6144D @2 r̄ 414r̄ 226#1F 523v
6144~12v !G r̄ (A2)

In terms of the rotation variableb, the solution is given as

b~ r̄ !52
3~12v2!

4 S pa3

Eh3D @ r̄ ~12 r̄ 2!# (A3)

The midpoint deflection of the plate is then obtained by integ
ing the earlier equation as

w~0!5aE
1

0

b•dr̄5
3~12v2!

16 S pa4

Eh3D (A4)

Fig. 11
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This is the classic plate solution for uniform pressure load. T
expression for maximum bending strain in the film, as a funct
of the physical parameters and load, is given as follows

« r
max5«u

max5
3~12v2!

4 S Pa2

Eh2D @r̄ 51. (A5)

A.2 (Region 2) Linear Prestretched Membrane Theory W
Pole and Boundary Layers.Solution to the governing equation
in this region~~16! and ~21!!, for pressure loading, yields

g~ r̄ !52
«0

«2 S 1

k2D F r̄ 2
I 1~k r̄ !

I 1~k! G (A6)

where

k2512«0~11v !S a

hD 2

(A7)

In physical terms, it can be written as

b~ r̄ !52
6~12v2!

k2 S pa3

Eh3D F r̄ 2
I 1~kr̄ !

I 1~k! G (A8)

The midpoint deflection of the film is then obtained by using~A8!
in a numerical evaluation of Eq.~7! as

w~0!5aE
1

0

b~ r̄ !•dr̄ (A9)

For zero prestrain~i.e.,k→0!, the earlier integration will yield the
classic result given in Eq.~A4!. Equation~A8! is identical to the
solution presented by Wan et al.@12#, except that their result is
presented in terms of the prestress instead of prestrain.

A.3 (Region 3) Nonlinear Fo¨ppl (Small Rotation) Membrane
Theory With Pole and Boundary Layers (Without Prestrain).For
pressure loading, there is no analytical closed form solution
Schwerin’s solution~which is a special case in point loadin
where Poisson’s ratio is one-third!. Hence the governing mem
brane equations in this region~Eqs. ~16! and ~24!! for pressure
loading have been numerically integrated and an approximate
lution for midpoint deflection is obtained and given as follows

w~0!

a
5g~v !S pa

EhD 1/3

(A10)

whereg(v)'0.717920.1706v20.1495v2. Vlassak and Nix@8#
discuss a similar result for pressure loading of a membrane~for no
prestrain case!, where the geometry of the film considered was
rectangle. In their derivation, the authors preassumed a form
displacement in the membrane, which they used to find st
energy and later used energy minimization techniques to find
unknowns in their displacement field.

A.4 (Boundary 1–2) Linear Plate With Prestrain. Solution is
same as in region 2~~A6!–~A9!!, except that prestrain and thick
ness are related as follows

«05«25
h2

12~12v2!a2
(A11)

B A Note on Numerical Integration. The governing equa-
tions in Sec. 3 of the paper constitute a two-point boundary va
problem, with four variables namelyf, ḟ , g, and ġ. Based on a
physical interpretation of the problem, one can assume that
solution variables are smooth functions of the radial distance,r /a.
Numerical experiments with a shooting method revealed con
gence problems, due to the high sensitivity of the results at the
edge~i.e., outer boundary conditions to be matched! to the initial
guesses at large loads. Far greater success was achieved w
relaxation method, which involves discretizing the domain into
MARCH 2005, Vol. 72 Õ 211
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finite-difference grid. The solution was guessed at each poin
the mesh and successively iterated to converge~relax! to the true
solution. The analytical plate solution was used to provide
initial guess for loads low enough to be in the plate limit to st
the iteration. Converged solutions were then used as a sta
guess for a slightly higher load. A highly refined mesh near
point-load~when relevant! and outer boundary was used to ca
ture the singularity of the normalized rotations@g(r )#.
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Stochastic Stability of Mechanical
Systems Under Renewal Jump
Process Parametric Excitation
A dynamic system under parametric excitation in the form of a non-Erlang renewal
process is considered. The excitation is a random train of nonoverlapping rectang
pulses with equal, deterministic heights. The time intervals between two conse
jumps up (or down), are the sum of two independent, negative exponential distri
variables; hence, the arrival process may be termed as a generalized Erlang ren
process. The excitation process is governed by the stochastic equation driven b
independent Poisson processes, with different parameters. If the response in a single
is investigated, the problem is governed in the state space by two stochastic equa
because the stochastic equation for the excitation process is autonomic. However,
the parametric nature of the excitation, the nonlinear term appears at the right-hand s
of the equations. The equations become linear if the state space is augmented
products of the original state variables and the excitation variable. Asymptotic mean
mean-square stability as well as asymptotic sample (Lyapunov) stability with proba
1 are investigated. The Lyapunov exponents have been evaluated both by the direc
lation of the stochastic equation governing the natural logarithm of the hypersphe
amplitude process and using the modification of the method wherein the time averag
the pertinent expressions is replaced by ensemble averaging. It is found that the
simulation is more suitable and that the asymptotic mean-square stability condition i
overly conservative.@DOI: 10.1115/1.1839591#
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1 Introduction
Dynamic stability of elastic systems under parametric stoch

tic excitation has been a subject of research for a few deca
Most of the papers on stochastic stability that have appeared
with the systems under Gaussian white-noise or wide-band p
metric excitations. Ariaratnam@1# was one of the first authors t
deal with the problem of dynamic stability of a beam-colum
under a Gaussian white-noise parametric stochastic loading. T
exist a number of definitions of stochastic stability, e.
Refs. @2,3#. Of special interest in connection with the proble
undertaken in the present paper are papers@4,5#, and@6#, wherein
the problems concerning more than two state variables are t
led. Ariaratnam et al.@4# investigated the stochastic stability of
two-degrees-of-freedom system resulting from the flexur
torsional stability of a narrow elastic beam subjected to station
stochastic end couples. They used the stochastic averaging m
and investigated the stochastic stability via Lyapunov expone
Griesbaum@5# and Simon and Wedig@6# considered a similar
problem governed by two coupled, white-noise-driven, equatio
For four state variables, they used a hyperspherical transforma
and under the ergodicity assumption they investigated
Lyapunov exponents with the aid of ensemble averaging ra
than time averaging.

Much less attention has been given to non-Gaussian stoch
parametric excitations, for example, to random pulse trains. S
uels @7# was certainly one of the first authors to deal with pa
metric excitation in the form of a random train of impulses. Ko
ulski and Sobczyk@8# dealt with the moment stability of a system
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under a stochastic jump process excitation in the form of the r
dom telegraph processX(t)5(21)N(t), whereN(t) is a Poisson
counting process. They derived the so-called ‘‘correlation sp
ting’’ formulas, which are just the differential equations governi
the time evolution of the expectationsE@Yj (t)(21)N(t)#, where
Yj (t) are the state variables of the original system. Obviously
that formulation the time instants of the jumps up~or down! make
up a usual Erlang renewal process with parameterk52.

A stochastic parametric excitation considered in the present
per is a random train of nonoverlapping rectangular pulses w
equal, deterministic heights. The excitation, or dynamic loadi
of this kind may occur in some control systems wherein the c
trolling device switches the clutch on and off. Thereby, differe
parts of the system are coupled or decoupled, thus giving ris
sudden dynamic loading or unloading. Obviously, the dynam
loading of this kind may act as an external or a parametric e
tation. The durations of pulses are assumed to be negative e
nential distributed random variables and the time gaps betw
two consecutive pulses are also negative exponential distrib
random variables, but the parameters of both distributions are
ferent. Consequently, the pulse arrival times constitute a rene
process that may be termed as a generalized Erlang process
excitation process is shown to be governed by the stochastic e
tion driven by two independent Poisson processes, with differ
parameters, which allows one to convert the original non-Mark
problem into a Markov one.

The objective of the present paper is to investigate
asymptotic moment stability and Lyapunov asymptotic~sample!
stability with probability 1. The response in a single mode is
vestigated; hence, the original problem is governed in the s
space by two stochastic equations, because the stochastic equ
for the excitation process is autonomic. However, due to the p
metric nature of the excitation, two additional state variables h
to be introduced in order to obtain the standard form of line
equations. It is shown that equations for mean values only for
closed set if two additional equations for second-order mome
are appended. Likewise, the equations for second-order mom
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form a closed set if three additional third-order moments are ta
into account. Asymptotic stability of first- and second-order or
nary moments is investigated numerically, by evaluating the la
est of the real parts of all the eigenvalues. In order to investig
the asymptotic sample stability via Lyapunov exponents,
transformation of the four state variables to hyperspherical co
dinates is made and two methods are used. One is the direct s
lation of the stochastic equation governing the natural logarit
of the hyperspherical amplitude process and of the stocha
equations governing the angular processes. The other one is b
on the ergodicity assumption, in which the time averaging of
pertinent expressions is replaced by ensemble averaging. A m
fication of the approach used in Refs.@5# and@6# has been devel-
oped. The numerical results show good qualitative agreemen
tween two methods of evaluating the Lyapunov exponents. Di
simulation is, however, found to be more robust and less t
consuming and therefore is more suitable for the problem.
asymptotic mean-square stability condition is, of course, m
conservative than Lyapunov asymptotic~sample! stability with
probability 1. It is, however, not overly conservative and m
provide a good estimate of the asymptotic stochastic stability.

2 Statement of the Problem
Consider a beam-column under an axial compressive force,

plate under in-plane compressive forces. Using a single-mode
proximation, we obtain the differential equation

Ÿ~ t !12zvẎ~ t !1v2Y~ t !2bv2Z~ t !Y~ t !50, (1)

where Z(t) is the dynamic compressive force, or a parame
excitation. The valuesb51 and Z(t)5const.51 correspond to
the classical, Euler critical force for the static buckling problem

Let us consider the stochastic excitationZ(t) as a jump process
in the form of a random train of step forces of equal determinis
magnitude, with random force durationsTd and random time gaps
Tr between two consecutive forces. A sample of the excitatio
shown in Fig. 1.

Assume that all durations are identically, negative exponen
distributed random variablesTd with the probability density

gTd
~ t !5m exp~2mt !, t.0. (2)

Likewise, all time gaps are assumed to be identical, nega
exponential distributed random variablesTr with the probability
density

gTr
~ t !5n exp~2nt !, t.0. (3)

The arrival times of the force pulses make up a renewal proc
with interarrival timesTa5Td1Tr .

The excitationZ(t) is governed by the stochastic equation~cf.
Refs.@9,10#!

dZ~ t !5~12Z!dNn~ t !2ZdNm~ t !, (4)

whereNn(t) and Nm(t) are mutually independent homogeneo
Poisson processes with parametersn andm, respectively. The dif-
ferentials in Eq.~4! are dZ(t)5Z(t1dt)2Z(t), dNa(t)5Na(t
1dt)2Na(t), a5m,n. At the time axis there are points drive
by Nn(t) and Nm(t) Poisson processes. Assume that the ini

Fig. 1 A sample path of the stochastic process Z„t ….
Ã:Nm-driven points, s: Nn-driven points.
214 Õ Vol. 72, MARCH 2005
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condition for theZ(t) variable isZ(0)50. According to Eq.~4!,
at the firstNn(t)-driven point the variableZ(t) jumps from 0 to 1,
at the first subsequentNm(t)-driven point it jumps back to 0, a
the first subsequentNn(t)-driven point it jumps again to 1, and s
forth. Due to memorylessness property of the negative expon
tial distribution, this situation is tantamount to the sequence
alternating negative exponential distributed durationsTd and time
gapsTr @10#.

Every sample function ofZ(t) as governed by Eq.~4! is a
discontinuous function of time. Consequently, the sample fu
tions of Ẏ(t) are only piecewise smooth but continuous, and
sample functions ofY(t) are smooth. However, every samp
function ofZ(t) is of bounded variation over a finite time interva
hence, the existence and uniqueness of solutions of the Eq~1!
should be ensured.

Equations of motion in a state-space form are

dY~ t !5c~Y~ t !!dt1bn~Y~ t !!dNn~ t !1bm~Y~ t !!dNm~ t !, (5)

where

Y~ t !5FY

Ẏ
Z
G , c~Y~ t !!5F Ẏ

2v2Y22zvẎ1bv2YZ
0

G
(6)

bn~Y~ t !!5F 0
0

12Z
G , bm~Y~ t !!5F 0

0
2Z

G
These equations are nonlinear due to the presence ofYZ, but if
the equations forY135YZ and Y235ẎZ are appended, Eqs.~5!
become linear and then

Y~ t !5F Y

Ẏ
YZ

ẎZ

G5F Y1

Y2

Y13

Y23

G , c~Y~ t !!5AY ~ t !

A5F 0 1 0 0

2v2 22zv bv2 0

0 0 0 1

0 0 v2~b21! 22zv

G , (7)

bn~Y~ t !!5F 0
0

Y12Y13

Y22Y23

G , bm~Y~ t !!5F 0
0

2Y13

2Y23

G
It is worthwhile to note thatY135YZ and Y235ẎZ are also

jump processes; they are equal to zero in the time intervals w
Z(t)50.

Stochastic equations forY135YZ andY235ẎZ have been ob-
tained from the generalized Itoˆ’s differential rule pertinent to the
problem governed by Eq.~5!, which has the form~cf. Refs.@11–
13#!

dV~ t,Y~ t !!5
]V~ t,Y~ t !!

]t
dt1(

j 51

n
]V~ t,Y~ t !!

]Yj
cj~ t,Y~ t !!dt

1 (
a5m,n

@V~ t,Y~ t !1ba~ t,P~ t !,Y~ t !!!

2V~ t,X~ t !!#dNa~ t !, (8)

wheren53.
Transactions of the ASME
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3 Moment Stability
Performing the averaging of the stochastic Eqs.~5! together with Eq.~6! does not result in a closed set of equations for the m

values due to the presence of the termYZ. However, the averaging of the stochastic Eqs.~5! together with Eqs.~7! yields the closed
set of linear equations

d

dtF m1

m2

m13

m23

G5F 0 1 0 0

2v2 22zv bv2 0

n 0 2~n1m! 1

0 n v2~b21! 2~2zv1n1m!

GF m1

m2

m13

m23

G (9)

wherem15E@Y1#, m25E@Y2#, m135E@Y13#, andm235E@Y23#.
Likewise the set for second-order momentsm115E@Y1

2#, m125E@Y1Y2#, andm225E@Y2
2# is not closed. Appending the equations f

m1135E@Y1Y13#, m1235E@Y1Y23#, andm2235E@Y2Y23# allows one to close the set, and the result is

d

dtF m11

m12

m22

m113

m123

m223

G53
0 2 0 0 0 0

2v2 22zv 1 bv2 0 0

0 22v2 24zv 0 2bv2 0

n 0 0 2~n1m! 2 0

0 n 0 v2~b21! 2~2zv1n1m! 1

0 0 n 0 2v2~b21! 2~4zv1n1m!

4 F
m11

m12

m22

m113

m123

m223

G (10)
f

t
a

o
h

l

erse

d as
First- and second-order moments are asymptotically stable i
the eigenvalues of coefficient matrices in Eqs.~9! and ~10! have
negative real parts. To investigate that, the well known Rou
Hurwitz criterion is usually used. Here the eigenvalues are ev
ated numerically and the regions are determined where all
eigenvalues have negative real parts or not~or equivalently, where
the largest of the real parts of all the eigenvalues is negative!.

4 Transformation to Hyperspherical Coordinates
Let us first perform the following change of variables:

X15Y1 , X25Y2 /v, X35Y13, X45Y23/v. (11)

The stochastic equations are then written as

dF X1

X2

X3

X4

G5F 0 v 0 0

2v 22zv bv 0

0 0 0 v

0 0 v~b21! 22zv

GF X1

X2

X3

X4

G dt

1F 0 0

0 0

X12X3 2X3

X22X4 2X4

G F dNn~ t !
dNm~ t !G (12)

In Lyapunov exponents approach to stochastic stability pr
lems it is convenient to transform the original coordinates to
perspherical ones@5,6#, which are the amplitude processA(t) and
the angular processesC(t), F1(t), andF2(t). The advantage of
such a transformation is that the equations are easier to hand
the introduced angular processes are always bounded and
equation for the logarithm of the amplitude process may be
rectly integrated with respect to time.

The hyperspherical coordinates are introduced through
transformations

X1~ t !5A~ t !cosC~ t !cosF1~ t !cosF2~ t !,

X2~ t !5A~ t !sinC~ t !cosF1~ t !cosF2~ t !
(13)

X3~ t !5A~ t !sinF1~ t !cosF2~ t !,

X4~ t !5A~ t !sinF2~ t !.
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The hyperspherical coordinates are expressed by the inv
transformations as

A~ t !5AX1
2~ t !1X2

2~ t !1X3
2~ t !1X4

2~ t !, 0<A~ t !,`,

C~ t !55
arctanS X2~ t !

X1~ t ! D , X1~ t !>0,

2
p

2
,C~ t !,

3p

2
,

arctanS X2~ t !

X1~ t ! D1p, X1~ t !,0,
(14)

F1~ t !5arctanS X3~ t !

AX1
2~ t !1X2

2~ t !
D , 2

p

2
,F1~ t !,

p

2
,

F2~ t !5arctanS X4~ t !

AX1
2~ t !1X2

2~ t !1X3
2~ t !

D , 2
p

2
,F2~ t !,

p

2
.

With the aid of the generalized Itoˆ’s differential rule ~8! the
stochastic equations for the transformed variables are obtaine

d~ ln A~ t !!5h1~C~ t !,F1~ t !,F2~ t !!dt

1g1n~C~ t !,F1~ t !,F2~ t !!dNn

1g1m~C~ t !,F1~ t !,F2~ t !!dNm ,

d~C~ t !!5h2~C~ t !,F1~ t !,F2~ t !!dt

1g2n~C~ t !,F1~ t !,F2~ t !!dNn

1g2m~C~ t !,F1~ t !,F2~ t !!dNm ,
(15)

d~F1~ t !!5h3~C~ t !,F1~ t !,F2~ t !!dt

1g3n~C~ t !,F1~ t !,F2~ t !!dNn

1g3m~C~ t !,F1~ t !,F2~ t !!dNm ,

d~F2~ t !!5h4~C~ t !,F1~ t !,F2~ t !!dt

1g4n~C~ t !,F1~ t !,F2~ t !!dNn

1g4m~C~ t !,F1~ t !,F2~ t !!dNm ,
MARCH 2005, Vol. 72 Õ 215
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where the drift terms are given by

h15cosF2~ t !~22zv sin2 C~ t !cos2 F1~ t !cosF2~ t !

1bv sinC~ t !sinF1~ t !cosF1~ t !cosF2~ t !

1bv sinF1~ t !sinF2~ t !!22zv sin2 F2~ t !,

h252v22zv sinC~ t !cosC~ t !1bv cosC~ t !tanF1~ t !,

(16)
h352zv sin2 C~ t !cosF1~ t !sinF1~ t !2bv sinC~ t !sin2 F1~ t !

1v cosF1~ t !tanF2~ t !,

h452zv sin2 C~ t !cos2 F1~ t !cosF2~ t !sinF2~ t !

2bv sinC~ t !cosF1~ t !sinF1~ t !cosF2~ t !sinF2~ t !

2v sinF1~ t !1bv sinF1~ t !cos2 F2~ t !

22zv cosF2~ t !sinF2~ t !,

and the ‘‘diffusion terms’’ are expressed as

g1n5
1

2
ln 21 ln~cosF1~ t !cosF2~ t !!,

g1m5 ln~cosF1~ t !cosF2~ t !!,

g2n50,

g2m50,
(17)

g3n5arctan~cosC~ t !!2F1~ t !,

g3m52F1~ t !,

g4n5arctanS sinC~ t !

A11cos2 C~ t !
D 2F2~ t !,

g4m52F2~ t !.

It can be seen from the form of the drift coefficientshi given by
Eq. ~16! and ‘‘diffusion’’ coefficientsgim ,gin given by Eq.~17!
that the time evolution of lnA(t) and of the angular processe
F1(t) andF2(t) is due to drift and jumps. They are driven by th
Poisson processesNm(t) andNn(t). The angular processC(t) is
not a jump process driven by the Poisson processes, as is se
Eqs. ~15! and ~17! (g2n50 and g2m50) this process develop
only due to drift. However, it is a discontinuous, or a jump, pr
cess of another kind. As it follows from its definition~14! at the
time instants when the displacement responseX1(t) changes the
sign, the processC(t) reveals jumps of magnitude 2p. Between
these jumps, the time evolution ofC(t) is due to drift only. The
angular processesF1(t) and F2(t) are exactly equal to zero in
the time intervals whereZ(t)50. This can be observed directly i
Eq. ~14!, but it also follows from the form of the coefficientsh3 ,
h4 as given by~16! and fromg3n , g3m , g4n , g4m , as given by
Eq. ~17!. If the processesF1(t) and F2(t) start, in some time
interval, from zero values, thenh350 andh450; hence there is
no drift development and these processes continue to be zer
the firstNn-driven point there are jump changes in bothF1(t) and
F2(t) and at the first subsequentNm-driven point there is a jump
back to zero. The drift development is only present whenZ(t)
51; hence,F1(t)Þ0 andF2(t)Þ0.

5 Lyapunov Exponents and Stability
with Probability 1

A trivial solution X(t)[0 of Eqs.~12!, which are equivalent to
Eq. ~5! with Eq. ~7!, is almost surely asymptotically stable, if th
largest Lyapunov exponent is negative; hence, if

l5 lim
t→`

1

t
lnS iX~ t !i

iX~0!i D,0, (18)
216 Õ Vol. 72, MARCH 2005
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whereiX(t)uu5AX1
2(t)1X2

2(t)1X3
2(t)1X4

2(t). This could be in-
vestigated numerically, by simulating the stochastic Eqs.~12!.
However, when the sample curve is unstable, the values of
state variables become very large, which causes some nume
problems. It is more convenient to make use of the fact t
AX1

2(t)1X2
2(t)1X3

2(t)1X4
2(t)5A(t), and we find the Lyapunov

exponent is

l5 lim
t→`

1

t
lnS A~ t !

A~0! D,0, (19)

simulating directly the stochastic equation for lnA(t), as given by
Eq. ~15!. The advantage of this kind of simulation is that the on
functions involved at the right-hand sides of Eqs.~15!, are the
angular processesC(t), F1(t), and F2(t), which are bounded
@see Eq.~14!#.

As the amplitude processA(t) is not involved at the right-hand
side of Eq.~16! for ln A(t) ~cf. Refs.@5#, @6#!, this equation can be
directly integrated with respect to time and substituted into E
~19!, which results in a time-average integral

l5 lim
T→`

1

T E
0

T

~h1~C~ t !,F1~ t !,F2~ t !!dt1g1n~F1~ t !,F2~ t !!dNn

1g1m~F1~ t !,F2~ t !!dNm! (20)

Assuming ergodicity of h1(C(t),F1(t),F2(t)),
g1n(F1(t),F2(t)), andg1m(F1(t),F2(t)), we can make the fol-
lowing replacement:

l5 lim
T→`

1

T E
0

T

~E@h1~C~ t !,F1~ t !,F2~ t !!#dt

1E@g1n~F1~ t !,F2~ t !!dNn#1E@g1m~F1~ t !,F2~ t !!dNm#!,

(21)

whereE@g1n(F1(t),F2(t))dNn#5E@g1n(F1(t),F2(t))#ndt and
E@g1m(F1(t),F2(t))dNm#5E@g1m(F1(t),F2(t))#mdt.

Further, it is assumed that the processesF1(t), F2(t), and
C(t) are stationary; hence, there exist time-invariant margi
probability densitiesp(c,f1 ,f2) and p(f1 ,f2). The expecta-
tions in Eqs~21! are also time-invariant, and we obtain

l5E@h1~C~ t !,F1~ t !,F2~ t !!#1nE@g1n~F1~ t !,F2~ t !!#

1mE@g1m~F1~ t !,F2~ t !!#

5E
2p/2

3p/2E
2p/2

p/2 E
2p/2

p/2

h1~c,f1 ,f2!p~c,f1 ,f2!dcdf1df2

1E
2p/2

p/2 E
2p/2

p/2

~ng1n~f1 ,f2!

1mg1m~f1 ,f2!!p~f1 ,f2!df1df2 . (22)

It should be commented here that the time averaging may
replaced by the ensemble averaging; i.e., the time average

lim
T→`

1

T E
0

T

Y~ t !dt (23)

converges toE@Y(t)# with probability 1 if the processY(t) satis-
fies the following conditions@14#:

1. it is stationary in the strict sense,
2. E@ uY(t)u#,`,
3. almost all sample curves ofY(t) are Riemann integrable on

every finite interval.

The theorem may be applied to any compound functiong(Y(t)),
g(•) being an arbitrary Borel measurable function, if the con
tions 2 and 3 are satisfied by the compound function. In
present problem the ergodicity and stationarity is assumed a
Transactions of the ASME
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the processesh1(C(t),F1(t),F2(t)), g1n(F1(t),F2(t)), and
g1m(F1(t),F2(t)) In addition, the processesC(t), F1(t), and
F2(t) are assumed to be stationary. As the response proce
driven by the processZ(t), it is of bounded variation and so ar
the processesC(t), F1(t), F2(t), h1(C(t),F1(t),F2(t)),
g1n(F1(t),F2(t)), and g1m(F1(t),F2(t)); hence, they satisfy
condition 3 of the above theorem. Obviously condition 2 is a
satisfied.

However, it is difficult to analyze the strict-sense stationarity
C(t), F1(t), F2(t), h1(C(t),F1(t),F2(t)), g1n(F1(t),F2(t)),
g1m(F1(t),F2(t)), which are the complicated transformations
the response process. The stationarity assumption about thes
cesses may be justified by the fact that the response proce
driven by the processZ(t), which attains stationarity after a lon
time interval, i.e., ast→`, for example, its mean value is give
by

lim
t→`

E@Z~ t !#5 lim
t→`

n

n1m
~12exp~2~n1m!t !!5

n

m1n
.

(24)

The probability densitiesp(c,f1 ,f2) and p(f1 ,f2) are
evaluated from Monte Carlo simulations of the hyperspherical
gular coordinate processesC(t), F1(t), andF2(t) based on Eqs.
~15!.

Due to the jump nature of the angular processesF1(t) and
F2(t), and the fact that they are equal to zero during some
nificant time intervals, the marginal probability densiti
p(c,f1 ,f2) and p(f1 ,f2) are very spiky, the spikes being a
f150, f250. This makes the numerical evaluation of the in
grals~22! cumbersome. The evaluation is very much improved
those spikes are represented in the probability densities in
following way:

p~c,f1 ,f2!5P0d~f1!d~f2!p~c!1~12P0!p0~c,f1 ,f2!,
(25)

p~f1 ,f2!5P0d~f1!d~f2!1~12P0!p0~f1 ,f2!, (26)

whered(¯) is the Dirac delta,p(c) is the marginal probability
density ofC(t), and p0(c,f1 ,f2), p0(f1 ,f2) are conditional
probability densitiesp0(c,f1 ,f2)5p(c,f1 ,f2uf1Þ0,f2Þ0),
p0(f1 ,f2)5p(f1 ,f2uf1Þ0,f2Þ0), whose areas are norma
ized to 1. The heightsP0 of the spikes are obtained by collectin
the counts for whichf150, f250.

The integrals in Eq.~22! reduce to

l522zvP0E
2p/2

3p/2

sin2 cp~c!dc

1~12P0!E
2p/2

3p/2E
2p/2

p/2 E
2p/2

p/2

h1~c,f1 ,f2!

3p0~c,f1 ,f2!dcdf1df21
1

2
nP0 ln 2

1~12P0!E
2p/2

p/2 E
2p/2

p/2

~ng1n~f1 ,f2!

1mg1m~f1 ,f2!!p0~f1 ,f2!df1df2 . (27)

The simulation scheme for the hyperspherical angular proce
governed by Eq.~15! is as follows. Between the Poisson poin
the Runge-Kutta scheme is used. At the firstNn(t)-driven point
and at every firstNn(t)-driven point tkn subsequent to an
Nm(t)-driven point, there is an incrementdNn51; hence, accord-
ing to Eqs.~15! and ~17!, there is a jump change inF i(t) of
magnitudegin(C(tkn

2 ),F1(tkn
2 ),F2(tkn

2 ))

F i~ tkn
1 !5F i~ tkn

2 !1gin~C~ tkn
2 !,F1~ tkn

2 !,F2~ tkn
2 !!. (28)
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At the first Nm(t)-driven point tkm subsequent to an
Nn(t)-driven point,dNm51; hence, according to Eq.~17!, there
is a jump change in F i(t) of magnitude
gim(C(tkn

2 ),F1(tkn
2 ),F2(tkn

2 ))52F i(tkn
2 ),

F i~ tkm
1 !5F i~ tkm

2 !1gim~C~ tkm
2 !,F1~ tkm

2 !,F2~ tkm
2 !!50. (29)

Thus, the initial conditionsF i(tkn
1 ) or F i(tkm

1 ) for the subsequen
time interval starting attkn

1 or tkm
1 are determined.

6 Numerical Results
As the durations and time gaps are negative-exponential dis

uted the mean duration isE@Td#5 1/m and the mean time gap i
E@Tr #5 1/n. The mean interarrival time of the pulses equa
E@Ta#5E@Td#1E@Tr #5 1/m 1 1/n 5 (m1n)/mn.

Computations have been performed for pulses with parame

(m,n)5(0.1,0.1); long durations/long gaps,
(m,n)5(1,1); moderate durations/moderate gaps,
(m,n)5(10,10); short durations/short gaps,
(m,n)5(0.1,10); long durations/short gaps.

The respective mean interarrival times areE@Ta#
520;2;0.2;10.1@s#.

Sample functions of the displacement responseY(t) and of the
velocity responseẎ(t) for the stable behavior, obtained forb
50.5 and for the initial conditionsY(0)51 and Ẏ(0)50 are
shown in Figs. 2 and 3, respectively. It is seen that the system
performing essentially the natural vibrations.

Figure 4 shows an example phase plot of the stable resp
obtained forb50.5 and for the initial conditionsY(0)51 and
Ẏ(0)50. An example phase plot of the unstable response~for b
51.2) for the same initial conditions is shown in Fig. 5.

Simulated sample function ofZ(t) obtained for the initial con-
dition Z(0)50 is shown in Fig. 6.

The sample functions of the angular processesF1(t), F2(t),
andC(t) corresponding to the sample function ofZ(t) shown in
Fig. 6 and relevant to the stable response are shown in Fig
7–9, respectively. The behavior ofF1(t), F2(t) is in agreement
with that predicted from the governing stochastic equatio
~15–17!. Indeed the processC(t) reveals jumps of magnitude 2p
at the time instants separated by the intervals equal to the na
periods. This is in agreement with the fact that the system
performing essentially the natural vibrations~cf. Fig. 2!, hence

Fig. 2 Sample function of the stable displacement response
Y„t …. Moderate durations Õmoderate gaps: mÄ1.0 sÀ1, n
Ä1.0 sÀ1, zÄ0.05, bÄ0.5, tÄ0.5.
MARCH 2005, Vol. 72 Õ 217
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X1(t) changes the sign periodically. The spectrum of the sam
function ofC(t) ~Fig. 10! obtained with the aid of the fast Fourie
transform technique reveals the peak at the natural frequencvn

52p/1050.628 s21 and also some finite value atv50, which
corresponds to the nonzero time average of the sample funct

Finally, Fig. 11 shows the lnA(t) for the stable respons
behavior.

In Figures 12–15, the stability regions are shown against
nondimensional parametert5 (m1n)v/mnp, which is the ratio
of the mean interarrival timeE@Ta# of the pulses to half of the
natural periodTn52p/v of the system. In other words,t is a
relative measure of the density of the pulse train or of its m
arrival rate. Note that the mean arrival rate~renewal density!
ho(t) of the underlying renewal process is

ho~ t !5
mn

n1m
~12exp~2~n1m!t !!; (30)

Fig. 3 Sample function of the stable velocity response Ẏ„t ….
Moderate durations Õmoderate gaps: mÄ1.0 sÀ1, nÄ1.0 sÀ1, z
Ä0.05, bÄ0.5, tÄ0.5.

Fig. 4 Phase plot of the stable response for zÄ0.05, mÄ1.0,
nÄ1.0, bÄ0.5, tÄ0.5
218 Õ Vol. 72, MARCH 2005
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hence,hos5nm/(m1n) is the stationary~as t→`) mean arrival
rate andhos51/E@Ta#.

The curves in Figures 12–15 show the stability regions bor
lines. The stability region is below the curve. The dotted line a
dashed line indicate lines of zero real parts of the eigenvalue w
the largest real part, for the mean and mean-square stability
spectively. The thick solid line indicates the zero Lyapunov exp
nent as obtained by direct simulation of the equation for lnA(t), as
given by Eq.~15!. The thin solid line corresponds to the ze
Lyapunov exponent as evaluated by ensemble averaging, in te
of integrals ~22!. The results for Lyapunov exponents obtain
from both methods are qualitatively the same. It is seen that
lines of zero Lyapunov exponents lie above the lines obtai
from the mean-square stability. This is certainly supported by
results shown in Fig. 12, where a very fine mesh was used for
values oft close to zero. Such a refinement leads, however, to
excessively long computation time and has not been done in o
cases.

If m5n, i.e., the mean durations of the pulses and mean t
gaps are the same, the curves showing stability regions have
similar shape~Figs. 12–14!. As the natural frequencyv of the
system decreases, so does the parametert and the stability region
increases. The curves for the moment stability have ident
shapes. However the stability regions are not the same, bec

Fig. 5 Phase plot of the unstable response for zÄ0.05, m
Ä1.0, nÄ1.0, bÄ1.2, tÄ0.5

Fig. 6 Simulated sample function of Z„t … for mÄ1.0, nÄ1.0
Transactions of the ASME
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the results are shown against the relative parametert. Whenm and
n are large, the same valuet as for smallm andn corresponds to
a higher natural frequency. For example for a pulse train w
(m,n)5(0.1,0.1) andE@Ta#520 ~Fig. 12! the natural frequency
corresponding to a valuet51 equalsp/20, while for (m,n)
5(1,1) with E@Ta#52 ~Fig. 13! it is p/2. It is seen that a large
stability region corresponds tov5p/20 in Fig. 13 than in Fig. 12.
This means that as the mean interarrival time of the pulses
creases the stability region for the same oscillator increases
other words, the stability region is larger for the pulse train w
short durations and short gaps than for long durations and
gaps.

When the pulses have long mean durations and short mean
~Fig. 15!, it corresponds to the load which is almost constant a
quasistatic. The lines for mean, mean-square, and Lyapunov
bility by the direct simulations coincide. The stability region
essentially the same as for the classical buckling problem,
b51 is the critical value.

Interestingly, nothing like a parametric ‘‘resonance’’ effect
observed when the mean interarrival time of the pulse train eq

Fig. 7 Sample function of F1„t … for zÄ0.05, mÄ1.0, nÄ1.0, b
Ä0.5, tÄ0.5

Fig. 8 Sample function of F2„t … for zÄ0.05, mÄ1.0, nÄ1.0,
bÄ0.5, tÄ0.5
Journal of Applied Mechanics
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half of the natural period; i.e.,t51. This is so because the exc
tation itself as well as its mean valueE@Z(t)# and its mean square
E@Z2(t)# are not periodic functions. The mean value and t
mean square are equal and are both given by the expression~24!.
Likewise, if Z(t) is an external excitation, nothing like a ‘‘reso
nance’’ effect is observed for the mean response when the m
interarrival timeE@Ta#5 (m1n)/mn is equal to a natural period
Tn52p/v; i.e., when v52p nm/(m1n). The mean value
E@Y(t)# of the response of the linear oscillator to an extern
excitationZ(t) is given by@9#

mY~ t !5
n

~n1m!v2 S 12
1

~n1m1zv!21vd
2 S v2 exp~2~n1m!t !

2
n1m

vd
~vd~2zv2~n1m!!cosvdt

1~2z2v22v22zv~n1m!!sinvdt !exp~2zvt ! D D ,

(31)

wherevd5vA12z2 is the damped natural frequency of the o
cillator. As it is seen there is no ‘‘resonance,’’ or singularity, effe

Fig. 9 Sample function of C„t … for zÄ0.05, mÄ1.0, nÄ1.0, b
Ä0.5, tÄ0.5

Fig. 10 Spectrum of the sample function of C„t … for zÄ0.05,
mÄ1.0, nÄ1.0, bÄ0.5, tÄ0.5
MARCH 2005, Vol. 72 Õ 219
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Regarding the computational effort, it should be commen
that the direct simulation converges much faster than the ti
averaging method, with a factor of 100. Further, the direct sim
lation is simpler to program. The main problem of the tim
averaging method is to determine the probability density functi
p(c,f1 ,f2) andp(f1 ,f2), which is very time consuming.

In all examined cases, the asymptotic sample stability condi
reveals larger regions of stability than the asymptotic mean-sq
condition. This observation is in agreement with the general
that the asymptotic moment stability is more conservative t
Lyapunov asymptotic stability with probability 1~asymptotic
sample stability! @15,16#. In particular, the asymptotic mea
square stability implies, for the linear systems, stability with pro
ability one @3#. Obviously, as the ordinary moments are cons
ered herein, the mean-square stability also implies the m
stability.

Fig. 11 Sample function of ln A„t… for the stable response be-
havior, for zÄ0.05, mÄ1.0, nÄ1.0, bÄ0.5, tÄ0.5

Fig. 12 Long durations Õlong gaps: mÄ0.1 sÀ1, nÄ0.1 sÀ1, z
Ä0.05. Dotted line: mean stability, dashed line: mean-square
stability, thick solid line: Lyapunov exponents by direct simu-
lations, thin solid line: Lyapunov exponents by ensemble
averaging.
220 Õ Vol. 72, MARCH 2005
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7 Concluding Remarks
Asymptotic stability of first- and second-order moments as w

as Lyapunov asymptotic~sample! stability with probability 1 are
investigated for the dynamic system under a renewal driven ju
process parametric excitation. The original state vector of the
tem is a non-Markov process; however, the excitation proces
shown to be governed by the stochastic equation driven by
independent Poisson processes, with different parameters, w
allows one to convert the original non-Markov problem into
Markov one. The original state vector has been augmented by
additional equations. It has been shown that the set of equat
for the mean values is closed by appending the equations for
extra second-order moments, and that the equations for sec

Fig. 13 Moderate durations Õmoderate gaps: mÄ1.0 sÀ1, n
Ä1.0 sÀ1, zÄ0.05. Dotted line: mean stability, dashed line:
mean-square stability, thick solid line: Lyapunov exponents by
direct simulations, thin solid line: Lyapunov exponents by en-
semble averaging.

Fig. 14 Short durations Õshort gaps: mÄ10 sÀ1, nÄ10 sÀ1, z
Ä0.05. Dotted line: mean stability, dashed line: mean-square
stability, thick solid line: Lyapunov exponents by direct simu-
lations, thin solid line: Lyapunov exponents by ensemble
averaging.
Transactions of the ASME
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order moments form a closed set if the equations for three e
third-order moments are added. In order to investigate
asymptotic sample stability the transformation of the four st
variables to hyperspherical coordinates is made. The Lyapu
exponents have been evaluated with the aid of two methods.
first one is direct simulation of the stochastic equation govern
the natural logarithm of the hyperspherical amplitude process
the second approach, based on ergodicity assumption, time
aging of the pertinent expressions is replaced by ensemble a
aging and the modification of the approach used in@5# and@6# has
been developed. The numerical results show good qualita
agreement between two methods of evaluating the Lyapunov
ponents. Direct simulation is however more robust and less t
consuming, hence it is more suitable for the problem. T
asymptotic mean-square stability condition is, of course, m
conservative than Lyapunov asymptotic~sample! stability with
probability 1. However the asymptotic mean-square stability c
dition is shown not to be overly conservative and therefore p
vides a good estimate of the asymptotic stochastic stability.

Fig. 15 Long durations Õshort gaps: mÄ0.1 sÀ1, nÄ10 sÀ1, z
Ä0.05. Dotted line: mean stability, dashed line: mean-square
stability, thick solid line: Lyapunov exponents by direct simu-
lations, thin solid line: Lyapunov exponents by ensemble
averaging.
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Investigation of the Formation
and Applications of Ice Powder
Water ice powder constitutes a potentially important manufacturing tool. Availability
cleanliness of this powder constitute its major advantage. It was shown that th
particles could be used as an abrasive in the course of waterjet machining. Althoug
erosion potential of ice particles is inferior to that of the conventional abrasives,
environmental soundness of ice enables us to expend the use of the ice abrasive
food industry, medicine, precision machining, etc. The principal issue in the use of th
abrasives is particles formation. Analysis of various technologies showed that an effe
avenue in particle production is integration of the water freezing and ice decompos
As the results, the desired flow rate of ice particles at the desired temperature and
distribution can be generated. The objective of the present paper is the experim
investigation of the production of ice particles. An experimental setup was constru
and used for particles fabrication at controlled conditions. The acquired information
applied for the analysis of the phenomena leading to the particles formation. As a r
a hypothetical mechanism of the ice decomposition was suggested and validated
experiments involving the decontamination of the electronic devices, semiconductor
ric, leather, food products, polished metal, soft plastics, rusted auto parts, etc.,
carried out in order to demonstrate the potential application of the ice blasting.
@DOI: 10.1115/1.1795223#
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1 Introduction
Unique properties of the water ice determine its potential ma

facturing applications. First, water ice is a readily available, in
pensive material, which, at least in principle, can be used a
green manufacturing tool. Only water, electricity, and refriger
~if a cooling apparatus is not available! are needed for the fabri
cation of this tool, which can be produced ‘‘just in time.’’ Secon
the use of ice tools will practically prevent pollution and elimina
workpiece contamination. Because of this, one of the most pr
ising applications of the ice particle is cleaning technology.

Current cleaning processes are based on the use of chemic
sand abrasive-water blasting and, thus, bring about heavy env
mental pollution. The ice-air blasting constitutes a unique clean
technology that generates practically no off-products, thus ha
negative environmental impact. The use of ice blasting for s
diverse operations as graffiti removal, food cleaning, car wash
etc., will result in the reduction of pollution and, thus, improv
ment of the quality of life in urban areas. Ice blasting can eff
tively eliminate the consequences of chemical and biological
tacks. The fine ice powder will constitute an effective medi
tool.

The applications above are feasible if and only if the ice p
ticle will be readily available for users. The objective of this stu
was development of a practical technology for particles prod
tion. Several technologies, including decomposition of solid i
freezing of water droplets, and a combination of water freez
and ice decomposition, were tested. The ice decomposition
proven to be the most effective technology. The logistic of
process is straightforward and simple. The process is inexpen
and allows accurate control of particle size and temperature
therefore, is able to address the needs of the industry.

The formation and decomposition of water ice was a subjec

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the Applied Mechanics Division, July 2, 200
final revision, June 15, 2004. Associate Editor: D. A. Siginer. Discussion on the p
should be addressed to the Editor, Prof. Robert M. McMeeking, Journal of App
Mechanics, Department of Mechanical and Environmental Engineering, Unive
of California—Santa Barbara, Santa Barbara, CA 93106-5070, and will be acce
until four months after final publication of the paper itself in the ASME JOURNAL OF
APPLIED MECHANICS.
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numerous studies, and a number of theoretical techniques w
suggested for process description. The phenomenon of ice fo
tion under normal conditions was, for example, fairly well inve
tigated by Sanderson@1# and Hobbs@2#. However, no information
is available about ice behavior in the course of integration of
solidification and decomposition. The acquisition of such inform
tion is the objective of this research. The work involved the e
perimental examination of the particles formation. The obtain
information was used for numerical and phenomenological p
cess description. In order to demonstrate potential ice applica
the produced-powder, highly sensitive surfaces were treated.

2 Experimental Setup
The setup for investigation of the ice powder formation in t

course of freezing is shown in Fig. 1. The system consists of
following functionally separated blocks:

• ice-making block, which includes the evaporator, water a
cooling media precision control valves, auger, auger driv
and sealing and cooling apparatus

• ice-unloading mechanism, which includes the driver f
nozzle-block traverse motion and drivers for nozzle-blo
springs feeder

• nozzle block, which includes parallel-situated nozzles a
nozzle-supporting device

The system Fig. 1 constitutes a modified commercial icema
of the Hoshizaki Company of America@3#. Thus the dimensions
of the auger, heat exchanger, water supply port, etc., were d
mined by the design of the Hoshizaki Icemaker 1. The coolan
and water control 3 valves determined the rate of the coo
media and water supply to the system. New auger driver 4
also incorporated into the system in order to increased the to
and prevent ice jamming. The rotation momentum of the auge
is provided via a gearbox 6 with gear-ratio 1:100. Cooling me
was flowing through the evaporator internal channels 7.

The ice-unloading mechanism 8 coercively delivered ice p
ticles to the abrasive port of the nozzles preventing conduits 9
nozzle ports 10 from clogging. At the outlet of the heat exchang
the powder was entrained by the unloading mechanism that
rected it to the nozzle block 11. The nozzle block consisted of t
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air guns connected in parallel and a special nozzle-supporting
vice. The high-pressure air supply rate was also monitored by
air flow meter 12. The ice air jet was formed and directed to
substrate surface.

The system was also equipped with sensors 13 for monito
the water flow rate, water temperature at the inlet, the tempera
of the wall separating the water and cooling media, and the
temperature at the exit of heat exchanger. The system
equipped with a device for rapid extraction of the auger in orde
examine ice distribution during the freezing, fragmentation, a
solid-state cooling~Fig. 2!. A photograph of the system in opera
tion is presented in Fig. 3.

3 Experimental Investigation of Particles Formation
Several experiments were conducted in order to determine

relation between process conditions and particles properties.
water flow rate ranges from 0 to 200 ml/min. The cooling med

Fig. 1 Schematic of experimental setup: 1—icemaker,
2—cooling media control valve, 3—water control valve,
4—auger driver, 5—auger, 6—auger driver gearbox,
7—evaporator internal channels, 8—ice unloading mechanism,
9—conduits, 10—nozzle ports, 11—nozzle block, 12—air flow
control valve, 13—sensors, DAQ—data acquisition card

Fig. 2 Device for auger rapid extraction
Journal of Applied Mechanics
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flow rates differed for liquid nitrogen and Galden HT-55 coolan
;9.8 l/min for liquid nitrogen and 9.88 l/min for the Galde
HT-55 cooling liquid. The temperatures of the liquid nitroge
and Galden HT-55 cooling liquid were2196°C and272°C,
respectively.

The granulometric composition of the ice abrasive as a funct
of water flow rate was determined using the series of digital i
ages and the Image Tool statistical package developed by Uni
sity of South Carolina. Water, cooling media types, and flow ra
served as the main process control parameters. The auger
extracted from the evaporator after the fixed-cooling time perio
and ice-particles formation phases were monitored and do
mented~Fig. 4!. The ice structure was studied as well as crack a
granulometric distribution along its way to the exit of the evap
rator. The ice behavior under dynamically applied compress
and shear stresses and fast cooling was investigated. The v
observation of process of ice-powder formation was conducte

The actual time of ice-plug solidification for the distinct wate
flow rates was established through the auger driver current-t
diagram presented on Fig. 5. The ice-plug solidification and th
mal expansion time is characterized by the duration of half
ascending wave on the current-time diagram. The fluctuating c
acter of ice-powder flow at the evaporator outlet supported t
conclusion. Distinct frequencies of these oscillations for differe
water flow rates were also observed. The frequency of ice-pow
oscillation was measured and compared with the drivers’ curr
oscillations. They did directly correspond to the ice-powder flo
fluctuations. Then the conclusion could be drawn that t
descending half of the current wave corresponded to the p
fragmentation.

Experimental results have shown that the granulometric co
position of ice abrasive is directly related to the water flow ra
~Fig. 6! as well as the ice temperature at outlet point of the eva
rator ~Fig. 7!. The set of experiments was conducted to moni
the above dependence and incorporate it into the technology o
abrasive production.

4 Phenomenology of Particles Formation
The nucleation of cracks under compressive stress occurs

erally due to dislocation pileup at the grain boundaries and re
of stress concentration by parting along the grain boundaries.
phenomenon of crack nucleation has been well investigated
low to moderate loading conditions, and this study indicates t
crack nucleation is well described by application of the delay
elastic strain criterion@1#.

When ice is subjected to a stress it initially deforms in thr
distinct ways: it undergoes an immediate elastic strain«e, a tran-

Fig. 3 System in operation
MARCH 2005, Vol. 72 Õ 223
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Fig. 4 Photograph of the ice-plug initial „a… and final „b… formation phases
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sient time-dependent delayed elastic strain«d , and a time-
dependent nonlinear viscous creep strain«v . The ‘‘delayed elas-
tic’’ strain «d also is referred as primary creep and is large
recoverable on unloading; the ‘‘viscous’’ strain«v is referred to as
the secondary creep and is permanent.

To describe this stress-strain behavior for granular ice, w
verified constitutive laws exist. Once the stage of apparen
stable secondary creep has been reached and all transient

Fig. 5 Auger driver current versus time for distinct water flow
rates

Fig. 6 Average diameter of ice granules versus water flow rate
at the evaporator outlet
72, MARCH 2005
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ll-
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effects have become negligible, the deformation process beco
more complex again, and a stage of tertiary creep may be ente

For high-stresses nucleation conditions, there introduced so
alternative nucleation criterion@2# that assumes that crack nucle
ation under compressive stress occurs simply when the lat
tensile strain induced by Poisson expansion reaches a leve
ready defined as critical for tensile crack nucleation.

Based on the experimental results described above the h
thetical mechanism of the ice plug fragmentation was sugges
~Fig. 8!. According to this hypothesis, the ice nucleation initiat
as soon as the liquid water meets the evaporator wall having t
perature of2196°C. The initial stage of ice-plug formation i
presented in Fig. 4. According to Sanderson@1#, the rapid condi-
tions of ice-plug nucleation and propagation suggested that iso
pic ice polycrystalline structure has formed. Due to sufficient te
perature gradient during solidification, a multilayer ice-plu
pattern was formed throughout the ice plug volume and could
visually observed in Fig. 4. The supercooling and rate of h
removal at various sites of the plug determine the distribution
ice properties. At the next stage of freezing, ice undergoes
following transformations: the frozen boundary-layer thermal co
ductivity is sufficiently higher than that for water and the ice-plu
formation process accelerated along with the generation of in
sive thermal expansion stress. Ice-plug expansion imposed
pressure and shear stresses on the immovable boundaries.
ever, the ice plug can freely expand along the auger helical w
This phenomenon was clearly indicated by the current-time d
gram and corresponds to the ascending part of the current cy

Fig. 7 Average diameter of ice granules versus ice tempera-
ture at the evaporator outlet
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Fig. 8 Schematic of the hypothetical mechanism of ice-plug fragmentation
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According to Sanderson@1#, experiments conducted for modera
thermal stress conditions the ice-plug polycrystalline structure
dergo the recrystallization process with tensile zone format
along the grain boundaries. It would be logical to make an
sumption that under high thermal stress conditions, polycrystal
ice structure behaved similarly. Now the plug is populated with
wide variety of cracks having the length of the order of the gra
size, lying at various angles clustered around the loading axis@1#.
The ice-plug decomposition starts under combined thermal exp
sion conditions and dynamically applied stresses along with
transition of the ice plug to a brittle mode due to the ice plug co
supercooling process. The tunnel and wing crack propaga
along the grain boundaries were clearly observed during the
tractions of ice plug.

The shearing stress of the necessary magnitude provided
auger rotation finalizes the decomposition of the plug~Fig. 9!. The
stage finalizes the procedure of ice-powder formation. The
powder continued moving along the helical way toward t

Fig. 9 Forces involved in ice-plug fragmentation: F 11 ,
F22—principal compressive forces, Fa—auger generated forces
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evaporator outlet. The supercooling process continued with
any substantial changes in the granulometric composition.
development of this technology will enable producing low-co
fine powder. As the result it could be adopted by the semicond
tor, electronics, and biomedical industries.

5 Cleaning of Sensitive Surfaces: Case Studies
A number of experiments were carried out in order to dem

strate the potential applications of the ice particles. In the cou
of these experiments, ice particles were entrained in an air str
and form ice-airjet~IAJ!. This jet was used for cleaning and de
coating of various surfaces. The parameters of ice-airjet wer
the following range: the average diameter of ice particles p
duced by IAJ system varies from 0.25 mm for biomedical app
cations to;3 mm for the majority of electronics and industria
cleaning cases; water and ice flow rates ranged from 0 to
ml/min; the air pressure was 580 kPa~85 psi! with flow rate of
0.566 m3/min; ice temperature variation before entrainment to
nozzle was from250°C for biomedical cleaning to280°C for the
industrial cleaning cases; the standoff distance varied from 5
for most electronic and photonic cases to 25 mm for biomed
applications.

Different electronic devises~computers, calculators, electron
games, and watches! were disassembled, and electronic boar
were contaminated by grease and metal powder. Then the bo
were cleaned and reassembled. The computers, calculators
watches worked normally. Other experiments involved degre
ing, depainting and deicing of liquid crystals, polished meta
optical glass, fabric; removal emulsion from a film, etc. The b
medical applications of the IAJ were also investigated. In
course of the experiments, chicken and pork skin was treated
IAJ. The feasibility of removal of the epidermis layer withou
damaging the underneath-laying layers of the skin was dem
strated. Extremely fine ice abrasive of average diameter of
microns was used for these purposes.

The feasibility of the damage-free and pollution-free deco
tamination of highly sensitive surfaces was demonstrated. A
neric environmentally friendly surface-processing technology
emerging as the result of the above experiments. Figure 10 re
sents photographs of basic types of deposit and substrates, w
were treated in the course of IAJ experiments.
MARCH 2005, Vol. 72 Õ 225



Fig. 10 Photographs of a… graffiti painting, b… graffiti painting removed with ice-airjet; c … heavily greased machined part, c…
grease removed from the part with ice-airjet
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6 Conclusion
The performed study demonstrated that ice constitutes a vi

abrasive material, while a 4N Auger type heat exchanger
competitive device for particles production. Of course, if inexpe
sive ice is readily available, for example in the Arctic, the crus
ing technology is the most advantageous. In a more general
when ice should be fabricated, the icemaker shown in Fig. 1
more competitive device for particles production. One of t
strong advantages of this device is its feasibility to control part
size by the variation of solidification conditions. Thus, it can
used to produce ‘‘just-in-time, just-needed’’ abrasives. The mo
226 Õ Vol. 72, MARCH 2005
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fied icemaker can be also used for production of particles fr
materials different from water ice.
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Three-Dimensional Vibration
Analysis of Rectangular Plates
With Mixed Boundary Conditions
Three-dimensional vibration solutions are presented for rectangular plates with m
boundary conditions, based on the small strain linear elasticity theory. The analys
focused on two kinds of rectangular plates, the boundaries of which are partially fi
while the others are free. One of those studied is a rectangular plate with partially fi
boundaries symmetrically arranged around four corners and the other one is a recta
lar plate with partially fixed boundaries around one corner only. A global analysis
proach is developed. The Ritz method is applied to derive the governing eigen
equation by minimizing the energy functional of the plate. The admissible functions f
displacement components are taken as a product of a characteristic boundary fun
and the triplicate Chebyshev polynomial series defined in the plate domain. The ch
teristic boundary functions are composed of a product of four components of which
corresponds to one edge of the plate. The R-function method is applied to constru
characteristic boundary function components for the edges with mixed boundary c
tions. The convergence and comparison studies demonstrate the accuracy and corre
of the present method. The influence of the length of the fixed boundaries and the
thickness on frequency parameters of square plates has been studied in detail.
valuable results are given in the form of tables and figures, which can serve a
benchmark for the further research.@DOI: 10.1115/1.1827250#

Keywords: Eigenfrequency, Elasticity Solution, Mixed Boundary Conditions, R-Func
Ritz Method, Thick Rectangular Plate, Three-Dimensional Vibration
s

s

s

y

c

t

k
h

t

o

od
and
nd

up-

of
ely.
to
xed

o-
nc-

in
ly.
ate
ions
ress
ions
fore
al
rors

y-
sis

cal
o-

or
ver,
r 3D
ry

n
ung
e

0

l
M

1 Introduction
Rectangular plates@1# have wide applications in variou

branches of engineering such as the floor slabs and pile cap
structural engineering, printed circuit boards and solar panel
electrical engineering, and so on. In some cases, the boun
supports of a plate may be discontinuous, and thus exert a sig
cant influence on the mechanical properties of the structure
number of publications on rectangular plates with mixed ed
conditions can be found in the literature. Various analytical a
numerical methods have been adopted in the vibration anal
Using the superposition method, Gorman@2–4# studied, respec-
tively, the vibration frequencies of thin and moderately thick re
angular plates with mixed edge supports such as point supp
and partially clamped supports. Keer and Stahl@5# developed the
dual series solutions to study the free vibration of rectangular
plates with mixed edge conditions, which are finally reduced
the homogeneous Fredholm integral equations of the second
Narita @6# gave the trigonometric series-type solutions for t
orthotropic rectangular thin plates with mixed boundary con
tions. Torvik @7# developed a variational approach to analyze
dynamics of rectangular thin plates with mixed or discontinuo
boundary conditions. Fan and Cheung@8# used the spline finite
strip method to analyze the vibration of rectangular thin pla
with complex edge conditions. Liew and his co-workers@9,10#
studied the free vibration of isotropic and anisotropic rectangu
thin plates with mixed supports by using the domain decomp

1To whom correspondence should be addressed.
Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF

MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the Applied Mechanics Division, July 23, 20
final revision, June 30, 2004. Associate Editor: N. Sri Namachchivaya. Discussio
the paper should be addressed to the Editor, Prof. Robert M. McMeeking, Journ
Applied Mechanics, Department of Mechanical and Environmental Engineer
University of California—Santa Barbara, Santa Barbara, CA 93106-5070, and wi
accepted until four months after final publication in the paper itself in the AS
JOURNAL OF APPLIED MECHANICS.
Copyright © 2Journal of Applied Mechanics
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tion technique combining with the weighted residual meth
along the interconnecting boundaries of subdomains. Su
Xiang @11# presented a nondiscrete approach for vibration a
buckling analysis of rectangular thin plates with mixed edge s
ports. Kim and Dickinson@12#, and Kitipornchai et al.@13# used
the Lagrangian multiplier method to study the free vibration
point-supported thin and moderately thick plates, respectiv
Wei et al.@14# used the discrete singular convolution algorithm
study the natural frequencies of rectangular thin plates with mi
boundary conditions. Liew et al.@15# analyzed Mindlin rectangu-
lar plates with internal point-supports by directly adding the ge
metric constraints of the point-supports to the admissible fu
tions. Moreover, the differential quadrature method@16,17# has
been applied to the vibration analysis of Kirchhoff and Mindl
rectangular plates with mixed boundary conditions, respective

Both the classical thin plate theory and moderately thick pl
theory are approximate theories by imposing some assumpt
on the deformation of a plate, especially on the strain and/or st
distribution along the thickness of the plate. These assumpt
reduce the dimensions of the plate problem from 3 to 2, there
greatly simplifying the formulation and solution in both analytic
and computational methods. However, they also introduce er
at the same time. The three-dimensional~3D! analysis on the basis
of small-strain linear elasticity theory does not rely on any h
potheses involving the kinematics of deformation. Such analy
not only provides realistic results but also brings out physi
insights, which cannot otherwise be predicted by the tw
dimensional~2D! analysis.

Searching the literature, not a solution of 3D vibration f
plates with mixed boundary conditions has been found. Howe
in the recent two decades, some attempts have been made fo
vibration analysis of rectangular plates with uniform bounda
conditions. Srinivas et al.@18# gave the exact analytical solutio
of rectangular plates with four simply-supported edges. Che
and Chakrabarti@19# used the finite layer method to study th
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vibration of thick rectangular plates with general boundary con
tions. Hutchinson and Zillimer@20# and Fromme and Leissa@21#
used different series solutions to analyze the 3D free vibration
a completely free parallelepiped. Malik and Bert@22# and Liew
and Teo@23# used the differential quadrature method to analy
the 3D vibration of rectangular thick plates. It should be me
tioned that in the 3D vibration analysis of rectangular plates,
Ritz method has demonstrated its advantages in both accurac
computational cost. Leissa and Zhang@24# and Lim @25# used the
simple algebraic polynomials and Liew et al.@26–28# used the
orthogonal polynomials as admissible functions to study the
vibration characteristics of rectangular plates. Recently, the
thors @29# used the Chebyshev polynomials@30# as the main ad-
missible functions to analyze the 3D vibration of rectangu
plates with various uniform boundary conditions. High accura
stable numerical computation, and rapid convergence have
observed.

In this paper, a global solution approach based on the R
method has been presented for the 3D vibration analysis of r
angular plates with mixed boundary conditions. The Chebys
polynomials multiplied by a characteristic boundary function a
taken as the admissible functions. The characteristic boun
function satisfies the essential geometric boundary condition
the plates, but it takes no account of the stress boundary co
tions. Since the boundary characteristic functions of the ed
with mixed boundary conditions~i.e., the mixed edges! cannot be
described by simple algebraic polynomials, the method given
Ref. @29# to construct boundary characteristic functions for u
form edges is not applicable to the complicated boundary co
tions in the present study. Instead, the R-function method is
plied to construct the characteristic boundary functi
components on the edges with mixed boundary conditions. S
valuable results have been obtained.

2 Modeling of the Plate
Consider a rectangular plate with partially fixed edges sy

metrically disposed around four corners and the other edges
as shown in Fig. 1~a!. It is assumed that the parts that are fix
have displacements in all three directions completely restrain
The plate has a length 2a, a width 2b and a uniform thicknessh.
The lengths of the free boundaries at the edgesy56b are both
equal to 2a0 . Similarly, the widths of the free boundaries at th
edgesx56a are both equal to 2b0 . The plate geometry and
dimensions are defined with respect to a Cartesian coordinate
tem (x,y,z), the origin of which is at the center of the plate an
the axes are parallel to the edges of the plate. The correspon
displacement component at a generic point areu, v, andw in the
x, y, and z directions, respectively. In the particular case ofa0
5a and b05b, the plate is only fixed at the four corners. It
assumed that the plate is made up of isotropic material. Con
ering the symmetry of boundary conditions, the vibration char
teristics of the plate can be distinctly divided into eight categor
Using the symbol ‘‘A’’ to define the antisymmetric mode and t
symbol ‘‘S’’ to define the symmetric mode, the vibration modes
a plate can be decomposed into categories AAA, AAS, ASA, A
SAA, SAS, SSA, and SSS, where the three capital letters co
spond to the vibration mode in thex, y, andz directions, respec-
tively. In such a case, only a quarter of the plate should be ta
for the analysis, as shown in Fig. 1~b! where the shaded area
denote fixed edges with displacements in all three directions c
pletely restrained. The geometric boundary conditions at the fa
x50 and y50 for different categories of vibration modes a
given in Table 1. Moreover, as a consequence, Fig. 1~b! also de-
scribes a plate partially fixed around one corner only. In suc
case, the length and width of the plate area andb, respectively,
and the geometric boundary conditions at the facesx50 andy
50 are given in Table 2.
228 Õ Vol. 72, MARCH 2005
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For simplicity and convenience in mathematical formulatio
the following nondimensional parameters for the plate shown
Fig. 1~b! are introduced

j52x/a21; h52y/b21; z52z/h (1)

where 0<x<a and 0<y<b. Using the earlier coordinate trans
formations, the rectangular hexahedral domain of the plate in
1~b! can be mapped into a cubic domain as shown in Fig. 1~c!
wherej052a0 /a21 andh052b0 /b21.

3 Basic Formulas
Based on the 3D small strain linear elasticity theory and us

the dimensionless coordinates defined in Eq.~1!, the maximum
energy functionalP of a rectangular plate under free vibration ca
be written in the volume integral form as

P5Lmax2Tmax (2)

where

Lmax5
Eh

4l~11n! E21

1 E
21

1 E
21

1 S n

122n
L̄11L̄21

1

2
L̄3Ddzdhdj;

(3)

Tmax5
r

16
abhv2E

21

1 E
21

1 E
21

1

~U21V21W2!dzdhdj

in which E is the Young’s modulus,n is the Poisson’s ratio, andr
is the mass density per unit volume,v denotes the natural fre
quency of the plate and

L̄15~ «̄jj1 «̄hh1 «̄zz!
2; L̄25 «̄jj

2 1 «̄hh
2 1 «̄zz

2 ;

L̄35 «̄jh
2 1 «̄jz

2 1 «̄hz
2 ,

«̄jj5
]U

]j
; «̄hh5l

]V

]h
; «̄zz5

l

g

]W

]z
,

(4)

«̄jh5l
]U

]h
1

]V

]j
; «̄jz5

l

g

]U

]z
1

]W

]j
; «̄hz5

l

g

]V

]z
1l

]W

]h
,

l5a/b; g5h/b

In the present analysis, each of the displacement amplit
functions U(j,h,z), V(j,h,z) and W(j,h,z) is taken, respec-
tively, in the form of triplicate series of Chebyshev polynomia
multiplied by a characteristic boundary function which ensu
that the displacement component satisfies the essential geom
boundary conditions of the plate, i.e.

U~j,h,z!5Fu~j,h!(
i 51

`

(
j 51

`

(
k51

`

Ai jk Pi~j!Pj~h!Pk~z!;

V~j,h,z!5Fv~j,h!(
l 51

`

(
m51

`

(
n51

`

BlmnPl~j!Pm~h!Pn~z!;

(5)

W~j,h,z!5Fw~j,h!(
p51

`

(
q51

`

(
r 51

`

CpqrPp~j!Pq~h!Pr~z!

whereAi jk , Blmn , andCpqr are the unknown coefficients.Ps(x)
(s51,2,3. . . ; x5j, h, z! is the one-dimensionalsth Chebyshev
polynomial which can be written in terms of cosine functions
follows

Ps~x!5cos@~s21!arccos~x!#; ~s51,2,3, . . . ! (6)

Note thatFu(j,h), Fv(j,h), andFw(j,h) are the characteristic
boundary functions, respectively, corresponding to the displa
mentsu, v, andw. They should be continuous and differentiab
However, they cannot take zero value at any point in the dom
or on the boundaries except for the boundaries with given z
constraints.
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Fig. 1 A rectangular plate with mixed boundary conditions: „a… planform of the plate, „b… views of the
quarter plate, „c… views of cubic domain after mapping
s

.

rix
It should be mentioned that comparing to other polynomial
ries, the Chebyshev polynomial series@30# shows a lot of excel-
lent properties in the approximation of functions, such as the ra
convergence and the numerical robustness. Substituting Eq~6!
into Eqs.~2!–~4! and minimizing the functionalP with respect to
the coefficients of the admissible functions, i.e.
f Applied Mechanics
e-

pid

]P

]Ai jk
50,

]P

]Blmn
50,

]P

]Cpqr
50

~ i , j ,k,l ,m,n,p,q,r 51,2,3, . . . ! (7)

leads to the following governing eigenvalue equation in mat
form
Table 1 The geometric boundary conditions at the faces xÄ0 and yÄ0 for plates partially
fixed around four corners

Boundary

Symmetric modes Antisymmetric modes

u v w u v w

x50 Zero Free Free Free Zero Zero
y50 Free Zero Free Zero Free Zero
MARCH 2005, Vol. 72 Õ 229
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Table 2 The geometric boundary conditions at the faces xÄ0 and yÄ0 for plates partially
fixed around one corner only

Boundary
condition

x50 y50

u v w u v w

Fixed Zero Zero Zero Zero Zero Zero
Free Free Free Free Free Free Free
Hard S-S* Free Zero Zero Zero Free Zero
Soft S-S Free Free Zero Free Free Zero
Sliding Zero Free Free Free Zero Free

*Note: S-S means simply-supported boundary.
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S F @Kuu# @Kuv# @Kuw#

@Kuv#T @Kvv# @Kvw#

@Kuw#T @Kvw#T @Kww#
G

2D2F @Muu# 0 0

0 @M vv# 0

0 0 @Mww#
G D H $A%

$B%
$C%

J 5H $0%
$0%
$0%

J
(8)

in which D5vaAr/E, and@Ki j # and@Mii # ( i , j 5u,v,w) are the
stiffness and diagonal mass submatrices, respectively. The ve
$A%, $B%, and $C% contain the unknown coefficientsAi jk , Blmn ,
andCpqr . Solving Eq.~8! yields the frequency parametersD and
the mode shape corresponding to each eigenvalue.

The vibration modes of a uniform plate can invariably be
vided into two categories: flexural modes~antisymmetric ones in
the thickness direction! and extensional modes~symmetric ones in
the thickness direction!. In Eq. ~5!, by taking k51,3,5, . . . , n
51,3,5, . . . , andr 52,4,6, . . . for the symmetric modes in thez
direction, and taking k52,4,6, . . . , n52,4,6, . . . , and r
51,3,5, . . . for theantisymmetric modes in thez direction, these
two categories of modes in the thickness direction can be s
rately determined while maintaining the same level of accura

4 Characteristic Boundary Functions
One may observe that Eq.~5! is the key to the construction o

the characteristic boundary functions in the Ritz method, wh
are determined by the geometric boundary conditions of the p
For fixed edges, the geometric boundary conditions are

U50; V50; W50 (9)

and for free edges, the stress boundary conditions are
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sn50; sjz50; shz50 (10)

wheren denotes the normal direction of the edges.
The authors@29# recently used simple algebraic polynomials

characteristic boundary functions to study the 3D vibration
rectangular plates with uniform boundary conditions and obtai
excellent results. However, these simple polynomials can
model mixed boundary conditions. In the present study,
R-functions@31,32# are used to construct the characteristic boun
ary functions of the mixed edges. Note that the upper and lo
faces of the plates are always free, and therefore there ar
geometric restraints for these two faces. For the plate as show
Fig. 1~b!, each of the characteristic boundary functions in Eq.~5!
can be written as a product of four characteristic boundary fu
tion components as follows

Fu~j,h!5Fu1~j!Fu2~h!Fu3~j,h!Fu4~j,h!,

Fv~j,h!5Fv1~j!Fv2~h!Fv3~j,h!Fv4~j,h!, (11)

Fw~j,h!5Fw1~j!Fw2~h!Fw3~j,h!Fw4~j,h!

whereFu1(j), Fv1(j), andFw1(j) are the characteristic bound
ary function components atj521, respectively, corresponding t
displacement amplitude functionsU(j,h,z), V(j,h,z), and
W(j,h,z). The characteristic boundary function componen
Fu2(h), Fv2(h), and Fw2(h) are those ath521, respectively,
corresponding to displacement amplitude functionsU(j,h,z),
V(j,h,z), and W(j,h,z). Similarly, Fu3(j,h), Fv3(j,h), and
Fw3(j,h) are those atj51 while Fu4(j,h), Fv4(j,h), and
Fw4(j,h) are those ath51. The characteristic boundary functio
components@29# at the boundariesj521 andh521 can be eas-
ily obtained because of the consistency of the boundary condit
at these two edges, which are given in Tables 3 and 4, res
tively, for the two kinds of rectangular plates considered he
However, the earlier approach for uniform boundary conditio
Table 3 The characteristic boundary function components of plates partially fixed around four
corners at the boundaries jÄÀ1 and hÄÀ1

Category
of mode

Boundaryj521 Boundaryh521

Fu1(j) Fv1(j) Fw1(j) Fu2(h) Fv2(h) Fw2(h)

A 1 11j 1 11h 1 1
S 11j 1 1 1 11h 1

Table 4 The characteristic boundary function components of plates partially fixed around one
corner at the boundaries jÄÀ1 and hÄÀ1

Boundary
condition

Boundaryj521 Boundaryh521

Fu1(j) Fv1(j) Fw1(j) Fu2(h) Fv2(h) Fw2(h)

Fixed 11j 11j 11j 11h 11h 11h
Free 1 1 1 1 1 1
Hard S-S 1 11j 11j 11h 1 11h
Soft S-S 1 1 11j 1 1 11h
Sliding 11j 1 1 1 11h 1
Transactions of the ASME
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Table 5 Convergence of the first six dimensionless frequency parameters of square plates
partially fixed around one corner, j0Ä0 „a0ÄaÕ2… and h0Ä0 „b 0Äb Õ2…

h/b I3J3K V1 V2 V3 V4 V5 V6

Antisymmetric mode in the thickness direction
0.1 83832 30.70 52.18 60.67 66.48 79.32 93.75

83833 30.70 52.16 60.65 66.46 79.28 93.71
1031033 30.56 51.82 60.35 65.97 78.68 93.41
1231233 30.48 51.58 60.17 65.68 78.33 93.24
1431433 30.44 51.44 60.05 65.52 78.13 93.16
1631633 30.41 51.34 59.97 65.41 77.99 93.10
1831833 30.38 51.27 59.91 65.33 77.90 93.07

0.25 63633 22.51 33.45 38.46 42.94 49.65 57.57
63634 22.51 33.45 38.46 42.94 49.65 57.57
83834 22.40 33.12 38.11 42.66 49.21 57.26

1031034 22.35 32.98 37.96 42.55 49.03 57.17
1231234 22.32 32.89 37.86 42.48 48.93 57.12
1431434 22.29 32.82 37.80 42.45 48.88 57.10
1631634 22.28 32.77 37.75 42.42 48.84 57.08

Symmetric mode in the thickness direction
0.1 83832 95.28 114.4 136.8 143.4 176.4 179.0

83833 95.28 114.4 136.8 143.4 176.4 179.0
1031033 94.67 113.9 136.3 143.2 175.6 178.4
1231233 94.29 113.7 136.0 143.0 175.2 178.1
1431433 94.07 113.5 135.8 143.0 174.8 177.8
1631633 93.89 113.3 135.7 142.9 174.6 177.7
1831833 93.76 113.2 135.6 142.9 174.4 177.6

0.25 63633 38.69 46.30 55.16 57.74 71.16 72.02
63634 38.69 46.30 55.16 57.74 71.16 72.02
83834 38.21 45.90 54.76 57.38 70.57 71.55

1031034 37.96 45.71 54.57 57.29 70.28 71.31
1231234 37.82 45.60 54.46 57.23 70.08 71.18
1431434 37.73 45.52 54.39 57.21 69.95 71.10
1631634 37.66 45.47 54.33 57.19 69.86 71.04
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does not apply to the characteristic boundary function compon
at the boundariesj51 andh51 because of the discontinuity o
boundary conditions. In the present study, the basic concept o
R-functions@31# is used to construct the characteristic bound
function components at the boundariesz51 andh51. The math-
ematical definition and demonstration of the R-functions will n
be discussed in detail. Interested readers may consult the rele
monograph@32#.

Using the R-conjunction operation defined by Rvachev@32#, we
can easily obtain that

F3~j,h!5Fu3~j,h!5Fv3~j,h!5Fw3~j,h!5~j21!∧~h2h0!

5j211h2h02A~j21!21~h2h0!2 (12)

F4~j,h!5Fu4~j,h!5Fv4~j,h!5Fw4~j,h!5~j2j0!∧~h21!

5j2j01h212A~j2j0!21~h21!2 (13)

where the symbol ‘‘∧’’ is the R-conjunction operator. It is obviou
that

F3~j,h!H 50, on h>h0 , j51

,0 in the plate domain
(14)

F4~j,h!H 50, on j>j0 , h51

,0 in the plate domain
(15)

Using the earlier characteristic boundary function compone
Fu(j,h), Fv(j,h), andFw(j,h) can exactly satisfy the geome
ric boundary conditions of the plates. It is obvious that in t
present analysis,j0521 ~i.e., a05a) means that the plate has
completely fixed boundary ath521 ~i.e., y5b) andh051 ~i.e.,
b05b) means that the plate has a completely fixed boundar
j51 ~i.e., x5a). The case ofj051 ~i.e., a050) andh051 ~i.e.,
b050) means that the plate has a fixed point-support at the co
j51 ~i.e., x5a), h51 ~i.e., y5b).
ied Mechanics
nts
f
the
ry

ot
vant

ts,
-
e

a

at

rner

5 Convergence Study
It is well known that the Ritz method provides the upper bou

eigenvalues. However, its efficiency depends greatly on the ch
of global admissible functions. These upper bound estimates c
be improved by increasing the number of terms of admiss
functions in the numerical computation and, hence, solution
any accuracy can be obtained theoretically. However, a prac
limit to the number of terms used always exists because of
limited speed, capacity, and numerical accuracy of computers
the three-dimensional vibration analysis of an elastic body in p
ticular, numerical instability may occur with a great number
terms of admissible functions, especially when triplicate series
used. Therefore, the validity of a numerical method often hin
on the convergence rate, numerical stability, and accuracy of
method.

Square plates~i.e., aspect ratiol5a/b51) are taken for the
convergence studies. The plates partially fixed around one co
have thickness ratiosh/b50.1, 0.25 while the plates partially
fixed around four corners have thickness ratiosh/(2b)50.1, 0.25.
In each case, two thickness-side ratios corresponding, res
tively, to moderately thick and very thick plates are consider
On the edgesj51 andh51, the length ratios of the free bound
aries area0 /a50.5 ~i.e., j050) and b0 /b50.5 ~i.e., h050),
respectively. The Poisson’s ration50.3 is adopted in the presen
study unless stated otherwise. All the computations were
formed in double precision~16 significant figures! and 24-point
piecewise Gaussian quadrature was used numerically to eva
the integrals which form the stiffness and mass matrices in
~8!. For simplicity, equal numbers of terms of Chebyshev polyn
mials were taken for the displacement amplitude functionsU, V,
and W in each coordinate direction, namelyI 5L5P, J5M
5Q, and K5N5R. To facilitate the comparisons with 2D re
sults, a dimensionless frequency parameter is introduced as

V5
b

ah
A12~12n2!D5vb2Arh/D (16)
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Table 6 Convergence of the first six dimensionless frequency parameters of square plates
partially fixed around four corners, j0Ä0 „a0ÄaÕ2… and h0Ä0 „b 0Äb Õ2…

h/(2b) I 3J3K V1 V2 V3 V4 V5 V6

SSA mode
0.1 83832 5.597 13.30 16.49 27.37 30.47 39.76

83833 5.595 13.29 16.48 27.36 30.46 39.73
1031033 5.561 13.18 16.36 27.29 30.37 39.64
1231233 5.540 13.10 16.30 27.24 30.33 39.59
1431433 5.526 13.06 16.26 27.22 30.30 39.56
1631633 5.517 13.03 16.23 27.20 30.29 39.54
1831833 5.510 13.00 16.21 27.19 30.28 39.53

0.25 63633 4.271 8.316 10.51 17.18 18.54 22.22
63634 4.270 8.315 10.51 17.18 18.54 22.22
83834 4.232 8.193 10.40 17.12 18.44 22.12

1031034 4.213 8.134 10.36 17.10 18.41 22.08
1231234 4.201 8.099 10.33 17.08 18.39 22.06
1431434 4.193 8.079 10.32 17.08 18.38 22.05
1631634 4.188 8.065 10.31 17.07 18.37 22.04

SSS mode
0.1 83832 28.61 41.30 56.35 61.12 76.76 78.67

83833 28.61 41.30 56.35 61.11 76.75 78.67
1031033 28.41 41.14 56.12 61.03 76.59 78.29
1231233 28.30 41.05 55.98 60.97 76.48 78.07
1431433 28.24 41.00 55.88 60.93 76.42 77.93
1631633 28.20 40.97 55.80 60.91 76.37 77.84
1831833 28.17 40.94 55.74 60.89 76.34 77.77

0.25 63633 11.64 16.56 22.68 24.40 29.90 31.27
63634 11.64 16.56 22.68 24.40 29.90 31.27
83834 11.47 16.41 22.51 24.34 29.84 31.00

1031034 11.39 16.35 22.42 24.31 29.81 30.85
1231234 11.35 16.31 22.37 24.29 29.79 30.76
1431434 11.32 16.29 22.33 24.28 29.78 30.70
1631634 11.31 16.28 22.30 24.27 29.77 30.66
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whereD5Eh3/@12(12n2)# is the flexural rigidity of the plate.
Table 5 shows the convergence of the first six dimension

frequency parametersV i ( i 51,2, . . . ,6) for theplates partially
fixed around one corner and completely fixed at the edgesx50
andy50. Similarly, Table 6 shows the convergence of the first
dimensionless frequency parametersV i ( i 51,2, . . . ,6) of the
SSA and SSS modes for the plates partially fixed around f
corners. In these two tables, the numbers of terms in thex andy
directions both vary from 8 to 18 with increments of 2 when t
thickness ratio is equal to 0.1, and from 6 to 16 with increments
2 when the thickness ratio is equal to 0.25. The number of te
in thez direction is fixed at 3 when the thickness ratio is equal
0.1 and at 4 when the thickness ratio is equal to 0.25. Moreo
the cases with term 83832 when the thickness ratio is equal
0.1 and term 63633 when the thickness ratio equal to 0.25 a
taken to investigate the effect of number of terms in the thickn
direction. It is seen that the convergence trends are similar
both cases. With increasing number of terms of the admiss
functions, all of the frequency parameters monotonically a
steadily decrease. One can see that for plates with thickness
0.1, the differences between results from terms 83832 and
83833 are very small, with the maximum being 0.04 only. F
plates with thickness ratio 0.25, the differences between the
sults from terms 63633 and 63634 are also very small, with the
maximum being 0.001 only. Moreover, for plates with thickne
ratio 0.1, the maximum error between the results from terms
31633 and 1831833 is lower than 0.14%. For plates with thick
ness ratio 0.25, the maximum error between the results from te
1431434 and 1631634 is lower than 0.19%. These clear
show the convergence of the present method. In general, for
plates, a small number of terms of Chebyshev polynomials in
thickness direction versus a large number of terms of Chebys
polynomials in the length and width directions should be us
However, with increasing plate thickness, more terms of
Chebyshev polynomials in the thickness direction compared w
those in the other directions is needed.

Apart from the Chebyshev polynomials, other polynomials su
as simple algebraic polynomials and orthogonal polynomials m
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also be used as the main admissible functions. However, if sim
algebraic polynomials are used as admissible functions, the m
mum number of the terms should be carefully controlled; oth
wise ill-conditioning and unstable computation may occur. T
can be improved by using orthogonal polynomials instead bu
will complicate the analysis. The truncation errors arising fro
the calculation of orthogonal polynomials by the Gram–Schm
process may also lead to further inaccuracies. The Chebys
polynomials possess the simplicity of simple algebraic polyno
als and the efficiency of orthogonal polynomials, and can av
the numerical instability of higher-order simple algebraic polyn
mials and the complication in constructing orthogonal polynom
als. More detailed discussions about the excellent propertie
Chebyshev polynomials in vibration analysis can be found in R
@33#.

6 Comparison Study
The present results for partially fixed cantilevered Kirchho

rectangular plates and Mindlin rectangular plates with point s
ports at four corners have been compared with available soluti
It is obvious that the solutions based on either classical thin p
theory or moderately thick plate theory only account for the an
symmetric modes in the thickness direction. Referring to
R-function given in Eq.~12! or ~13!, the case ofj051 andh0
51 represents a concentrated support which corresponds to
clamped point support in the 2D theories. To be consistent w
the available results, only zero displacementw at the point sup-
ports should be satisfied. In such a case, we should
Fu3(j,h)5Fv3(j,h)5F4(j,h)5Fu4(j,h)5Fv4(j,h)
5Fw4(j,h)51 so that the displacementsu and v are unre-
strained. Table 7 gives the first six frequency parameters of r
angular plates with point supports at four corners. Two differ
thickness ratiosh/(2b)50.1, 0.2 and three different aspect ratio
(a/b51.0,1.5,2.0) have been considered. In the numerical c
putations, 1431433 terms of the Chebyshev polynomials in th
three coordinate directions are used for plates with thickness r
h/(2b)50.1, while 1231234 terms are used for plates wit
Transactions of the ASME
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Table 7 Comparison of the first six frequency parameters V̄Ä4VÕp2 of antisymmetric mode
in the thickness direction for the rectangular plates point-supported at four corners. Note: The
superscript letters are the mode types in the x and y directions, respectively.

h/(2b) Method V̄1 V̄2 V̄3 V̄4 V̄5 V̄6

a/b51.0
0.1 3D 0.6651ss 1.3932as~sa) 1.3932as~sa) 1.9352ss 3.2372aa 3.8398ss

Mindlina 0.6721 1.4156 1.4156 1.9194 3.3262 3.8908
0.2 3D 0.5734ss 1.1195as~sa) 1.1195as~sa) 1.7697ss 2.4480aa 3.0537ss

Mindlina 0.5932 1.1761 1.1761 1.7630 2.5904 3.1345
a/b51.5
0.1 3D 0.3893ss 0.8827sa 1.0430as 1.4325ss 2.1088aa 2.8478ss

Mindlina 0.3878 0.8850 1.0605 1.4376 2.1328 2.8623
0.2 3D 0.3583ss 0.7551sa 0.8765as 1.2736ss 1.7275aa 2.2067as

Mindlina 0.3623 0.7734 0.9132 1.2930 1.7830 2.1969
a/b52.0
0.1 3D 0.2363ss 0.64855sa 0.7793as 1.2116ss 1.4877aa 1.7062as

Mindlina 0.2311 0.6445 0.7824 1.2233 1.4862 1.7082
0.2 3D 0.2248ss 0.5721sa 0.6877as 1.0528ss 1.2805aa 1.5329as

Mindlina 0.2232 0.5769 0.7021 1.0778 1.2964 1.5431

aSee Ref.@13#.
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thickness ratioh/(2b)50.2. The results are compared with th
Mindlin theory solutions of Kitipornchai et al.@13#. It can be seen
that the present solutions are in agreement with those of the
Mindlin solutions. The maximum error is less than 6%~2.4480 vs
2.5904!, which occurs at the fundamental frequency of AA mo
for the square plate with the thickness ratioh/(2b)50.2.

Table 8 gives the first six natural frequencies of each m
category for square plates with partially fixed boundaries aro
four corners. It is assumed that the plate has length and wida
5b51.0 m, Young’s modulusE51.0 Pa, and mass densit
r51.0 kg/m3. Two different plates are considered. One has
thickness h50.2 m, and length ratiosa0 /a50.5 and b0 /b
50.75 at the partially supported edges. The other has a thick
h50.4 m and length ratiosa0 /a50.25 andb0 /b50.5 at the par-
tially supported edges. In the numerical computation, 1231234
terms of the Chebyshev polynomials are used. The present re
are compared with those obtained by the 3D finite element~FE!
analysis. The eight-node hexahedral elements of the comme
programSTRAND7 @34# are used to obtain the reference finite e
ment solutions. Altogether 203203451600 cubic brick elements
are used for the plate with thicknessh50.2 m and 2032038
53200 cubic brick elements are used for the plate with thickn
h50.4 m. Good agreement has been observed in all cases
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errors between the present solutions and the finite element s
tions are within 1% except for the second frequency paramete
the SS mode for the plate with thickness ratioh/(2b)50.1 where
the error~0.5986 vs 0.6142! is about 3%.

7 Numerical Results
From the earlier convergence and comparison studies, it

been shown that the present method can provide results with
isfactory accuracy for the 3D vibration of rectangular plates w
mixed boundary conditions. In this section, some valuable resu
known for the first time, are given in tabular and diagramma
forms. Tables 9–11 give the first six frequency parameters of e
mode category for square plates partially fixed around four c
ners. Three different thickness ratiosh/(2b)50.05, 0.125, 0.25
and four different length ratios of the free boundaries (a0 /a
5b0 /b50.25,0.5,0.75,1.0) are considered. It is clear that the c
of a0 /a5b0 /b51.0 represents fixed point-supports at four co
ners. It is seen that increasing the length of free boundaries an
the plate thickness, all of the frequency parameters monotonic
decrease and the SSA modes always provide the lowest frequ
parameters for all cases. Moreover, for thin plates, the freque
parameters of the symmetric modes in the thickness direction
Table 8 Comparison of the first six natural frequencies of each mode type for square plates
with partially fixed boundaries around four corners. Note: The superscript s means symmetric
mode in the z direction.

Mode Method v1 v2 v3 v4 v5 v6

a0 /a50.5, b0 /b50.75,h/(2b)50.1
AA Present 0.9775 1.404s 1.516 2.136s 2.145 2.558

3D FE 0.9857 1.393 1.521 2.137 2.154 2.562
AS Present 0.4298 0.9064s 1.045 1.606 2.044 2.286s

3D FE 0.4336 0.9062 1.043 1.617 2.058 2.270
SA Present 0.6247 1.043 1.138s 1.372 2.086 2.088s

3D FE 0.6301 1.051 1.135 1.374 2.079 2.081
SS Present 0.2820 0.5986 0.9216 1.569s 1.594 1.762

3D FE 0.2845 0.6142 0.9331 1.593 1.639 1.753

a0 /a50.25,b0 /b50.5, h/(2b)50.2
AA Present 1.764 1.807s 2.548s 2.729 3.162s 3.371

3D FE 1.768 1.798 2.541 2.733 3.143 3.365
AS Present 0.9646 1.237s 1.719 2.565 2.828s 2.978s

3D FE 0.9711 1.235 1.775 2.565 2.817 2.973
SA Present 1.267 1.590s 2.170 2.399s 2.592 3.019s

3D FE 1.275 1.591 2.184 2.383 2.608 3.013
SS Present 0.6349 1.268 1.941 1.945s 2.463 2.891

3D FE 0.6377 1.273 1.942 1.959 2.456 2.890
MARCH 2005, Vol. 72 Õ 233
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Table 9 The first six frequency parameters of AAA and AAS modes for square plates „aÄb …
partially fixed around four corners

h/(2b) a0 /a V1 V2 V3 V4 V5 V6

AAA modes
0.05 0.25 25.03 52.06 54.06 75.81 92.56 94.47

0.5 22.31 39.43 48.82 54.99 67.87 83.94
0.75 16.38 24.83 35.52 50.17 59.29 69.88
1.0 10.42 17.42 29.41 40.89 47.96 57.91

0.125 0.25 13.42 22.78 23.61 29.08 29.87 31.45
0.5 11.95 17.71 21.24 24.53 27.09 28.84
0.75 9.191 13.17 17.92 23.08 24.94 27.58
1.0 6.056 11.15 15.04 19.98 22.49 24.91

0.25 0.25 19.84 36.59 38.24 49.88 58.74 59.85
0.5 17.67 27.86 33.91 39.31 46.75 54.74
0.75 13.29 19.14 27.12 36.53 41.97 47.31
1.0 8.575 14.97 22.41 30.49 36.11 41.11

AAS modes
0.125 0.25 27.02 35.68 47.86 49.85 57.69 69.83

0.5 21.13 32.21 39.37 43.55 46.84 58.45
0.75 15.22 25.81 37.39 37.72 41.50 56.33
1.0 7.995 19.60 34.34 36.46 36.93 49.30

0.25 0.25 13.56 17.86 23.97 24.98 28.91 33.76
0.5 10.63 16.17 19.66 21.83 23.51 29.11
0.75 7.659 13.00 18.61 18.90 20.79 27.77
1.0 4.249 9.975 17.39 18.25 18.41 24.64
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significantly higher than those of the antisymmetric modes. Ho
ever, with increase in plate thickness, the rate of decrease in
quency parameters of the symmetric modes in the thickness d
tion is quicker than that of the antisymmetric modes.

Figures 2–5 show the first few frequency parameters versus
length ratioa0 /a of the free boundaries of square plates (a/b
51.0) partially fixed around a corner. It is assumed that
lengths of the two adjacent fixed boundaries around the corne
the same, i.e.,b05a0 . Five different thickness ratios are consi
ered, i.e.,h/b50.0520.25, with an increment of 0.05. Figure
2–4 give the first three frequency parameters of antisymme
modes in the thickness direction. With the decrease of plate th
ness and, hence, more restraint on shear deformation, the
quency parameters of flexural modes increase and approach
obtained from the classical thin plate theory. This is easily
served in the 3D solutions shown in Figs. 2–4, where the
quency parameters increase monotonically as the plate bec
thinner and approach those of the thin plate approximated
h/b50.05. Figure 5 gives the first few frequency parameters
symmetric modes in the thickness direction, i.e., the first three
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h/b50.25, the first two forh/b50.20 and the fundamental on
for h/b50.15. Since the third frequency parameter forh/b
50.20 and the second and third frequency parameters forh/b
50.15 are much higher, they are omitted from the figure. Mo
over, for thin plates, the frequency parameters of symme
modes in the thickness direction belong to the higher-order o
and therefore they are also omitted from the figure forh/b
50.10 andh/b50.05. Note that the symmetric modes in th
thickness direction cannot be predicted by the classical thin p
theory. One can also observe from Figs. 2–5 that the freque
parameters always monotonically decrease with the increase in
length ratio of the free boundaries. The increase of the length
fixed edges is equivalent to an increase in restraint stiffness
hence it always results in an increase of eigenfrequencies. M
over, it is shown that a longer free boundary has more sens
frequency parameters. By increasing the length ratio of the fi
boundaries, the variation of frequency parameters tends to s
down.
Table 10 The first six frequency parameters of ASA „SAA … and ASS „SAS… modes for square
plates „aÄb … partially fixed around four corners

h/(2b) a0 /a V1 V2 V3 V4 V5 V6

ASA ~SAA! modes
0.05 0.25 15.91 35.58 42.30 56.47 69.12 72.86

0.5 12.05 22.73 34.43 46.20 53.54 66.70
0.75 7.597 17.57 24.97 36.79 48.67 51.37
1.0 4.496 13.09 19.81 28.20 40.10 46.65

0.125 0.25 13.24 26.01 30.02 38.82 46.37 48.35
0.5 9.826 17.92 25.45 33.66 38.51 45.06
0.75 6.433 14.58 19.68 27.67 35.99 37.41
1.0 3.933 11.28 16.14 22.58 29.64 35.43

0.25 0.25 9.329 16.50 18.88 24.05 27.18 28.87
0.5 6.867 12.52 16.45 21.44 23.71 26.58
0.75 4.751 10.56 13.50 18.18 22.49 23.34
1.0 2.985 8.448 11.55 15.58 19.29 22.41

ASS ~SAS! modes
0.125 0.25 21.65 37.95 42.96 57.02 58.91 61.28

0.5 15.71 31.33 37.12 49.29 53.47 57.14
0.75 11.03 26.14 32.10 45.52 47.26 49.94
1.0 6.266 20.36 28.05 38.54 43.23 46.47

0.25 0.25 10.91 19.02 21.57 28.12 29.14 30.57
0.5 7.923 15.71 18.58 24.45 26.59 28.50
0.75 5.575 13.10 16.10 22.72 23.22 24.99
1.0 3.297 10.34 14.14 19.44 21.52 22.90
Transactions of the ASME
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Table 11 The first six frequency parameters of SSA and SSS modes for square plates „a
Äb … partially fixed around four corners

h/(2b) a0 /a V1 V2 V3 V4 V5 V6

SSA modes
0.05 0.25 7.656 25.99 28.98 42.60 53.38 57.11

0.5 5.931 15.62 19.32 31.56 35.75 49.64
0.75 4.040 9.085 13.60 29.08 32.77 39.39
1.0 2.284 5.475 11.14 23.05 28.61 32.73

0.125 0.25 6.834 19.77 22.13 29.90 35.18 38.82
0.5 5.316 11.96 14.95 25.11 27.78 35.36
0.75 3.689 7.460 11.53 23.33 25.96 29.25
1.0 2.127 5.079 9.540 18.10 23.46 25.91

0.25 0.25 5.381 12.79 14.35 18.91 21.57 23.84
0.5 4.213 8.134 10.36 17.10 18.41 22.08
0.75 2.989 5.664 8.599 15.87 17.41 19.07
1.0 1.754 4.423 7.229 12.51 16.24 17.66

SSS modes
0.125 0.25 31.58 41.11 49.40 49.74 65.48 69.40

0.5 22.65 32.83 44.78 48.77 61.10 62.40
0.75 19.11 29.81 35.48 42.99 55.15 57.97
1.0 18.22 25.36 26.66 36.96 46.78 53.88

0.25 0.25 15.94 20.52 24.69 24.83 31.62 34.67
0.5 11.39 16.35 22.42 24.31 29.81 30.85
0.75 9.580 14.82 17.80 21.59 27.62 28.45
1.0 9.115 12.91 13.34 18.59 23.61 26.84
Fig. 2 Fundamental frequency parameters of antisymmetric
modes in the thickness direction for square plates „aÄb … com-
pletely fixed at two adjacent edges and partially fixed around a
corner „b 0Äa0… with respect to the length ratio a0 Õa of the free
boundaries „L h ÕbÄ0.05, h h ÕbÄ0.1, n h ÕbÄ0.15, s h Õb
Ä0.2, Ã h ÕbÄ0.25…

Fig. 3 The second frequency parameters of antisymmetric
modes in the thickness direction for square plates „aÄb … com-
pletely fixed at two adjacent edges and partially fixed around a
corner „b 0Äa0… with respect to the length ratio a0 Õa of the free
boundaries „L h ÕbÄ0.05, h h ÕbÄ0.1, n h ÕbÄ0.15, s h Õb
Ä0.2, Ã h ÕbÄ0.25…
ied Mechanics
Fig. 4 The third frequency parameters of antisymmetric
modes in the thickness direction for square plates „aÄb … com-
pletely fixed at two adjacent edges and partially fixed around a
corner „b 0Äa0… with respect to the length ratio a0 Õa of the free
boundaries „L h ÕbÄ0.05, h h ÕbÄ0.1, n h ÕbÄ0.15, s h Õb
Ä0.2, Ã h ÕbÄ0.25…

Fig. 5 Frequency parameters of symmetric modes in the thick-
ness direction for square plates „aÄb … fixed at two adjacent
edges and partially fixed around a corner „b 0Äa0… with respect
to the length ratio a0 Õa of the free boundaries „L fundamental
for h ÕbÄ0.25, h second for h ÕbÄ0.25, n third for h ÕbÄ0.25, s
fundamental for h ÕbÄ0.2, Ã second for h ÕbÄ0.2, ¿ fundamen-
tal for h ÕbÄ0.15…
MARCH 2005, Vol. 72 Õ 235
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8 Conclusions
In this paper, the 3D vibration characteristics of rectangu

plates with mixed boundary conditions have been studied, ba
on the 3D elasticity. A global analysis approach has been de
oped based on the Ritz method. The Chebyshev polynomials
used to construct the admissible functions. The R-function met
is adopted to construct the characteristic boundary function c
ponents for edges with mixed boundary conditions. The comp
son of the present solutions with the Mindlin solutions and the
finite element solutions demonstrates the accuracy and correc
of the present method. Some valuable results known for the
time are given.
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Transient Elastodynamic Crack
Growth in Functionally Graded
Materials
A generalized elastic solution for an arbitrarily propagating transient crack in functio
ally graded materials (FGMs) is obtained through an asymptotic analysis. The s
modulus and mass density of the FGM are assumed to vary exponentially alon
gradation direction. The out-of-plane displacement field and its gradients about the c
tip were obtained in powers of radial coordinates, with the coefficients depending o
time rates of change of crack tip speed and stress intensity factor. The effects
transient terms on the contours of constant out-of-plane displacement are
discussed.@DOI: 10.1115/1.1831292#
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1 Introduction
With the introduction of functionally graded materials~FGMs!

@1#, research on various aspects of fracture of these nonhom
neous solids has generated extensive interest. Conside
amount of analytical, numerical, and experimental work has b
reported on quasistatic fracture behavior of FGMs by severa
searchers@2–8#. However, the dynamic fracture of FGMs ha
received much less attention from researchers. Atkinson and
@9# were the first to study crack propagation in materials w
spatially varying elastic constants using integral transforms. V
recently, Wang and Meguid@10# performed a theoretical analys
of a finite crack propagating in an interfacial layer with spatia
varying elastic properties under antiplane loading conditions
was identified that the fracture parameters of the interfacial cr
are influenced by both the local and the remote elastic prope
of the media. Along with theoretical studies few numerical stud
on dynamic fracture of FGMs are also reported. Using a fin
element method, Nakagaki et al.@11# addressed dynamic crac
propagation in the functionally graded particle dispersed mate
under dynamic loading and determined the effect of gradation
crack-tip severity as it propagates in FGM. To date, very f
experimental studies on dynamic fracture are availab
Parameswaran and Shukla@12# investigated dynamic fracture in
FGMs with discrete property variations using photoelasticity. R
cently, Rousseau and Tippur@13# have experimentally investi
gated cracks propagating along the gradient in FGMs under
pact loading using the coherent gradient sensing~CGS! technique.

For detailed experimental investigation of fracture of these m
terials using techniques such as photoelasticity and C
asymptotic expansion of crack-tip stress fields are neces
Parameswaran and Shukla@14# obtained the first three terms in th
asymptotic expansion of stress field equations for a steady-
crack propagating along the direction of gradation in FGMs a
investigated the effect of different levels of nonhomogeneity
the crack-tip stress fields. Recently, Jiang and Wang@15# devel-
oped the opening and sliding displacements for a propaga
crack in FGMs using Fourier transform method. In their study,
properties were assumed to vary exponentially perpendicula

1To whom correspondence should be addressed.
Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF

MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the Applied Mechanics Division, August 25, 20
final revision, August 3, 2004. Editor: K. Ravi-Chandar. Discussion on the pa
should be addressed to the Editor, Prof. Robert M. McMeeking, Journal of App
Mechanics, Department of Mechanical and Environmental Engineering, Unive
of California—Santa Barbara, Santa Barbara, CA 93106-5070, and will be acce
until four months after final publication in the paper itself in the ASME JOURNAL OF
APPLIED MECHANICS.
Copyright © 2Journal of Applied Mechanics
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the crack propagation direction. Very recently, Chalivendra et
@16# developed the asymptotic expansion of dynamic out-of-pla
displacement fields for an inclined crack propagating with co
stant velocity with respect to the property gradation.In all these
studies, the asymptotic expansions were developed for a con
crack velocity. Since the properties around the crack tip in FGM
change during crack propagation, the crack growth in a FGM
likely to be transient, with the crack speed and dynamic str
intensity factor changing as a function of time. The transient p
nomena would be more predominant when the crack propag
arbitrarily at an angle to the property gradation in FGMs. Freu
and Rosakis@17# developed asymptotic expansion of near-tip fie
equations for homogeneous materials and discussed about th
portance of transient terms on the accuracy of description
crack-tip fields. However, asymptotic expansion of near-tip fi
equations for a transient crack growth in FGMs has not yet b
reported.

In this paper, through an asymptotic analysis, the transient
of-plane displacement field and its gradients for a transient cr
propagating at angle to the property gradation in FGMs are de
oped. The shear modulus and mass density of FGM are assu
to vary exponentially along the gradation direction. The mo
mixity arising out of the inclination of property gradient to th
propagating crack is accommodated in the analysis through su
position of opening and shear modes. First three terms of out
plane displacemnet fields are developed and the effect of tran
crack growth on contours of constant out-of-plane displaceme
is discussed.

2 Theoretical Formulation
At a continuum level, the properties at any given point in

FGM can be assumed to be same in all directions; hence, FG
can be treated as an isotropic nonhomogeneous solid. Sp
variation of elastic properties and inclination of property gradat
direction to the propagating crack make analytical solutions to
elastodynamic equations extremely difficult. Hence, an asympt
analysis similar to that employed by Freund@18# is used to expand
the stress field around a crack propagating at an arbitrary ang
the property gradation direction.

An isotropic linear elastic FGM, containing a propagating cra
at an angle to the property gradation direction in theX–Y two-
dimensional~2-D! plane is shown Fig. 1. The crack is propagati
with varying velocity~c! as a function of time in theX direction.
The shear modulus and mass density are assumed to vary e
nentially inX1 direction as given in Eq.~1! and the Poisson’s ratio
~n! is assumed to be constant. The property gradation directio
at anglew to theY50 plane.
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per
lied
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m~X1!5m0 exp~dX1!, r~X1!5r0 exp~dX1! (1)

wherem0 andr0 are the shear modulus and density at the ori
(X5X150), respectively, andd is the nonhomogeneity paramet
having dimension~Length!21. Equation ~1! can be written in
terms of (X,Y) coordinates by using simple transformation
shown below.

m~X,Y!5m0 exp~aX1bY!, r~X,Y!5r0 exp~aX1bY!
(2)

a5
d

A11tan2 w
, b5

d tanw

A11tan2 w
(3)

It can be observed that the Lame’s constant also varies expo
tially, as shown in Eq.~4!.

l~X,Y!5
32k

k21
m0 exp~aX1bY! (4)

wherek5~324n! for plane strain andk5~32n!/~11n! for plane
stress.

Let u and v, functions ofX, Y, and t, represent the displace
ments in theX andY directions, respectively, witht representing
the time. The Hooke’s law for a plane problem can be written

sXX5S 2
]u

]X
1

32k

k21
D Dm0 exp~aX1bY!

sYY5S 2
]v
]Y

1
32k

k21
D Dm0 exp~aX1bY! (5)

sXY5S ]u

]Y
1

]v
]XDm0 exp~aX1bY!

in which D5]u/]X1]v/]Y is the dilatation andsXX , sYY , and
sXY are the in-plane stress components. The equations of mo
for a plane problem can be written as

]sXX

]X
1

]sXY

]Y
5r

]2u

]t2

(6)

]sXY

]X
1

]sYY

]Y
5r

]2v

]t2

Substituting for the stresses and density from Eq.~5! and Eq.~1!,
respectively, into Eq.~6!, after simplification, the equations o
motion become

S 32k

k21D ]D

]X
1S ]2u

]Y2
1

]2v
]X]YD 12

]2u

]X2
12a

]u

]X

1S 32k

k21DaD1bS ]u

]Y
1

]v
]XD5

r0

m0

]2u

]t2
(7)

Fig. 1 Propagating crack orientation with respect to the direc-
tion of property variation in FGM
238 Õ Vol. 72, MARCH 2005
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S 32k

k21D ]D

]Y
1S ]2v

]X2
1

]2u

]X]YD 12
]2v

]Y2
12b

]v
]Y

1S 32k

k21DbD

1aS ]u

]Y
1

]v
]XD5

r0

m0

]2v

]t2
(8)

By definingv5]v/]X2]u/]Y as the rotation, we can write

¹2u5
]D

]X
2

]v

]Y
(9)

¹2v5
]D

]Y
1

]v

]X

where

¹25
]2

]x2
1

]2

]y2

Using Eq. ~9!, Eqs. ~7! and ~8! are manipulated to represen
them in terms ofD andv only. This manipulation involves, firs
differentiating Eq.~7! with respect toX, differentiating Eq.~8!
with respect toY, and then adding them together. Second, Eq.~7!
is differentiated with respect toY, Eq. ~8! is differentiated with
respect toX, and then subtracted from the former. The resulti
equations are given below.

¹2D1a
]D

]X
1b

]D

]Y
2aS k21

k11D ]v

]Y
1bS k21

k11D ]v

]X

5S k21

k11D r0

m0

]2D

]t2
(10)

¹2v1a
]v

]X
1b

]v

]Y
2aS 32k

k21D ]D

]Y
1bS 32k

k21D ]D

]X
5

r0

m0

]2v

]t2

(11)

The above equations would reduce to the classical 2-D w
equations of dilatation and rotation by assigninga andb to zero.
Due to nonhomogeneity, these equations lose their classical f
and remain coupled in two fieldsD andv, through the nonhomo-
geneity parametersa andb.

Using the transformations given in Eqs.~12!, ~13!, and~14!, the
equations of motion~10! and~11! are further written in the crack-
tip moving coordinate reference (x,y), as given in Eqs.~15! and
~16!.

x5X2ct, y5Y (12)

]2

]X2
5

]2

]x2
;

]2

]Y2
5

]2

]y2
(13)

]2

]t2
5c2

]2

]x2
1

]2

]t2
2 ċ

]

]x
22c

]2

]x]t
(14)

where

ċ5
]c

]t

a l
2

]2D

]x2
1

]2D

]y2
1a

]D

]x
1b

]D

]y
2aS k21

k11D ]v

]y
1bS k21

k11D ]v

]x

1
r0

m0
S k21

k11D S ċ
]D

]x
12c

]2D

]x]t
2

]2D

]t2 D 50 (15)
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]2v

]x2
1

]2v

]y2
1a

]v

]x
1b

]v

]y
2aS 32k

k21D ]D

]y
1bS 32k

k21D ]D

]x

1
r0

m0
F ċ

]D

]x
12c

]2D

]x]t
2

]2D

]t2 G50 (16)

where

a l5F12
r0

m0
S k21

k11D c2G1/2

and

as5S 12
r0

m0
c2D 1/2

.

It is assumed that for transient crack growth, the crack velo
~c! is a function of time and the fieldsD andv depend explicitly
on time in the moving coordinate reference.

2.1 Asymptotic Expansion of Crack-Tip Fields. In the
asymptotic analysis, first, a new set of coordinates is introduce
defined in Eq.~17!.

h15x/e, h25y/e, for 0,e,1 (17)

e is a small parameter and ase approaches zero, all the points
the x–y plane except those near the crack-tip are mapped be
the range of observation in theh1–h2 plane. Equations~15! and
~16! are now written in these scaled coordinates as below.
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At this stage it is assumed thatD andv are represented as a pow
series expansion ine.

D~x,y,t !5D~eh1 ,eh2 ,t !5 (
m50

`

e~m21!/2fm~h1 ,h2 ,t !

(20)

v~x,y,t !5v~eh1 ,eh2 ,t !5 (
m50

`

e~m21!/2cm~h1 ,h2 ,t !

Now, substituting power series expansions~20! into Eqs.~18!
and ~19! gives the following equations.
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For Eqs.~21! and~22! to be valid, the partial differential equa
tions corresponding to each power ofe(e21/2,e0,e1/2, . . . ) should
vanish independently. This leads to the following set of par
differential equations.

For m50 and m51,
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For m52 and m53
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It should be observed from the above set of equations that E
~22! and~23! are similar to that for homogeneous material whe
as the partial differential Eqs.~24! and ~25!, associated with
higher powers ofe are coupled to the differentials of the lowe
order functions through the nonhomogeneity parametersa andb.
Equations~22! and~23! can be easily reduced to Laplace’s equ
tions in the respective complex domainsz l5h11 ia lh2 , zs5h1
1 iash2 , i 5A21.

Since the crack is propagating at an angle to the direction
property gradation, the stress field near the crack tip is a com
nation of both opening and shear modes~mixed mode!. For elastic
solution the stress field related to opening mode and shear m
can be superposed to obtain the mixed mode solution@18#. The
solutions for the Eqs.~22! and ~23! are same as homogeneou
material@19,20# and can be written as
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In the above Eqs.~26!, An , Bn , Cn , andDn are real constants
that vary with time. It can also be noticed thatr l , u l , rs , andus
are also functions of time.

Using the definitions of dynamic stress intensity factorsK ID and
K IID for opening and shear modes@19# as given in Eq.~27!, the
relations betweenA0(t), K ID(t) andC0(t), K IID(t) are obtained,
respectively.
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(27)
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A0~ t !5
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mcA2p
,

(28)
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K IID~ t !

mcA2p

wheremc is the crack-tip shear modulus,K ID(t) and K IID(t) are
the respective time-dependent mode-I and mode-II dynamic st
intensity factors.

Considering the crack face boundary conditionssyy50 and
sxy50, we can also obtain the following relationships betwe
A0(t), B0(t) andC0(t), D0(t), respectively:
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The solution for the Eqs.~24! and~25! corresponding to higher
powers ofe (m52) consists of two parts—classical solution an
solution due to nonhomogeneity—and these can be obtained
cursively@17#. The solutionsf2 andc2 obtained are given below
At this stage it can be noticed that the solutionsf0 , c0 , f1 , and
c1 automatically satisfy the compatibility equations because
solutions are same as those of homogeneous materials. Sinc
nonhomogeneous specific parts off2 and c2 are obtained form
f0 and c0 , they also automatically satisfy the compatibilit
equations.
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It can be observed that the first two terms in the above Eqs.~30!
and ~31! are same as those for a mixed mode crack in homo
neous materials and the additional terms are the result of the
terial nonhomogeneity. The last six terms in the solutions~30! and
~31! are transient part of the differential Eqs.~24! and ~25!. The
equations also reveal that the two terms with coefficie
2aas /(a l

22as
2) and 2b/(a l

22as
2) in Eqs. ~30! and ~31! ap-

proach infinity as crack speed approaches zero because boa l
andas approach values close to 1. This irregularity, which occ
for c,0.3cs , is due to the coupling betweenD andv through the
lower-order partial differentials in Eqs.~10! and~11!. This irregu-
larity was duly discussed by Parameswaran and Shukla@21# and a
remedial approximation was proposed for the steady-state p
lem. The important details of irregularity and remedial appro
mation using their procedure for the transient problem are
cussed below.

The solution for Eq.~24! is obtained in six parts (f25f21
1f221f231f241f251f26) from the following differential
equations.
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The irregular part of the solutionf2 given in Eq.~30! is asso-
ciated with solutionsf24 andf25 @the solutions of Eqs.~35! and
~36!#. In order to eliminate the irregular behavior, the terms in t
right-hand side of the partial differential Eqs.~35! and ~36! are
expanded in terms ofr l andu l . First as is expressed in terms o
a l through the following equations.
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Knowing the elastic constants, the parameterl can be obtained
through curve fitting. For a Poisson’s ratio of 0.3,l is 0.7. Now
substituting the relation~38! in the expression forrs andus , we
can writers andus in terms ofa l as given below.
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(39)

Using the above relations, the right-hand side of the Eqs.~35!
and ~36! are now expanded as a Taylor series in terms of
parameterj, resulting in the following differential equations.
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It was identified thatj is very small for crack speeds, 0,c/cs

,0.3, and therefore the higher order terms ofO(j2) are ne-
glected. The final solution obtained in termsr l andu l is given in
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Eqs.~42! and ~43!. However, for crack speedsc.0.3cs , j is not
negligible and the solutions provided in Eqs.~30! and~31! can be
directly used.
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A similar approach is used to correct this irregularity in Eq.~31!
by representing right-hand-side terms associated with irreg
differential equations in terms ofrs and us . These changes ar
incorporated to obtain well-behaved solutions off2 and c2 at
velocities less than the 0.3cs and are given below.
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The higher order terms form53 are same as those for hom
geneous material for mixed mode loading since the partial dif
ential equations@see Eqs.~24! and ~25!# reduces to scaled
Laplace’s equations on substitutingf1 andc1 . The solutionsf3
andc3 are given below.
-
er-
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By satisfying crack face boundary conditions, the coefficientsA3 ,
B3 andC3 , D3 can be related as
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Now, by substitutingf0 , f1 , f2 , and f3 in the Eq. ~20!, the
expressions forD and ]D/]x and ]D/]y can be determined and
they are given below.
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Fig. 2 Effect of rate of change of mode-I stress intensity factor on contours of constant out-of-plane dis-
placement around the crack tip for opening mode loading in an FGM †dÄ20, wÄ0°, K ID„t …Ä1 MPa m1Õ2,
K IID„t …Ä0, cÄ300 mÕs, dc ÕdtÄ0, dK IID„t …ÕdtÄ0 and nÄ0.3‡
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Assuming uniform strain in the out-of-plane direction for pla
stress conditions, the out-of-plane displacement and their gr
ents can be determined by substitutingD in Eqs.~52!.
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where tw is the thickness of the specimen in the out-of-pla
direction. These displacement fields and their gradients are us
in extracting the fracture parameters by analyzing full-field d
around the crack tip obtained through experimental techniq
CGS @22#.

3 Discussion on Solutions
Equation~52! was used to study the effect of transient terms

the structure of crack-tip out-of-plane displacement fields. T
contours of constant out-of-plane displacement around the c
tip were generated for both opening and mixed mode load
conditions. In an experimental investigation, the constantsAn(t),
Bn(t), Cn(t), andDn(t) of the various terms in the expansion
the out-of-plane displacements are determined from experime
data. The constantsA0(t), B0(t), C0(t), andD0(t) are related to
ol. 72, MARCH 2005
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Fig. 3 Effect of transient mode-I stress intensity factor on out-
of-plane displacement at various positions around the crack tip
„theta is measured in a counterclockwise direction from posi-
tive x -axis …
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Fig. 4 Effect of rate of change of mode-I stress intensity factor and mode-II stress intensity factor on
contours of constant out-of-plane displacement around the crack tip for mixed mode loading in an FGM
†dÄ20, wÄ45°, K ID„t …Ä1 MPa m1Õ2, K IID„t …Ä1 MPa m1Õ2, cÄ300 mÕs, dc ÕdtÄ0, and nÄ0.3‡
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of
mode-I and -II stress intensity factors@K ID(t) andK IID(t) respec-
tively# as given in Eqs.~28! and ~29!. The contours were drawn
for a fixed value ofK ID(t) andK IID(t). The remaining constant
were assigned a value of zero.

The typical values of material properties and material thickn
used in generating contours are as follows: Poisson’s ratio~n!
50.3, shear modulus at the crack tip (mc)51 GPa, density at the
crack tip (rc)52000 kg/m3, and thickness (t)50.01 m. Figure 2
shows the effect of rate of change of mode-I stress intensity fa
@dKID(t)/dt# on contours of constant out-of-plane displacem
~in mm! for opening mode loading around the crack tip cor
sponding tod520 andw50°, K ID(t)51.0 MPa m1/2, K IID(t)50,
dKIID(t)/dt50, c5300 m/s, and dc/dt50. The value of
dKID(t)/dt was varied over six orders of magnitude. Dally a
Shukla@23# showed that the rate of change ofK ID at crack initia-
tion could be of the order of 105 MPa m1/2 s21. The value ofd520
corresponds to a 7.4 times increase of Young’s modulus ov
distance of 0.1 m along the gradient. In this figure and the figu
discussed later, the crack occupies the negativex-axis and the
f Applied Mechanics
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origin is at the crack tip. It can be noticed from the figure that
the dKID(t)/dt increases, the size and shape of the conto
change. The contours ahead of the crack tip become compre
towards the crack tip and become elongated in they-direction as
dKID(t)/dt increases. The values of out-of-plane displacemen
a function ofdKID(t)/dt at various positions around the crack t
for radial distance of half the material thickness are shown in F
3. This plot is made from the data obtained in the Fig. 2. T
values of the out of plane displacement decrease by 56% along
crack line as the dKID(t)/dt increases from zero to
106 MPa m1/2 s21. However the out of plane displacement valu
decrease by only 24% for a point at angle of 45° to the posit
x-axis. As the angle increase to 90°, the out of plane displacem
increases by 53% for the increase ofdKID(t)/dt from zero to
106 MPa m1/2 s21. Further increase in angle to 135°, increases
displacement values by 134% for the same increase
dKID(t)/dt. It can be inferred from these changes in value
MARCH 2005, Vol. 72 Õ 245
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Fig. 5 Effect of crack-tip acceleration on contours of constant out-of-plane displacement around the
crack tip for opening mode loading in an FGM „dÄ20, wÄ0°, K ID„t …Ä1 MPa m1Õ2, K IID„t …Ä0, dK ID„t …Õdt
Ä105 MPa m1Õ2 sÀ1, dK IID„t …ÕdtÄ0, cÄ300 mÕs, and nÄ0.3…
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out-of-plane displacements around the crack tip that the trans
terms have major effect on the crack-tip field for rapid change
stress intensity factor.

Figure 4 shows the effect of rate of change of mode-I str
intensity factor@dKID(t)/dt# and mode-II stress intensity facto
@dKIID(t)/dt# on contours of constant out-of-plane displacem
~in mm! for mixed mode loading around the crack tip correspon
ing to d520 and w545°, K ID(t)51.0 MPa m1/2, K IID(t)
51 MPa m1/2, c5300 m/s, anddc/dt50. Similar to mode-I load-
ing as shown in Fig. 2, in case of mixed mode loading also,
variation of dKID(t)/dt and dKIID(t)/dt from zero to
106 MPa m1/2 s21 has significant effect on the size and shape
the contours. Similar to mode-I loading as shown in Fig. 3,
out-of-plane displacement values also undergo a spatial varia
as thedKID(t)/dt anddKIID(t)/dt values increase. Therefore th
transient terms also have considerable effect on crack-tip field
mixed mode loading.

The effect of crack-tip acceleration on contours of constant o
of-plane displacement around the crack tip for opening m
loading, corresponding tod520, w50°, K ID(t)51 MPa m1/2,
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Fig. 6 Effect of acceleration on out-of-plane displacement at
various positions around the crack tip „theta is measured in a
counterclockwise direction from positive x -axis …
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Fig. 7 Effect of crack-tip acceleration on contours of constant out-of-plane displacement around the crack
tip for mixed mode loading in a FGM †dÄ20, wÄ45°, K ID„t …ÄK IID„t …Ä1 MPa m1Õ2, dK ID„t …ÕdtÄdK IID„t …Õdt
Ä105 MPa m1Õ2 sÀ1, cÄ300 mÕs, and nÄ0.3‡
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dKID(t)/dt5105 MPa m1/2 s21, K IID(t)50, dKIID(t)/dt50, and
c5300 m/s is shown in Fig. 5. The value ofdc/dt was varied
over eight orders of magnitude. Dally and Shukla@23# also
showed that the rate of change of velocity at crack initiation co
be of the order of 107 m/s2. Similar to Fig. 2, the transient effec
because of crack-tip acceleration also compressed the con
ahead of the crack tip as the acceleration increased. The valu
out-of-plane displacement as a function ofdc/dt at various posi-
tions around the crack tip for radial distance of half the pl
thickness are shown in Fig. 6. This plot is made from the d
obtained in the Fig. 5. The values of the out-of-plane displacem
decrease by 15% along the crack line as thedc/dt increases from
zero to 108 m/s2. However, the out-of-plane displacement val
decrease by only 6% for a point at angle of 45° to the posit
x-axis for the same variation of acceleration. As the angle
creases to 90°, the out-of-plane displacement increases by 13%
the increase ofdc/dt from zero to 108 m/s2. Further increase in
angle to 135°, increases the displacement values by 30% fo
same increase indc/dt.

Figure 7 shows the effect of crack-tip acceleration on conto
of constant out-of-plane displacement~in mm! around the crack
tip for mixed mode loading, corresponding tod520 andw545°,
f Applied Mechanics
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K ID(t)51.0 MPa m1/2, K IID(t)51.0 MPa m1/2, dKID(t)/dt
5105 MPa m1/2 s21, dKIID(t)/dt5104 MPa m1/2 s21, and c
5300 m/s. Similar to mode-I loading as shown in Fig. 5, in ca
of mixed mode loading also, the variation ofdc/dt has consider-
able effect on the size and shape of the contours.

4 Concluding Remarks
Asymptotic expansion of out-of-plane displacement field a

its gradients for a transient crack propagating at an angle to
property gradient were obtained. These displacement fields
required for extracting the fracture parameters by analyzing f
field data around the crack tip obtained through experime
techniques, such as CGS. Using these displacement fields
effect of transient stress intensity factor and acceleration on s
thetic contours of constant out-of-plane displacement under b
opening and mixed mode loading has been shown. These con
show that the transient effects cause significant spatial variatio
out-of-plane displacements around the crack tip. Therefore
studying dynamic fracture of FGMs, it is appropriate to inclu
the transient terms in the field equations for the situations of s
den variation of stress intensity factor or crack-tip velocity.
MARCH 2005, Vol. 72 Õ 247
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Damage Modeling in Random
Short Glass Fiber Reinforced
Composites Including Permanent
Strain and Unilateral Effect
This paper presents the development of a theoretical damage mechanics model app
to random short glass fiber reinforced composites. This model is based on a macros
approach using internal variables together with a thermodynamic potential express
the stress space. Induced anisotropic damage, nonsymmetric tensile/compressive b
(unilateral effect) and residual effects (permanent strain) are taken into account.
anisotropic damage is represented with second-order tensorial internal variablesD. The
unilateral effect due to microcrack closure in compression is introduced by general
the hypothesis of the complementary elastic energy equivalence. In the case of th
manent strain, a new term related to frozen energy, which is a function of the dam
variable, the stress tensor, and some materials constants to be identified, is added
basic thermodynamic potential. Using laboratory test results, parameter identification
been performed to illustrate the applicability of the proposed model.
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1 Introduction
The industry of utility and recreative vehicles uses rand

short glass fiber reinforced composites to construct a wide var
of parts due to its light weight and the ease with which comp
shapes can be achieved. For example, it is used in the man
turing of seats for subway trains, shells for watercraft and elec
cal vehicles, side panels of buses, etc. To optimize those p
both the elastic properties of the material and its behavior un
heavy loads inducing progressive damage up to failure have t
characterized.

For two decades, many papers have been published on the
eling of damage mechanics using a thermodynamic approach
internal variables@1–5#. Although those models were develope
using a macroscopic formulation, microscopic considerations
observations were used to justify them. The framework of
thermodynamic of irreversible processes~TIP! using internal vari-
ables is probably one of the best approaches to model dam
mechanics. However, there still remain many open questions
the modeling of induced anisotropy~in particular, in the case o
nonproportional loading!, desactivation of damage due to micr
crack closure~unilateral effect!, and residual effects.

The aim of this paper is to present a theoretical damage m
able to predict the behavior of glass fiber reinforced compos
and the progressive degradation preceding failure. The mater
made of polyester resin and short glass fibers distributed rando
in the plane of the part using a robotized technology. In Ref.@6#,
some results about the characterization of the tensile behavio
this material have been published. Those tests results also
vided some information pertaining to the different damage mec
nisms. In Refs.@7,8#, detailed information related to the chara
terization of this material can be found. Damage is revealed by
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elastic modulus decrease with progressive repeated tensile loa
tests. Permanent strains have been also observed in these
However, loading and unloading in compression show that th
is neither stiffness loss nor permanent strain due to damage,
cating that the material behavior is linear elastic. Complemen
tests have been performed; they are the pseudo-biaxial te
tests@8#. After damage has been induced in one direction, deno
1-direction in Fig. 1, the material has been loaded in an ela
domain in some other selected direction~45 and 90 deg! in order
to estimate Young’s modulus, Poisson’s ratio, and the shear m
lus. These tests have been performed for different damage le
Results show clearly that the transverse Young’s modulus~modu-
lus in the 2-direction! is reduced by the damage induced in t
1-direction.

This paper presents a new model based on TIP with inte
variables to take into account the unilateral effect of the compo
and permanent strain@9#. The data published in@7,8# and an iden-
tification procedure were used to determine the parameters o
proposed model and the tensile and shear tests were simulat

2 Description of the Proposed Model

2.1 Modified Hypothesis of Complementary Elastic En-
ergy Equivalence. In the case of an isotropic material, th
complementary elastic energy is defined as

U0
e5

1

2E
s:s2

n

2E
~~s:I 2!

22s:s! (1)

whereI 2 is a second-order unit tensor,s is the stress tensor,E is
Young’s modulus, andn is Poisson’s ratio. After a tensile loadin
causing damage, when the material is loaded in compression
observed on test specimens, the damage or the~smeared! cracks
seem to disappear. The explanation is relatively simple. In
general case, a crack is closed~in part or totally! when a stress
normal to its plane is a compressive stress. To take into acc
this phenomenon in the expression of complementary elastic
ergy of the damage material, a new hypothesis is introduced
is a modification of the hypothesis of complementary elastic
ergy equivalence proposed by Sidoroff@10#. It is assumed that the
complementary elastic energy of the damaged material has

0,
on
al of
ni-
be
E
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Fig. 1 Tensile testing on rectangular plates and specimens cut from it along specific
directions
e
u

s

asso-
same form as an equivalent undamaged material by replacing
usual stress variable by an effective one, except for the en
linked to the compression that is responsible for the crack clos

In the principal coordinate system of damage and using a c
sical indicial notation, the complementary elastic energy using
postulate described previously can be written as

Ue~s,D!5
1

2E
s̃ i i

1s̃ i i
11

1

2E
s i i

2s i i
21

1

2E
s̃ i j s̃ i jU

iÞ j

2
n

2E
~ s̃ i i s̃ j j 2s̃ i j s̃ i j ! (2)

wheres̃ i i
1 is the tensile stress~positive!, ands̃ i i

2 is the compres-
sive stress~negative! normal to the plane of the microcrack sy
tem. In other words, the compressive stresss2 is defined as

s25H~2nisni !~nisni !ni ^ ni5PO (s,D)2:s,

PO (s,D)25H~2nisni !~ni ^ ni ^ ni ^ ni ! (3)

whereni are the principal directions of the damage andH is the
Heaviside function defined by

H~x!5H 1, x.0

0, x,0
(4)

The quantityPO (s,D)2 is a fourth-order tensor corresponding to
negative projection operator. In the same way, the positive pro
tion operator can be defined as

PO (s,D)15H~nisni !~ni ^ ni ^ ni ^ ni ! (5)

The fourth-order damage operatorMO (D) has a canonical form
@11#
RCH 2005
the
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re.

las-
the
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a
jec-

MO ~D!5
d ikd j l

A~12Di !~12D j !
ni ^ nj ^ nk^ nl

5
1

A~12Di !~12D j !
ni ^ nj ^ ni ^ nj (6)

whereDi is the damage eigenvalue in the principal directioni .
The canonical form is used because the fourth-order tensorMO (D)
is a real symmetric tensor and its second-order eigentensors
ciated with the real positive eigenvalues 1/A(1-Di)(1-D j ) are
ni ^ nj .

Using Eqs.~3!, ~5!, and~6!, Eq. ~2! becomes

Ue~s,D!5
1

2E
s:~PO (s,D)1:MO ~D!:MO ~D!:PO (s,D)1!:s

1
1

2E
s:~PO (s,D)2:PO (s,D)2!:s

1
1

2E
s:~EO ijij :MO ~D!:MO ~D!:EO ijij ! iÞ j :s

2
n

2E
@~ tr ~MO ~D!:s!!22s:~MO ~D!:MO ~D!!:s#

(7)

whereEO ijij 5ni ^ nj ^ ni ^ nj . The second term of Eq.~7! can also
be written as
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1

2E
s:~PO (s,D)2:PO (s,D)2!:s

5
1

2E
s:~PO (s,D)2:MO :MO :PO (s,D)2!:s

2
1

2E
s:@PO (s,D)2:~MO :MO 2IO4!:PO (s,D)2#:s (8)

where IO4 is a fourth order unit tensor. Using Eq.~8!, Eq. ~7!
becomes

Ue~s,D!5
1

2E
s:~MO :MO !:s2

n

2E
@~ tr ~M: s!!22s:~MO :MO !:s#

2
1

2E
s:@PO (s,D)2:~MO :MO 2IO4!:PO (s,D)2#:s (9)

The first two terms of Eq.~9! are identical to the one obtained b
Sidoroff @10# when applying the original postulate of compleme
tary elastic energy equivalence. The last term represents the
toration of the system rigidity due to crack closure. In that ca
the microcrack system is said to become inactive. The defini
corresponding to the last term of Eq.~9! is written as follows:
e
t
-
r
c
fi
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a
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DUe~s,D!5
1

2E
s:@PO (s,D)2:~MO :MO 2IO4!:PO (s,D)2#:s (10)

Substituting Eqs.~5! and ~6! in Eq. ~10!, one obtains

DUe~s,D!5
1

2E
s:MŎ „D…:s (11)

The fourth-order operatorMŎ (D) is defined as

MŎ ~D!5H~2nisni !
Di~22Di !

~12Di !
2 ni ^ ni ^ ni ^ ni (12)

and thus, the complementary elastic energy defined by Eq.~9! can
now be written as

Ue~s,D!5
1

2
s:CÕ 21:s2

1

2E
s:MŎ :s (13)

whereCÕ 215MO :CO 21:MO is the fourth-order elastic compliance ten
sor of the damaged material which could be written in the prin
pal coordinate system of damage as
CÕ 215

l

1

E~12D1!2

2n

E~12D1!~12D2!

2n

E~12D1!~12D3!
0 0 0

2n

E~12D2!~12D1!

1

E~12D2!2

2n

E~12D2!~12D3!
0 0 0

2n

E~12D3!~12D1!

2n

E~12D3!~12D2!

1

E~12D3!2 0 0 0

0 0 0
1

G~12D2!~12D3!
0 0

0 0 0 0
1

G~12D1!~12D3!
0

0 0 0 0 0
1

G~12D1!~12D2!

m

(14)
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It can be observed from Eq.~13! that if all components of the
stress tensor are positive, the termMŎ (D) is inactive~microcracks
opening!, and the classical form defined by Sidoroff@10# is
obtained.

2.2 Residual Effect. When loads~tensile stress! are applied
on a composite structure, cracks and thus damage are induc
the material. The level of degradation is quantified through
second-order damage tensorD. On the contrary, during the un
loading phase, the microcracks progressively close up to a ce
extent~at the end of the process, the microcracks are not ne
sarily entirely closed!. This phenomenon has microscopic justi
cations related to the nature and geometry of the crack, which
beyond the scope of this paper. Explanations of the phenome
can be found in Refs.@4,11#. In the present paper, this residu
effect ~residual strain! is attributed to the state of damage, and t
existence of a potential, notedUp, which is a function of the
damage tensorD and the stress tensor is postulated as

Up~s,D!5s:AO :D (15)

whereAO is a symmetric fourth-order tensor whose coefficients
d in
he
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-
fall
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material constants to be identified. This energy can be viewe
frozen by the microcracks. The thermodynamic potential can
rewritten as

U~s,D!5
1

2
s:CÕ 21:s2

1

2E
s:MŎ :s1s:AO :D (16)

2.3 State Laws

Elastic Constitutive Law. The elastic constitutive law of the
damaged material is obtained by differentiating the dual poten
with respect to the stress tensor. The strain is defined in two p
due the Heaviside function in the potential expression:

«5CÕ 21:s2
1

E
MŎ :s1AO :D (17)

The total strain is composed of an elastic part («e) and a perma-
nent part («P):

«e5S CÕ 212
1

E
MŎ D :s (18a)

«p5AO :D (18b)

The elastic compliance tensor of the damaged material taking
account the unilateral effect has the following form:
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CÕ T
215CÕ 212

1

E
MŎ

5CÕ 212
1

E
H~2nisni !

Di~22Di !

~12Di !
2 ni ^ ni ^ ni ^ ni (19)

In the case of a compressive stress normal to the mean surfa
the microcrack systemni , the elastic modulusC̃T nininini

21 becomes

C̃T nininini

21 5ni ^ ni :CÕ T
21 :ni ^ ni

5
1

E~12Di !
2 2

1

E

Di~22Di !

~12Di !
2 5

1

E
(20)

This way, the elastic modulus in the direction normal to the m
crocrack system loaded in compression is restored. In addi
the strain–stress relation defined in Eq.~17! is continuous and the
elastic compliance tensor is symmetric and positive definite.
thermodynamic model is thus physically consistent.

Associated Damage Forces.The thermodynamic force, which
is known as the damage strain energy release rate, must be
ciated with the damage tensor. In the case wherein the princ
directions of the damage should not change during loading~pro-
portional loading!, for each eigenvalue of the damageDi , there is
an associated thermodynamic forceYi , defined as

Yi5
]U

]Di
5s:F1

2 S ]MO

]Di
:CO 21:MO 1MO :CO 21:

]MO

]Di
D G :s

2s:FH~2nisni !
1

E~12Di !
3 ni ^ ni ^ ni ^ ni G :s

1s:AO :ni ^ ni (21a)

Yi5s:FsymS ]MO

]Di
:CO 21:MO D2H~2nisni !

1

E~12Di !
3 ni

^ ni ^ ni ^ ni G :s1s:AO :ni ^ ni (21b)

In fact, to take into account the possibility of interaction betwe
two principal damage directions~two-dimensional~2-D! case!, a
correction must be done to the expression of the thermodyna
forces. A weighted sum of the two thermodynamic forces is th
used:

Ȳi5Yi1bYj , i , j 51,2, iÞ j (22)

where the parameterb is a material constant bounded between
and 1.

Damage Evolution Law. The thermodynamic forces drive th
evolution of the internal variable characterizing the damage u
failure. Those forces must satisfy theClausius–Duheminequality
due to damage:

Y:Ḋ>0 (23)

The evolution~quasi-static! law satisfying this inequality is cho
sen to be of the following form:

Di5 f ~Yi
s!, i 51,2 (24)

Yi
s~ t !5max$Y0 ,sup

t<t
~Ȳi~t!!% (25)

whereY0 designates the initial damage threshold andi is one of
the principal direction. The functionf is a growing positive func-
tion intrinsic to the material.

3 Model Identification
To identify the parameters of the proposed model, progres

repeated tensile loading tests must be performed and followe
252 Õ Vol. 72, MARCH 2005
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an estimation process using a calibrating technique. It is neces
in the course of the test to load and unload the specimen in o
to estimate the damage internal variablesD1 , D2 and to measure
the elastic and permanent strains («e,«p). For further details on
the experimental procedure, the reader is referred to Refs.@7,8#.
Essentially, the results of the uniaxial cyclic tensile tests~Fig. 2!
are used here for parameter identification purposes.

Uniaxial tensile tests@6–8#, have shown, if one neglect
the permanent strain, that the following relationship between
principal damage function and the thermodynamic force
appropriate:

f ~Ys!5a~Ys2Y0! (26)

whereYs is the thermodynamic force defined in Eq.~25!, Y0 is the
initial value at which damage begins, anda is a material param-
eter. These two parameters must be identified.

In the principal coordinate system of damage~2-D case!, theA
operator~Eq. ~15!! is reduced to the following expression usin
Voigt’s notation~due to symmetry ofs, D, andA!:

A5F a 2b

2b a
G (27)

The residual~permanent! strains due to damage are obtained
follows ~Eq. ~18b!!:

H «11
p 5aD12bD2

«22
p 52bD11aD2

(28)

wherea andb are unknown material parameters to be identifi
using loading tests results.

Equations~21! and ~22! can also be simplified in the case o
uniaxial loading:

Ȳ15
s1

2

E~12D1!3 1~a2bb!s1 ,
(29)

Ȳ25~ba2b!s11b
s1

2

E~12D1!3

Table 1 summarizes the unknown parameters to be identified
ing an appropriate technique together with test results. In Tabl
the test results to be used for the identification are displayed
loading/unloading test allows the estimation of the secant dam
Young’s modulus. The damage value can thus be estimated u
Eq. ~14!:

E15E~12D1!2 (30)

Fig. 2 Cyclic tensile stress–strain curves „Test †8‡…
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Table 1 Definition of the unknown parameters

Unknown
parameters a Y0 b a, b

Mathematical
nature

Scalar Scalar Scalar Fourth-order
tensor

Definition Material
coefficient

necessary to
estimate the
damage level

Thermodynamic
force beyond

which damage
begins

Parameter
necessary to take
into account cross

effects in the
thermodynamic

force

Parameters to
estimate

permanent strains
due to damage
e
d

a
ress
t
s of

ce-
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anent
e
or-
per-
lues,

tly, it
the
and
ithin

ters
han-
ites
and then:

D1512AE1

E
(31)

In this unique test, it is difficult to estimate the damage param
in the transverse direction (D2). Information about the damage
material Poisson’s ration12 allows us to estimate its values usin
Eq. ~14!:

n125n
12D1

12D2
⇒D2512

n

n12
~12D1! (32)

However, in most cases, this expression may not give relia
damage values because the damaged Poisson’s ration12 measure-
ment is not very precise. Instead,D2 is evaluated using Eqs.~24!–
~26! and ~29!:

D25a~Ȳ22Y0!5aF ~ba2b!s11b
s1

2

E~12D1!3 2Y0G (33)

Now, Eq. ~28! can be used to express the permanent strain
function of the five unknown parametersY0 , a, b, a, andb:

5 «11
p 5aD12ba~ba2b!s12bb

s1
2

E~12D1!3 1baY0

«22
p 52bD11aa~ba2b!s11ba

s1
2

E~12D1!3 2aaY0

(34)

Parameter identification is done using a constrained optimiza
technique. The following equation is used as the objective fu
tion to be optimized:

Table 2 Experimental results from Ref. †7‡

Maximum
stress level

~MPa!

Permanent axial
strain«11
~mm/m!

Permanent
transverse strain«22

~mm/m!

Damage in the
direction of loading

D1

24.50 72.24 2126.7 0.0134649
39.43 240.8 2267.6 0.025708
51.41 337.1 2352.1 0.043811
61.34 550.7 2450.6 0.066579
70.27 722.4 2549.2 0.091765
77.30 987.2 2647.8 0.115231
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(35)

Subject to the following constraint:

ERR–EVO5

(
i 51

NC

~D1
m2D1

t ! i
2

(
i 51

NC

~D1
m! i

2

<Tol (36)

where i is the cycle index,NC is the total number of cycles in
axial cyclic tensile test (56, Fig. 2! and«m

p and« t
p are the mea-

sured and predicted~Eq. ~34!! permanent strains, respectively.D1
m

andD1
t are the measured and predicted~using Eqs.~24!–~26! and

~29!! damage variable values, respectively, in the tensile st
direction. A value of 6.931024 was chosen for the constrain
parameterTol. The parameters have been calibrated by mean
the Lagrangian operator and the Uzawa’s method@12#.

Table 3 gives the values obtained from the calibration pro
dure. The precision obtained with Eqs.~34! and ~35! was 7.7
31023 and 6.89931024, respectively. Table 4 gives a compar
son between the measured and the calculated values of perm
strain and damageD1 . A very good correlation between thos
values is observed except for the first two lines of the table c
responding to applied stresses of 24.50 and 39.43 MPa. The
manent strain and damage parameters generally have low va
particularly in the first few cycles~2 to 3 cycles, see Table 4!. It is
not easy to obtain reliable measured values and consequen
may be an error source for correlation and fitting. However, in
last three cycles, the percentage differences of the expected
the measured values of strain and damage parameters are w
the ranges of@25.6%, 9.2%# and @20.5%, 0.8%#, respectively.
Therefore, the proposed model with the values of parame
listed in Table 3 is applicable in representing the damage mec
ics behavior of random short glass fiber reinforced compos
under relatively large strain.

Table 3 Numerical values of the unknown parameters

Y0 a b a b

0.06819 0.07884 0.5878 0.010071 0.008371
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Table 4 Comparison between estimated and measured values

D1 (1023) Permanent strain«11 ~mm/m! Permanent strain«22 ~mm/m!

Measured Calculated Error % Measured Calculated Error % Measured Calculated Er

13.47 10.98 18.5 72.24 135.7 287.8 2126.7 2112.7 11.0

25.71 27.85 28.3 240.8 258.9 27.5 2267.6 2215.2 19.6
43.81 46.46 26.0 337.1 417.1 223.7 2352.1 2337.7 4.1
66.58 66.91 20.5 550.7 581.7 25.6 2450.6 2450.4 0.0
91.77 90.65 1.2 722.4 750.8 23.9 2549.2 2559.6 21.9
115.2 114.4 0.8 987.2 895.9 9.2 2647.8 2646.2 0.2
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4 Numerical Simulation

4.1 Numerical Implementation. The proposed model ha
been implemented in theABAQUS finite-element code using th
UMAT functionality. The numerical integration is done by di
cretizing the loading using load increments and thus strain in
ments. From the mechanical state«n , sn , Dn , at time tn , an
estimation is made of the mechanical statesn11 , Dn11 , at time
tn11 corresponding to the strain incrementD«. This local integra-
tion is done using an implicit integration algorithm and
Newton–Raphson technique to estimate the mechanical state
this purpose, a consistent tangential matrix has been derived.
reader can find more information in Mir@9#.

4.2 Simulation and Model Validation. First, to verify how
consistent the identified set of parameters is, the uniaxial cy
tensile test has been simulated using the numerical model
planted inABAQUS. Figures 3 and 4 illustrate, respectively, th
numerical cyclic tensile test results obtained from finite-elem
simulation and the corresponding experimental results superp
to the predicted curves. A good agreement is found. Now, to v
date the model, different experimental tests@7,8# have been simu-
lated: monotonic tensile tests, monotonic and cyclic shear te
and tensile tests on rectangular plates and specimens cut fro
~Fig. 1!. In these last tests, the tensile and shear specimens
cut from the plates pre-loaded in tension to produce different
grees of damage by uniaxial tension@7,8#. Afterwards, the speci-
mens were tested to measure their damaged-material elastic
ficients: Young’s modulus and Poisson’s ratio along th
directions~0, 45, and 90 deg with respect to the initial loadin
direction! and the shear modulus~Fig. 1!. The objective was to
predict their evolution and degradation versus the tensile st
level.

Fig. 3 Predicted cyclic tensile stress–strain curves „Model …
254 Õ Vol. 72, MARCH 2005
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Figure 5 illustrates the result for monotonic tensile loading
very good agreement between numerical and test results is
tained. Monotonic and cyclic loading have been simulated
shear. Figures 6 and 7 illustrate both the numerical and the exp
mental results, which again are very close. References@7,8# give
all the information on the test procedure.

The evolution of the degradation of the elastic properties
function of tensile stress level in three different directions~0, 45,
and 90 deg! is presented in Figs. 8–10. In Figs. 8 and 9, t
predicted damaged Young’s modulus and Poisson’s ratio can

Fig. 4 Comparison of the predicted cyclic tensile stress–
strain curves with corresponding experimental data

Fig. 5 Tensile stress–strain curves
Transactions of the ASME
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compared to the test results reported by Dano et al.@8#. The pre-
diction of Young’s modulus and Poisson’s ratio is relatively go
in the 1- and 2-directions. In the 45 deg direction, the discrepa
is more accentuated, though the numerical prediction still rem
fair.

In the case of the shear modulus presented in Fig. 10, it ca
observed that the numerical results are in good agreement with
experimental data.

4.3 Simulation of a Uniaxial Tensile–Compressive Load-
ing Test. In this simulation, we show how reversing a tens
load to compressive load restores the apparent elastic mod
~degraded by tensile load! in the direction parallel to the compres
sive load and how it may still cause damage evolution~cracks
extension! in the transverse direction. These two directions cor
spond to the two principal damage directions in this load case.
denote by 1 and 2 the directions that are parallel and transver
the loading direction, respectively.

Figure 11 illustrates the stress versus strain curve durin
tensile–compressive loading test. The specimen is first loade
tension up to 60 MPa, which induces damage and causes You
modulusE1 to decrease. The specimen is then, unloaded and

Fig. 6 Comparison of predicted shear stress–strain curves
with the corresponding experimental data

Fig. 7 Comparison of cyclic shear stress–strain curves with
the corresponding experimental data
Journal of Applied Mechanics
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jected to a compressive stress. The change of slope indicates
the apparent modulus is restored when the damaged material
compression. Figures 12~a! and 12~b! present the evolution of the
applied stress and the damage variables during the tens

Fig. 8 „a… Comparison of predicted Young’s modulus evolu-
tion vs stress with the corresponding experimental data „u
Ä0 deg …. „b… Comparison of predicted Young’s modulus
evolution vs stress with the corresponding experimental data
„uÄ45 deg …. „c… Comparison of predicted Young’s modulus
evolution vs stress with the corresponding experimental data
„uÄ90 deg ….
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compressive test simulation, respectively. First, up to 60 MPa,
tensile load causes material damage, and consequently, incr
principal damage variablesD1 and D2 , as shown in Fig. 12~b!.
During unloading and until starting the compressive load,
damage variables stop increasing. As demonstrated by Eq.~20!
and shown in Fig. 11, the compressive load restores the app
elastic modulus in the 1-direction. However, once the compres

Fig. 9 „a… Comparison of predicted Poisson ratio evolution vs
stress with the corresponding experimental data „uÄ0 deg ….
„b… Comparison of predicted Poisson’s ratio evolution vs stress
with the corresponding experimental data „uÄ45 deg …. „c…
Comparison of predicted Poisson’s ratio evolution vs stress
with the corresponding experimental data „uÄ90 deg ….
256 Õ Vol. 72, MARCH 2005
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stress has reached a certain level (278 MPa), which depends on
the tensile load level applied previously, the degree of damag
the 2-direction (D2) increases again, as shown in Fig. 12~b!. The
compressive load may transmit damage and induce its evolu
in the transverse direction. The cracks nucleated initially due
previous tensile load are not always perpendicular to the load
direction, but also may be along individual fiber directions a
thus be inclined or parallel to the loading direction. This set
cracks becomes active under compressive load applied in the
vious tensile load direction.

5 Conclusion
In this paper, a damage model for random short glass fi

reinforced composites based on the fundamental principle of th
modynamics of irreversible process was presented. The mo
takes into account the unilateral effect~crack closure effect! and
the permanent strains after unloading~residual effect!. Using tests
results and an appropriate identification procedure, all unkno
parameters have been identified. After implementation of
model in a finite-element code, simulations are obtained and
found to be in good agreement with experimental results. It c
thus be concluded that the proposed model is appropriate to s

Fig. 10 Comparison of predicted Shear modulus evolution vs
stress with the corresponding experimental data

Fig. 11 Stress–strain curve in tensile–compressive load
„Model …
Transactions of the ASME
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late damage evolution in structures made of random short g
fiber reinforced composites in a proportional loading case. T
nonproportional loading case will be treated in a future paper
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Nomenclature

AO 5 symmetric fourth-order tensor taking into ac-
count permanent strain

CĨ 21 5 fourth-order elastic compliance tensor of the
damaged material

D 5 second order damage tensor
Di 5 damage in the principal directioni

D1
m 5 measured damage variable in the 1-direction

D2
t 5 predicated damage variable in the 1-direction

E 5 Young’s modulus of the undamaged material
E1 5 secant damage Young’s modulus

ERR–STR 5 permanent strain relative error

Fig. 12 Tensile–compressive load simulation: „a… Incremental
axial stress level and „b… predicted damage variables evolution
„Model …
Journal of Applied Mechanics
lass
he

ral
DS
lly

ERR–EVO5 damage relative error in the 1-direction
G 5 shear modulus of the undamaged material

H(x) 5 Heaviside function
I2 5 second-order unit tensor
IO4 5 fourth-order unit tensor

MO (D) 5 fourth-order damage operator
MŎ (D) 5 fourth-order tensor to take into account the uni

lateral effect
PO (s,D)1 5 fourth-order tensor corresponding to a positive

projection operator
PO (s,D)2 5 fourth-order tensor corresponding to a negative

projection operator
Tol 5 tolerance on the evolution law of damage
U0

e 5 complementary elastic energy
Up 5 energy blocked by the microcracks inducing pe

manent strain
Yi 5 thermodynamic force associated withDi

Ȳi 5 weighed thermodynamic force associated toDi
Y0 5 initial damage threshold
a 5 material parameter
b 5 material constant bounded between 0 and 1
ni 5 normal vector to the crack

a, b 5 unknown material parameters of the fourth-ord
tensorAO

d ik 5 Kronecker delta symbol
« 5 second-order strain tensor

«e 5 second-order elastic strain tensor
«p 5 second-order permanent strain tensor
«m

p 5 measured second-order permanent strain tens
«t

p 5 predicted second-order permanent strain tenso
«11

p ,«22
p 5 permanent strain in the 1- and 2-directions
n 5 Poisson’s ratio of the undamaged material

n12 5 Poisson’s ratio of damaged material
s 5 second-order Cauchy stress tensor

s̃ i i
1 5 tensile stress~positive! tensor normal to the

plane of the microcrack system
s̃ i i

2 5 compressive stress~negative! tensor normal to
the plane of the microcrack system

^ 5 dyadic or tensor product
i•i 5 Euclidean norm
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Micromechanics and
Homogenization of SMA-Wire-
Reinforced Materials
The aim of the paper is to develop a micromechanical model for the evaluation o
overall constitutive behavior of a composite material obtained embedding SMA wires
an elastic matrix. A simplified thermomechanical model for the SMA inclusion, ab
reproduce the superelastic as well as the shape memory effect, is proposed. It is ba
two assumptions: the martensite volume fraction depends on the wire temperature a
only the normal stress acting in the fiber direction; the inelastic strain due to the ph
transformations occurs along the fiber direction. The two introduced hypotheses ca
justified by the fact that the normal stress in the fiber direction represents the main s
in the composite. The overall nonlinear behavior of long-fiber SMA composites is d
mined developing two homogenization procedures: one is based on the Eshelby
distribution theory, the other considers the periodicity conditions. Numerical applicat
are developed in order to study the thermomechanical behavior of the composite,
enced by the superelastic and shape memory effects occurring in the SMA wires.
parisons of the results obtained adopting the two homogenization procedures ar
ported. The influence of the matrix stiffness and of a prestrain in the SMA wires o
overall behavior of the composites is investigated.@DOI: 10.1115/1.1839186#
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1 Introduction
Smart composites, obtained including a smart material in a

trix, are very special composite materials, which exhibit a des
behavior under certain conditions. In particular, the shape mem
alloys ~SMA! appear very suitable for the development of sm
composites. In fact, SMA are able to undergo reversible la
deformations under loading/thermal cycles and to generate
values of the thermomechanical driving forces. This very spe
behavior of SMA is due to their native capability to undergo
versible changes of the crystallographic structure, depending
the temperature and on the state of stress. These changes c
interpreted as reversible martensitic transformations betwee
crystallographic more-ordered parent phase, the austenite,
crystallographic less-ordered product phase, the martensite
general, the austenite is stable at high temperatures and
stresses, while the martensite is stable at low temperatures
high stresses@1#. Because of their unique mechanical respon
SMA have been successfully adopted as actuators and sensor
broad set of advanced and innovative applications in aeronau
biomedical, mechanical, and civil engineering@2#.

In the last decade, great interest was aroused by the possi
to develop new, intelligent SMA composites~CSMA!. New, per-
forming materials are obtained embedding SMA wires, filame
short fibers, particulates, or thin films into different types of m
trices. Recently, SMA wires have become commercially availa
with diameters below 0.2 mm. These small diameters allow
direct integration of SMA wires into fiber-reinforced polyme
composites without losing the structural integrity of the mat
material. The aim is to realize smart composites by a suita
distribution of SMA within the matrix material and to control th
thermomechanical behavior of SMA through heating and cooli

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the Applied Mechanics Division, December
2003; final revision; August 31, 2004. Associate Editor: D. Kouris. Discussion on
paper should be addressed to the Editor, Prof. Robert M. McMeeking, Journ
Applied Mechanics, Department of Mechanical and Environmental Engineer
University of California—Santa Barbara, Santa Barbara, CA 93106-5070, and wi
accepted until four months after final publication in the paper itself in the AS
JOURNAL OF APPLIED MECHANICS.
Copyright © 2Journal of Applied Mechanics
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In fact, the integration of SMA in composites offers importa
advantages in comparison to other actuating technologies:
reversible strains~up to 6%!, high damping capacity, large revers
ible changes of mechanical and physical characteristics, com
cial availability as thin flexible wires that can be directly embe
ded in a polymer matrix, and ability to generate extremely h
stresses~up to 800 MPa!. The main disadvantage of SMA is the
reduced cooling rate which can be a limiting factor in applicatio
that require heating and cooling of the SMA wires to gener
cyclic stresses and strains.

SMA composites can be used for different potential appli
tions, including the control of external shape, stiffness, dama
vibration, buckling, and damping properties of the structural e
ments. It can be emphasized that the mechanical response o
CSMA depends upon several different factors, e.g., the cure
cess, the prestrain level, the volume fraction, and, of course,
particular adopted materials.

Different studies of the possible use of CSMA integrated with
structural elements have been developed by several resear
and published in the literature. These researches are mainly
lated to the following specific topics: vibration control, bucklin
and postbuckling effects, shape control, and micromechanic
the SMA composite material.

Birman et al.@3# proved that the use of prestrained SMA fibe
embedded within a plate reduces the stresses and the deflecti
laminates subjected to low-velocity impact. Hyo Jik Lee et al.@4#
performed numerical simulation analyses of the thermal buck
behavior of laminated composite shells with embedded S
wires, demonstrating that the critical buckling temperature can
increased and the thermal buckling deformation can be decre
by using the activation force of embedded SMA wire actuato
Analogously, Jung Ju Lee and Sup Choi@5# developed an analyti-
cal investigation of the thermal buckling and postbuckling beh
iors of a composite beam with embedded SMA wires; the pr
ence of SMA wires enhances the critical buckling temperature
reduces the lateral deflection for the thermal buckling. Moreov
Sup Choi et al.@6# presented the results of an experimental ana
sis on the active buckling control behavior of a laminated co
posite beam with embedded shape memory alloy wires, sugg
ing a simple formula for evaluating the improvement of the SM
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the
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wires in the buckling behavior. Thompson and Loughlan@7# dem-
onstrated by numerical simulations the effectiveness of SMA
bers to reduce the out-of-plane displacement of postbuckled la
nates, emphasizing that the stability of the adaptive respons
very much dependent upon the laminate stacking sequence
perimental and further numerical investigations were conducte
Ref. @8#, to determine the postbuckling response of compo
SMA also characterized by reduced values of actuator frac
volume. Ostachowicz et al.@9# illustrated the influence of the
SMA fibers upon changes in natural frequencies and ther
buckling of a composite multilayer plate with the SMA comp
nents, developing finite-element analyses.

Micromechanical studies, devoted to the understanding an
the modeling of the constitutive behavior of SMA composite w
elastic matrix, were developed. These studies can be framed i
general problem of the homogenization of composites charac
ized by nonlinear constitutive behavior, which is a very act
research field. In this framework, rigorous bounds for the non
ear effective properties of composites have been derived sinc
early 1990s; Ponte Castan˜eda@10#, and Willis @11#, among others,
have developed such bounds based on the so-called ‘‘ave
variational principle.’’ Moreover, Suquet@12# proved that the
variational procedure can be interpreted as a secant method.

More specifically, it was found for SMA composites that th
interaction between the embedded SMA and the matrix was on
the critical factors in the microstructure design of the compos
@13–15#. A quantitative micromechanics-based analysis on
role of microstructure and constituent properties in the ove
behavior of a SMA composite was carried out in Ref.@16#. In
particular, the self-consistent homogenization technique
adopted to evaluate the overall SMA composite behavior. A s
plified analysis was developed, considering the internal stress
strain and their evolution as function of externally applied th
momechanical loading. Briggs and Ponte Castan˜eda @17# esti-
mated the effective behavior of active composites, obtained
bedding aligned SMA fibers in a linear elastic matrix, using t
homogenization technique proposed by Ponte Castan˜eda@10#.

This paper aims to establish a micromechanical-based mode
of the constitutive behavior of the SMA composites, characteri
by an elastic matrix. The overall behavior of long-fiber SMA com
posites is determined developing suitable homogenization pr
dures. In particular, two homogenization procedures are propo
in this paper. The first one, based on the use of the Eshelby in
sion solution, is developed for dilute distribution composites;
homogenization technique can be very effective for SMA comp
ites as they are usually characterized by low values of the fi
volume fraction—less than 10%. The second technique consi
the problem of periodic composites, which is solved using
finite-element method~FEM!. The thermomechanical behavior o
the composite is governed by the martensite volume fraction
the SMA wires. In particular, it is assumed that the marten
volume fraction depends on the wire temperature and on the
mal stress acting in the fiber direction. In fact, smart structu
elements are designed orienting the fibers in the direction a
which the actuation has to be performed, i.e., where the m
stress occurs. A possible prestrain of the fibers is taken into
count in the model. A backward-Euler technique is used to in
grate the evolutive constitutive equations governing the SMA
havior. Finally, numerical applications are performed
investigate the thermomechanical behavior of SMA composi
and some comparisons between the results obtained by the
proposed homogenization procedures are developed.

2 Material Models for Composite SMA
The CSMA is a material obtained embedding SMA fibers int

matrix material, which is generally a composite material, such
glass or carbon epoxy plastic. In Fig. 1, the CSMA materia
schematically represented, specifying the Cartesian coordi
260 Õ Vol. 72, MARCH 2005
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system adopted throughout the paper. The unit cell of the com
ite material is indicated byV, while V andM represent the inclu-
sion and the matrix, respectively.

2.1 SMA Model. Several mathematical models able to r
produce the SMA constitutive behavior have been proposed in
literature. Boyd and Lagoudas@18# proposed a thermomechan
cally consistent model that takes into account the phase tran
mation and the martensite reorientation process. Raniecki
Lexcellent @19# developed a pseudoelastic thermodynamica
consistent model. Souza et al.@20# proposed a computationally
suitable three-dimensional SMA model, as illustrated also in R
@21#.

Herein, a simple model, based on the approach propose
Refs.@22,23#, is presented; it considers the superelastic behav
as well as the shape memory effect. Moreover, the model p
posed in the following is able to reproduce the experimenta
observed@24,25# asymmetric tension–compression behavior
the SMA. Only austenite–single variant martensite phase trans
mations are considered in the following. The austenite and
single variant martensite volume fractions are denoted asjA and
jS , respectively. SincejA1jS51, we have

jA512jS (1)

Hence, the single variant martensite volume fraction is chose
an independent variable governing the phase transformations

The elastic stress–strain relationship in the SMA inclusionV is
defined as

sV5EhV (2)

wheresV andhV are the stress and the elastic strain in the SM
inclusion, respectively, andEV is the fourth-order elastic tensor o
the SMA, assumed independent of the martensite volume frac
jS .

The total strain is obtained as

«V5hV1~d1jSb!p1~T2T0!tV (3)

wherep5k3
^ k3, d is the prestrain acting along the SMA fibe

direction,b is an internal variable describing the change of m
tensite reorientation, andtV5aVI is the thermal strain induced
by a unit temperature change, withaV the expansion coefficient,I
the identity tensor,T0 the reference temperature, andT the actual
temperature.

From Eq.~3! it can be noted that the inelastic strain due to t
martensite transformation is assumed acting only along the fi
direction. This hypothesis, which greatly simplifies the model, c
be considered justified by the fact that the SMA wires are align
along the direction in which the actuation is desired.

Fig. 1 SMA composite material
Transactions of the ASME



n

o

h
e

s

n

he

-
t

ec-

re

rial,

and

ela-
A further simplifying hypothesis is introduced in the evolutio
ary equation of the single variant martensite fraction volumejS .
In fact, it is assumed that the SMA phase transformations
governed by the normal stress in the fiber directionk3.

The following evolutive equation, with respect to the evoluti
parametert, is assumed for the internal variableb:

db

dt
5H v@«L sgn~s33

V !2b#@ us33
V u2sSS#, when us33

V u.sSS

0, otherwise
(4)

where«L is the recoverable strain representing a measure of
maximum deformation obtainable aligning all the single varia
martensite in one direction, with«L5«L

(1) in tension and«L

5«L
(2) in compression,v is a material parameter measuring t

reorientation process rate,sSS is a limit stress that activates th
reorientation process, withsSS5sSS(1) in tension andsSS

5sSS(2) in compression,u•u is the absolute value.
The evolution of the martensite fractionjS depends on the

stress state and on the temperature, and it is governed by
equation

djS

dt
52~12jS!F 1

us33
V u2s̃ f

AS~6 !

dus33
V u

dt
1

1

T2T̃f
AS~6 !

dT

dt G ,

when s̃s
AS~6 !<us33

V u<s̃ f
AS~6 ! (5)

for the conversion of austenite into martensite~A→S! and by the
equation

djS

dt
5jSF 1

us33
V u2s̃ f

SA~6 !

dus33
V u

dt
1

1

T2T̃f
SA~6 !

dT

dt G ,

when s̃s
SA~6 !<us33

V u<s̃ f
SA~6 ! (6)

for the conversion of martensite into austenite~S→A!. The quan-
tities s̃s

AS(1) , s̃ f
AS(1) , s̃s

SA(1) , s̃ f
SA(1) , s̃s

AS(2) , s̃ f
AS(2) , s̃s

SA(2) ,
s̃ f

SA(2) , T̃s
AS(1) , T̃f

AS(1) , T̃s
SA(1) , T̃f

SA(1) , T̃s
AS(2) , T̃f

AS(2) ,
T̃s

SA(2) , T̃f
SA(2) represent the initial and final values of the stre

at a prescribed temperature, and of the temperatures, at a
scribed stress, for the transformation of austenite into marten
and for the transformation of martensite into austenite, resp
tively. The superscripts~1! and~2! indicate the cases of tensio
and compression, respectively.

With the help of Fig. 2, the transformation stresses and te
peratures are given by the following equations:

s̃s
AS~6 !5^ss

AS~6 !1CAS~6 !~T2Ts
AM!&1,

s̃ f
AS~6 !5^s f

AS~6 !1CAS~6 !~T2Ts
AM!&1

s̃s
SA~6 !5^CSA~6 !~T2Ts

SA!&1, s̃ f
SA~6 !5^CSA~6 !~T2Tf

SA!&1

T̃s
AS~6 !5K s33

V 2ss
AS~6 !1CAS~6 !Ts

AM

CAS~6 ! L 1

,

T̃f
AS~6 !5K s33

V 2s f
AS~6 !1CAS~6 !Ts

AM

CAS~6 ! L 1

T̃s
SA~6 !5K s33

V 1CSA~6 !Ts
SA

CSA~6 ! L 1

, T̃f
SA~6 !5K s33

V 1CSA~6 !Tf
SA

CSA~6 ! L 1

(7)

where

• CAS and CSA are the Clausius-Clapeyron constants for t
phase transformations A→S and S→A, respectively; they are
set asCAS5CAS(1) and CSA5CSA(1) in tension andCAS

5CAS(2) andCSA5CSA(2) in compression;
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• ss
AS and s f

AS are the starting and final stress for the A→S
phase transformation at temperatureT5Ts

AM ; they are set as
ss

AS5ss
AS(1) and s f

AS5s f
AS(1) in tension andss

AS5ss
AS(2)

ands f
AS5s f

AS(2) in compression;
• Ts

SA and Tf
SA are the starting and final temperature for t

S→A phase transformation at stress equal to zero.

2.2 Matrix Model. A linear elastic constitutive law is con
sidered for the matrix materialM. In particular, it is assumed tha

sM5EMhM (8)

whereEM is the fourth-order elastic tensor of the matrix andsM

andhM are the stress and the elastic strain in the matrix, resp
tively. The total strain is given by

«M5hM1~T2T0!tM (9)

with tM5aMI the thermal strain induced by a unit temperatu
change andaM the expansion coefficient of the matrix.

3 Overall CSMA Response
The average stress and strain in the composite SMA mate

respectively, are defined as

s̄5
1

V S E
V

sVdV1E
M

sMdVD 5 f Vs̄V1 f Ms̄M (10)

«̄5
1

V S E
V

«VdV1E
M

«MdVD 5 f V«̄V1 f M«̄M (11)

with f V5V/V and f M5M /V the volume fractions, while«̄V, s̄V

and «̄M, s̄M are the average strain and stress in the inclusion
in the matrix, respectively.

The CSMA presents a constitutive overall stress–strain r
tionship, which can be written in the following form:

s̄5Ēē (12)

Fig. 2 Scheme of the phase transformations in uniaxial ten-
sion and compression versus temperature
MARCH 2005, Vol. 72 Õ 261
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where Ē is the overall fourth-order elastic tensor of the CSM
and ē is the average elastic strain. The total average strai
obtained as

«̄5ē1~d1jSb!p̄1~T2T0! t̄ (13)

with p̄ the average strain tensor due to the inelastic strainp in the
SMA inclusion andt̄ the average strain tensor due to the u
temperature change effect.

The homogenization procedure is performed in the follow
three phases, schematically illustrated in Fig. 3:

• homogenization of the elastic moduli to get the overall elas
tensorĒ; in this phase only the average elastic strain is c
sidered, while the inelastic deformations are not taken i
account;

• determination of the overall second-order strain tensorp̄,
when a constant inelastic strainp is present in the inclusion
V, under the condition of null average stress;

• evaluation of the tensort̄ due to the inelastic thermal defor
mation, under the condition of null average stress.

In order to derive a model that is simple and in the meanwh
effective, a fundamental hypothesis can be introduced regar
the evolution of the martensite–austenite phase transformatio
fact, it is assumed that the stress governing the phase transfo
tions is the average normal stresss̄33

V in the SMA wire. Thus,
evolutive Eqs.~4!–~6! are simply modified substituting the ave
age stresss̄33

V to the normal stresss33
V .

To compute the average stress in the inclusion, it is necessa
evaluate the average elastic strainhV in the inclusion, which is
obtained as a linear combination of the elastic strainsēel

V , p̄el
V , and

t̄el
V , due to the overall deformationsē, p̄, and t̄, respectively:

h̄5ēel
V1~d1jSb!p̄el

V1~T2T0! t̄el
V (14)

Summarizing, the proposed homogenization procedure is base
the two fundamental simplifying hypotheses presented abo
specifically, they are

• the inelastic strain due to the martensite transformation
assumed acting only along the fiber direction;

• the stress governing the phase transformations is the ave
normal stresss̄33

V in the SMA wire.

4 Dilute Distribution
Let us consider the homogenization problem of a compo

characterized by a low value of the SMA volume fraction. T
average strain in the cell is denoted as«̄, while a prescribed strain
g is considered in the inclusion.
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The stress and the strain tensors in the composite materia
be represented in the following form@26,27#

s5s̄1sd, «5«̄1«d (15)

wheresd and«d are the disturbances with respect to the avera
stress and strain tensor, respectively, due to the presence o
inclusionV. Moreover, the elastic strain in the inclusion is:

«el
V5«V2g (16)

The effect of the heterogeneity of the CSMA cell, i.e., the var
tion of elastic moduli from the matrix to the inclusion, can b
simulated introducing an eigenstrain«* in a homogeneous mate
rial characterized by the matrix elastic properties, as schematic
shown in Fig. 3. This inelastic strain should be able to reprod
the stress state in the inclusionV; thus, taking into account Eqs
~15! and~16!, the following classical consistency equation can
written

EV~ «̄1«d2g!5EM~ «̄1«d2g2«* ! (17)

From Eq.~17! the strain in the inclusion is derived as

«V5«̄1«d5g1AV«* (18)

with

AV5~EM2EV!21EM (19)

The solution of the Eshelby problem proves that the eigenstrai
a single ellipsoidal volumeV leads to a constant strain«d in V,
given by the algebraic equation

«d5SV~«* 1g! (20)

whereSV is the fourth-order Eshelby tensor. Substituting the E
helby formula~20! into Eq. ~18! and solving with respect to the
eigenstrain«* yields

«* 5P«̄1Qg (21)

with

P5~AV2SV!21, Q5~AV2SV!21~SV2I! (22)

The total and the elastic strains in the inclusion are constant
can be evaluated from Eqs.~16!, ~18!, and~21! as

«V5«̄V5g1AV~P«̄1Qg!, «el
V5«̄el

V5AV~P«̄1Qg!
(23)

4.1 Overall Elastic TensorĒ. The average strain in the ce
and the prescribed strain in the inclusion are set as

«̄5ē, g50 (24)
Transactions of the ASME
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From the average strain Eq.~11!, we get

f MēM5ē2 f VēV (25)

which, taking into account the constitutive equation of the ma
material~8!, gives

f Ms̄M5 f MEMēM5EM~ ē2 f VēV! (26)

Because of the average stress Eq.~10! and of the constitutive Eqs
~2! and~12! for the inclusion and for the composite, respective
we get

f Ms̄M5s̄2 f Vs̄V5Ēē2 f VEVēV (27)

Thus, formulas~26! and ~27! give

~EM2Ē!ē5 f V~EM2EV!ēV (28)

Substitution of expressions~23! and~19! into Eq.~28! leads to the
evaluation of the overall elastic tensor

Ē5EM@ I2 f V~AV2SV!21# (29)

whereI is the fourth–order identity tensor.
The average strain in the inclusion, due to the presence of

elastic average strainē in the whole cell, is elastic, and it is ob
tained taking into account formulas~23!, as

ēel
V5ēV5AVPē (30)

4.2 Effect of the Inelastic Strain p. Let us consider the
problem of the inclusion subjected to the inelastic strainp, whose
presence is responsible of an average strainp̄ of the whole cell. In
the formulas~15!–~23!, it is set as

«5p, g5p (31)

so that the average elastic strain in the inclusion isp̄V2p. Taking
into account the relations~10! and~11!, and the constitutive equa
tions of the matrix and the inclusion, the average stress in
CSMA is

s̄p5 f Vs̄pV1 f Ms̄pM5 f VEV~ p̄V2p!1 f MEMp̄M

5 f VEV~ p̄V2p!1EM~ p̄2 f Vp̄V!

5EMp̄1 f V~EV2EM !p̄V2 f VEVp (32)

Substituting the first of the formulas~23! into relation ~32!, and
setting the average stress in the cell subjected only to the inel
strainp equal to zero, it results that

p̄52 f V@EM~ I2 f VP!#21@~EV2EM !~ I1AVQ!2EV#p
(33)

As it is,

~EV2EM !~ I1AVQ!2EV52EM~ I1Q! (34)

Eq. ~33! becomes

p̄5 f V~ f VP2I!21~ I1Q!p (35)

so that, because of formulas~23!, the total and the elastic strain
in the inclusion are

pV5p̄V5p1AV~Pp̄1Qp!, pel
V5p̄el

V5AV~Pp̄1Qp!
(36)

4.3 Effect of the Temperature. An average inelastic strain
t̄ can be induced by thermal expansion of the CSMA, charac
ized by different thermal coefficientsaM and aV of the matrix
and the inclusion, respectively. The effect of the thermal exp
sion is evaluated in two steps.

• In the first step it is considered the effect of the therm
coefficientaM in the whole cell; in this case, the strain in the ce
assumes the constant value

t15 t̄15aMI (37)
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• In the second step, the effect of the thermal coefficientDa
5aV2aM in the inclusion alone is studied; this second case c
responds to the problem solved in the previous subsection. In
the inclusion results subjected to an inelastic strainDa I . Taking
into account formula~35!, the average strain in the cell is

t̄25Da f V~ f VP2I!21~ I1Q!I (38)

As a consequence, the second-order strain tensort̄ due to the unit
temperature change effect is equal to

t̄5 t̄11 t̄25aMI1Da f V~ f VP2I!21~ I1Q!I (39)

The elastic deformations of the cell due to the thermal effec
induced only by the average straint̄2; thus, it results that

t̄el
V5AV~Pt̄21DaQI ! (40)

5 Periodic Composite
A periodic composite is obtained by assembling an infin

number of repetitive adjacent unit cellsV. In the following, par-
allelepiped unit cells are considered with the total dimensio
along the three coordinate axesx1 , x2 , x3 denoted by 2a1 , 2a2 ,
and 2a3 , respectively. Thex3 axis is parallel to the SMA fiber
direction, so that the repetitive unit cell is obtained consider
any possible value ofa3 . For periodic media, the displaceme
field can be represented in the form

u~x1 ,x2 ,x3!5«̄x1û~x1 ,x2 ,x3! (41)

where x is the position vector of the typical point ofV and
û(x1 ,x2 ,x3) is the periodic part of the displacement@28#. As con-
sequence of formula~41!, the strain tensor is given by

«~x1 ,x2 ,x3!5«̄1«̂~x1 ,x2 ,x3! (42)

where the strain tensor«̂(x1 ,x2 ,x3) is V-periodic in R3 with null
average inV.

As the thickness of the unit cell in the fiber direction can a
sume any value, the periodicity and continuity conditions alo
the x3 direction on the displacement field results in

û~x1 ,x2 ,a3!5û~x1 ,x2 ,2a3!,
;x1P@2a1 ,a1#
;x2P@2a2 ,a2#

, ;a3

(43)

which leads toûi(x1 ,x2 ,x3)5ûi(x1 ,x2). Thus, the in-plane peri-
odicity and continuity conditions are

û~a1 ,x2!5û~2a1 ,x2!, ;x2P@2a2 ,a2#
(44)

û~x1 ,a2!5û~x1 ,2a2!, ;x1P@2a1 ,a1#

The estimate of the micromechanical behavior of a periodic co
posite material is derived from the solution of the heterogene
medium subjected to the mean strain state«̄, under the prescribed
inelastic straing in the inclusion. Hence, the elastostatic proble
governed by the following equations, is considered:

div s50, in V

«5«̄1¹su, in V

s5EM«, in M

s5EV~«2g!, in V (45)

subjected to the boundary conditions~44!. In Eqs.~45! the symbol
¹s denotes the symmetric part of the gradient operator.

The problem defined by Eqs.~44! and ~45! is solved consider-
ing two schemes. In the first scheme the representative ce
subjected only to the average strain«̄ with g50. The strain dis-
tribution in the unit cell is obtained as

«1~x1 ,x2 ,x3!5R~x1 ,x2 ,x3!«̄ (46)
MARCH 2005, Vol. 72 Õ 263
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whereR is the so-called localization tensor, associated with
assumed average strain«̄. The second scheme considers only t
inclusion subjected to the deformationg with the average strain«̄
equal to zero; thus, the local strain is written in the form

«2~x1 ,x2 ,x3!5R̂~x1 ,x2 ,x3!g (47)

where R̂ is the localization tensor, associated to the prescri
inelastic straing in the inclusion. The elastic strains in the matr
and in the inclusion are

eel
M5R«̄1R̂g, eel

V5R«̄1~R̂2I!g (48)

so that, the average stress in the periodic unit cell results in

s̄5
1

M E
M

EM«el
MdV1

1

V E
V

EV«el
VdV

5S EM
1

M E
M

RdV1EV
1

V E
V

RdVD «̄

1FEM
1

M E
M

R̂dV1EV
1

V E
V

~R̄2I!dVGg (49)

The two localization tensorsR andR̂ can be computed using th
FEM. In fact, the components ofR are determined solving the si
elastic problems, each one characterized by only one nonzer
ement of«̄. Analogously, the component ofR̂ are computed solv-
ing the six elastic problems obtained by setting to nonzero o
one element ofg.

5.1 Overall Elastic TensorĒ. The overall elastic respons
of the heterogeneous composite material is determined settin

«̄5 ē, g50 (50)

In this case, the average elastic strain in the inclusion results

ēel
V5

1

V E
V

RdV ē (51)

Taking into account the positions~50!, from the formula~49! it is
possible to evaluate overall elastic tensor as

Ē5EM
1

M E
M

RdV1EV
1

V E
V

RdV (52)

5.2 Effect of the Inelastic Strainp. Set

«5p, g5p (53)

Substituting positions~53! into the average stress Eq.~49!, and
taking into account formula~52!, the conditions̄50 gives

p̄5Tp, with T52Ē21FEM
1

M E
M

R̂dV1EV
1

V E
V

~R̂2I!dVG
(54)

The average elastic strain in the inclusion is

p̄el
V5S 1

V E
V

RdVD p̄1F 1

V E
V

~R̂2I!dVGp

5
1

V H S E
V

RdVDT1F E
V

~R̂2I!dVG J p (55)

5.3 Effect of the Temperature. As in the case of dilute
distribution, the effect of the thermal expansion is evaluated
two steps, the first one characterized by a constant thermal c
ficient aM in the whole cell, and the second one by a therm
coefficientDa5aV2aM in the inclusion. Following the proce
dure proposed in subsection 4.3 and taking into account form
~54!, the average strain tensort̄ due to the unit temperature chang
effect results in
264 Õ Vol. 72, MARCH 2005
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t̄5~aMI1DaT!I (56)

The elastic deformation of the cell due to the thermal effect
induced only by the average strain results in

t̄el
V5Da

1

V H S E
V

R dVDT1F E
V

~R̂2I!dVG J I (57)

6 Numerical Results
Two numerical procedures based on the proposed homoge

tion techniques are developed. The first, based on the dilute
tribution homogenization presented in Sec. 4, allows us to ev
ate the quantitiesĒ, AV, P, p̄, p̄el

V , t̄, and t̄el
V for composites

characterized by a low value of the SMA volume fraction. It c
be emphasized again that SMA composites are character
mainly by reduced values of the volume fraction; as a con
quence the Eshelby solution can lead to satisfactory solutions.
the dilute distribution technique the following components of t
Eshelby tensor, suitable for a long-fiber composite, are adop
for the computations:

S1111
V 5S2222

V 5
524n

8~12n!
, S1122

V 5S2211
V 5

124n

8~12n!

S1133
V 5S2233

V 5
n

2~12n!
, S1212

V 5
324n

8~12n!

S1313
V 5S2323

V 5
1

4
, S3333

V 5S3311
V 5S3322

V 50 (58)

The second numerical procedure, developed for periodic com
ites, allows us to evaluate the quantitiesĒ, R̂V, p̄, p̄el

V , t̄, andt̄el
V ,

once the components ofR and R̂ are computed, solving 12 elas
tostatic problems of the repetitive unit cell using the FEM; in th
framework, a new suitable linear elastic finite element, descri
in detail in Ref.@29#, is developed on the base of the kinematic
hypotheses introduced in Sec. 5. A backward-Euler algorithm
used to integrate the evolutive constitutive equations of the S
material for both the homogenization procedures.

Next, numerical applications are developed to assess the ab
of the two proposed homogenization techniques to reproduce
thermo-mechanical behavior of the SMA composites and to st
their superelastic and shape memory effects. Fibers of Ni-Ti al
embedded in a polymeric matrix characterized by low stiffne
are considered. In particular, the material properties of the ela
matrix and of the SMA are

• matrix:

EM53600 MPa nM50.305 aM50.0°C21

• SMA fiber:

EV570,000 MPa, nV50.33, aV50.00001°C21

Tf
AM55°C, Ts

AM510°C, Ts
SA530°C, Tf

SA531°C

ss
AS~6 !5140 MPa, s f

AS~6 !5200 MPa,

sSS~6 !530 MPa, «L
~6 !50.07

CAS~6 !58.0 MPa/°C, CSA~6 !58.0 MPa/°C, v50.5

whereEM, nM, EV, andnV are the Young modulus and the Poi
son coefficient for the matrix and for the SMA, respectively.

6.1 Overall Elastic TensorĒ. Initially, a comparison of the
values of the overall elastic tensorĒ components, obtained by th
two proposed procedures, is performed for a composite chara
ized by the SMA volume fractionf V50.036. The periodic cell
problem is solved adopting a quite fine mesh characterized by
four-node elements.
Transactions of the ASME
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Table 1 Elastic constants of the overall constitutive tensor, expressed in †MPa‡

Ē11115Ē2222 Ē3333 Ē13135Ē2323 Ē1122 Ē11335Ē2233 Ē1212

Dilute
composites

5153.32 7378.87 1541.94 2251.93 2267.29 1511.5
~1450.70!

Periodic
composites

5165.20 7377.75 1472.78 2254.18 2271.64 1456.2
~1455.51!
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As the composite material is obtained by isotropic long fib
embedded in an isotropic matrix, the constitutive tensorĒ is trans-
versely isotropic, so that it is characterized by five independ
elastic constants.

In Table 1, the values of the average elastic moduli of the ten
Ē obtained with the two homogenization procedures are repor
It can be emphasized that the values of the sixth elastic cons
Ē1212 depends onĒ1111 andĒ1122; thus, the values ofĒ1212 com-
puted by the two procedures are given and compared with
ones determined applying the classical formula for transver
isotropic materials Ē12125(Ē11112Ē1122)/2, reported between
brackets. The values obtained using the dilute distribution and
periodic cell approaches are in good accord. This very satisfac
result is due to the reduced, but realistic, value of the inclus
fraction volume. Furthermore, the computed values ofĒ1212 dem-
onstrate the very good accuracy of the FEM solution for the
riodic cell problem.

6.2 Shape Memory Effect. The shape memory effect is in
vestigated. The volume fraction of the inclusion isf V50.1. The
following loading–unloading history is considered, setting the r
erence temperatureT0520°C:

t @s# 0 1 2 3 4

«̄33 0 0.025 0.0063 0.000 0.00
T@°C# 20 20 20 55 20

with the other components of the overall strain equal to zero.
initial prestrain of the SMA wires is considered.

In Fig. 4 the overall stresss̄33 and the stress in the SMAs̄33
V are

plotted versus the overall strain«̄33. The results obtained by th
dilute and periodic cell homogenization techniques are in v
good accord, so that only one curve has been plotted. It ca
noted that the response of the composite is significantly influen
by the shape memory effects in the SMA.

Fig. 4 Shape memory effect in the mechanical response of the
SMA composite
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With reference to the diagramss̄33– «̄33, s̄33
V – «̄33 and to Fig. 2,

the mechanical response of the composite can be divided in
following steps:

• Lines AB and A8B8, A→S phase transformation in the SM
at the constant temperatureT0 until the value of the average
strain«̄3350.025 is reached. It corresponds to a partial ph
transformation with the final value of martensite volume fra
tion js50.3.

• Lines BC and B8C8, unloading phase at constant temperatu
with no phase transformation.

• Lines CD and C8D8, reorientation process in the SMA fiber a
a constant temperature.

• Lines DE and D8E8, increasing of the temperature until th
starting of the S→A phase transformation.

• Lines EF and E8F8, S→A phase transformation controlling
the value ofjs with s̄3350 until the strain and the stress i
the SMA are equal to zero.

This last step is computed introducing a control of the marten
volume fraction in the algorithm. In particular, taking constant a
equal to zero the average stress in the composite, when the S→A
phase transformation occurs, the inelastic strain decreases an
stress in the SMA fibers changes. Increasing the temperatu
sudden total S→A phase transformation occurs. In order to follo
the stress–temperature equilibrium path, a control on the valu
the martensite volume fraction is necessary. Enforcing a grad
decrease ofjs , a reduction of temperature is induced, as repor
in Fig. 2 with line E8F8.

6.3 SMA Volume Fraction. The superelastic mechanica
response of composites characterized by different values of
SMA volume fraction is studied. In particular, comparisons b
tween the results obtained by the two numerical procedures
carried out, considering the following loading–unloading histo
with no initial prestrain of the SMA wires, under constant tem
peratureT5T0560°C:

t @s# 0 1 2

«̄33 0 0.08 0

with all the other components of the overall strain equal to ze
In Tables 2, 3 and 4, the values of the overall elastic modu

Ē3333, the startings̄33,s
AS and the finals̄33,f

AS transformation average
stresses, for four values of the SMA volume fraction are repor

It can be emphasized that the values of the overall ela
modulus Ē3333 and of the starting and the final transformatio
average stresss̄33,s

AS ands̄33,f
AS , computed by the two homogeniza

Table 2 Elastic constant E ¯
3333@MPa# for different values of the

volume fraction

f V50.01 f V50.036 f V50.05 f V50.1

Dilute
composites

5733.84 7378.87 8557.53 11977.65

Periodic
composites

5734.23 7377.75 8563.39 12000.24
MARCH 2005, Vol. 72 Õ 265
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tion techniques, are in very good agreement for all the conside
values of the inclusion volume fraction. Quite negligible diffe
ences appear only forf V50.1, being equal to 0.19% for the ela
tic modulusĒ3333 and to 0.22% for the starting and final transfo
mation average stresss̄33,s

AS ands̄33,f
AS . Finally, it can be concluded

that the results reported in the tables can be considered in
good accord as these differences are negligible in the evalua
of the overall mechanical response of the composite.

Furthermore, the mechanical responses of composites ch
terized by the SMA volume fractionsf V50.05 andf V50.1 are
reported in Fig. 5, in terms of the overall stresss̄33 versus the
overall strain«̄33. The results obtained by the dilute and period
cell homogenization techniques are denoted by ‘‘Dilute Comp
ite’’ and ‘‘Periodic Composite,’’ respectively, and reported wi
dashed line and dashed-dotted line, respectively. Both the A→S
and S→A phase transformations occur in the SMA, and at end
the isothermal loading–unloading cycle the deformation is co
pletely recovered. The response of the composite is significa
influenced by the superelastic effects in the SMA. As underlin
above regarding the comparisons reported in Tables 2, 3, an
the results are in very good accord for the examined value
inclusion volume fractions.

In the same figure, a further comparison is carried out with
results obtained by the numerical homogenization technique
posed in~Marfia @29#!; this latter procedure is based on nonline
finite-element analyses performed considering the phase tran
mations governed by the local normal stresss33

V in the SMA
wires. The results carried out by this procedure are reporte
Fig. 5 with solid line and are denoted as ‘‘Periodic Composite* .’’

The results obtained for the periodic cell problem, evalua
considering the phase transformations depending on the ave
normal stress and the local normal stress in the fiber, are in

Table 4 Final transformation average stress s̄33,f
AS

†MPa‡ for
different values of the volume fraction

f V50.01 f V50.036 f V50.05 f V50.1

Dilute
composites

381.14 386.60 390.52 401.88

Periodic
composites

381.15 386.61 390.55 401.97

Table 3 Starting transformation average stress s̄33,s
AS

†MPa‡ for
different values of the volume fraction

f V50.01 f V50.036 f V50.05 f V50.1

Dilute
composites

43.10 55.41 64.28 89.93

Periodic
composites

43.00 55.31 64.18 89.74
266 Õ Vol. 72, MARCH 2005
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good accord for both the considered volume fraction values. A
consequence, it can be deduced that the simplifying assumptio
governing the phase transformations by the average stress in
of the local stress is validated.

6.4 Young Modulus of the Matrix. The superelastic me
chanical responses of long-fiber SMA composites character
by different values of the matrix Young modulus are investiga
for f V50.036. The loading–unloading history under consta
temperatureT5T0560°C, adopted in the subsection 6.3 to stu
the superelastic effects, is considered. The analyses are perfo
using only the homogenization procedure based on Eshelby in
sion method. No prestrain is assumed in the SMA fibers.

In Fig. 6, the mechanical responses of the SMA composi
characterized by four different values of the matrix Young mod
lus, are represented in terms of overall stresss̄33 versus the over-
all strain «̄33. It can be noted that the startings̄33,s

AS and the final
s̄33,f

AS transformation average stresses increase with the stiffnes
the matrix. Moreover, the overall responses, obtained embed
SMA fibers in stiffer matrices, appear less influenced by the n
linear behavior of shape memory alloys.

6.5 Prestrain in the SMA Fibers. In the following analy-
ses, the SMA volume fraction is set equal to 0.036. A prestr
d520.008 is applied to the SMA fibers before performing
loading–unloading cycle at constant temperatureT5T0560°C.
In particular, the following overall strain history is considered:

t @s# 0 1 2

«̄33 0 0.075 20.008

with the other strain components equal to zero.
The loading–unloading history induces the complete austen

Fig. 6 Superelastic mechanical response of the SMA compos-
ites with different values of the matrix Young modulus
Fig. 5 Superelastic effect in the mechanical response of the SMA for composites with dif-
ferent values of the SMA volume fraction: „a… f VÄ0.05; „b… f VÄ0.1
Transactions of the ASME
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martensite and martensite–austenite phase transformations i
SMA material. The analysis is performed using the homogen
tion technique based on the periodic cell.

In Fig. 7, the overall stresss̄33 and the stress in the SMAs̄33
V

are plotted versus the overall strain«̄33. With reference to the
diagrams̄33

V – «̄33, it can be noted that:

• when the prestrain is applied to the fibers~line AB!, the over-
all stresss̄33 remains equal to zero, a negative overall strain«̄33

occurs in the composites, while the stress in the SMA fiberss̄33
V is

positive. At the end of the prestrain phase, the process of reo
tation has completely occurred, while the austenite–marten
phase transformation has not started as yet;

• during the loading~line BCDE! and the unloading~line
EFGH!, the A→S and S→A phase transformations occur.

Comparing the results in Fig. 7 with the ones, regarding the
perelastic effects without prestrain in the SMA fibers, it can
noted that the loading–unloading cycle, during which the A→S
and S→A phase transformations occur in the SMA fibers, h
shifted in the stress–strain space towards to lower values of
overall strain but without altering its shape.

A higher value of the prestrain equal tod520.09 is considered
in order to achieve a complete A→S phase transformation durin
the prestrain; a loading–unloading history is then applied in or
to obtain the martensite–austenite phase transformation at a
stant temperatureT5T0560°C. In particular, the following over-
all strain history is studied:

t @s# 0 1 2

«̄33 0 0.01 20.09

with the other strain components equal to zero.
In Fig. 8 the overall stresss̄33 and the stress in the SMAs̄33

V are
plotted versus the overall strain«̄33. With reference to the dia-
gram s̄33

V – «̄33, it can be pointed out that

• in the prestrain phase~line AB! the diagrams̄33
V – «̄33 is linear,

although the austenite–martensite phase transformation c
pletely occurs;

• during the loading~line BC! the SMA composites is charac
terized by a linear elastic response;

• during the unloading~line CDEF!, the S→A phase transfor-
mation occurs in the SMA fibers in correspondence of the plat

Fig. 7 Effect of a low value of the prestrain in the SMA fibers
on the mechanical response of the SMA composite
Journal of Applied Mechanics
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~line DE!. Comparing this plateau with the one, obtained witho
prestrain, it can be pointed out that it has shifted in the stre
strain space towards to negative values of the overall strain w
out altering its shape.

7 Conclusions
The two proposed homogenization techniques, one based o

Eshelby inclusion solution and the other considering the perio
composites, are proved to be able to model and to reproduce
behavior of long-fiber SMA composites. The procedures are ba
on two reasonable assumptions: the phase transformations
governed by the average normal stress in the fibers and the in
tic strain, due to the SMA phase transformations, occurs along
fiber direction.

From the numerical results, the following considerations can
made:

• The behavior of the composites results strongly influenced
the superelastic and shape memory effects in the SMA.

• The results obtained using the proposed homogenization
cedures are in very good accordance for all the considered va
of the SMA volume fraction. The dilute distribution procedure
also reliable for value of the inclusion volume fraction equal
0.1; the fiber volume fractions in SMA composites are usua
very low, since a low quantity of shape memory alloy significan
influences the composite behavior.

• The simplified assumption of governing the phase trans
mations by the average stress instead of the local stress is
dated.

• The influence of the matrix stiffness on the mechanical
sponse of the SMA composite is investigated. It results that
creasing the matrix stiffness the initial and final transformat
average stresses become higher.

• The influence of a prestrain state in the SMA fibers is studi
Increasing the value of the prestrain, the average activation s
of the A→S phase transformation decrease and for a prest
higher enough the complete phase transformation occurs with
average stress.

From a computational point of view, the procedure based on
Eshelby method is more efficient and faster than the periodic
technique. In fact, the homogenization parameters that chara
ized the composites’ behavior are evaluated directly in a sin
preanalysis, for the dilute distribution technique, and perform
12 linear elastic finite-element preanalyses that require more c
putational efforts, for the periodic cell.

Finally, the proposed procedures, able to determine the ove
behavior for the SMA composite, can be implemented at

Fig. 8 Effect of a high value of the prestrain in the SMA fibers
on the mechanical response of the SMA composite
MARCH 2005, Vol. 72 Õ 267
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Gauss point level in a finite-element code in order to perfo
structural analyses and to design actuators made of SMA com
ites able to control the displacements and vibrations of structu
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Nomenclature

Ē 5 overall fourth-order elastic tensor of the compo
ite

EV EM 5 fourth-order elastic tensor of the SMA inclusion
and of the matrix

T0 5 reference temperature
T 5 actual temperature
ē 5 average elastic strain in the composite

ēel
V , p̄el

V , t̄el
V 5 elastic strains in the inclusion due to the overa

deformationsē, p̄, t̄
p̄ 5 average strain tensor due to the inelastic strainp
t̄ 5 average strain tensor due to the unit temperatu

change effect
aV aM 5 thermal expansion coefficient of the inclusion

and of the matrix
b 5 internal variable describing the change of mar-

tensite reorientation
d 5 prestrain acting along the SMA fiber direction
«̄ 5 overall average total strain in the composite

«V «M 5 total strain in the SMA inclusion and in the ma
trix

«̄V «̄M 5 average total strain in the inclusion and in the
matrix

«L 5 recoverable strain of the SMA

hV hM 5 elastic strain in the SMA inclusion and in the
matrix

jS 5 single variant martensite volume fraction
p5k3

^ k3 5 k3 unit vector in the fiber direction
s̄ 5 average stress in the composite

sV sM 5 stress in the SMA inclusion and in the matrix
s̄V s̄M 5 average stress in the inclusion and in the matr

sSS 5 limit stress that activates the reorientation pro-
cess in the SMA

tV tM 5 strain due to a unit temperature change in the
inclusion and in the matrix

v 5 material parameter measuring the reorientation
process rate of the SMA
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Monte Carlo Simulation of
Moment Lyapunov Exponents
A Monte Carlo simulation method for determining the pth moment Lyapunov exponents
stochastic systems, which governs the pth moment stability, is developed. Numerical r
sults of two-dimensional systems under bounded noise and real noise excitation
presented to illustrate the approach.@DOI: 10.1115/1.1839592#
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1 Introduction
Stochastic differential equations are encountered in various

ciplines, among which are engineering, science, and mathema
In many engineering structures, such as buildings, bridges,
exchangers, and aircrafts, the loadings applied, such as those
ing from winds, earthquakes, or flows, often fluctuate in a rand
fashion. These loadings can only be described satisfactoril
probabilistic terms. The dynamic responses of these enginee
structures are governed in general byn-dimensional stochastic
differential equations of the form

Ẋj5 f j~ t,X,j!, j 51,2, . . . ,n, (1.1)

where X5$X1 ,X2 , . . . ,Xn%
T is the state vector of the system

andj is a vector of stochastic processes, such as bounded-n
Ornstein–Uhlenbeck, or other filtered white-noise processes
characterize the randomness of the loadings.

One of the most important dynamical properties of the solut
of system~1.1! is its dynamic stability. The sample or almost su
stability of system~1.1! is governed by the Lyapunov exponen
defined as

lX5 lim
t→`

1

t
logiXi , (1.2)

where iXi5(XTX)1/2 is the Euclidean norm. If the larges
Lyapunov exponent is negative, the trivial solution of system~1.1!
is stable with probability 1; otherwise, it is almost surely unstab

The theory of Lyapunov exponents was placed on a solid m
ematical footing in the celebratedMultiplicative Ergodic Theorem
by Oseledec@1#. For then-dimensional system~1.1!, depending
on the initial conditions, there aren Lyapunov exponents. Al-
though the dynamic stability of the trivial solution of system~1.1!
is governed by the largest Lyapunov exponent, there are situa
in which other Lyapunov exponents are of interest. For exam
when studying the localization behavior of a one-dimension
multicoupled, randomly disordered periodic structure, the loc
ization factor is given by the smallest positive Lyapunov expon
of the corresponding discrete dynamical system~see, e.g., Ref.
@2#!.

It is well known that almost all samples grow in the direction
the largest Lyapunov exponent. In order to determine the topm
Lyapunov exponents, the evolution ofm orthogonal basis vector
of dimensionn is followed and Gram–Schmidt orthornormaliz
tion is performed after each iteration. This is the essence of
numerical algorithm proposed by Wolf et al.@3# for evaluating the
Lyapunov exponents of a dynamical system.

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the Applied Mechanics Division, January 3, 20
final revision, September 17, 2004. Associate: N. Sri Namachchivaya. Discussio
the paper should be addressed to the Editor, Prof. Robert M. McMeeking, Journ
Applied Mechanics, Department of Mechanics and Environmental Engineering,
versity of California–Santa Barbara, Santa Barbara, CA 93106-5070, and wi
accepted until four months after final publication in the paper itself in the AS
JOURNAL OF APPLIED MECHANICS.
Copyright © 2Journal of Applied Mechanics
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On the other hand, the stability of thepth momentE@ iXip# of
the solution of system~1.1! is governed by thepth moment
Lyapunov exponent defined by

LX~p!5 lim
t→`

1

t
log E@ iXip#, (1.3)

whereE@•# denotes the expected value. IfLX(p) is negative, then
the pth moment is stable; otherwise, it is unstable.

The relationship between the sample stability and the mom
stability was formulated in Ref.@4#. A systematic study of momen
Lyapunov exponents is presented in Ref.@5# for linear Itôsystems
and in Ref.@6# for linear stochastic systems under real-noise
citations. The connection between moment Lyapunov expon
and the large deviation theory was studied in Refs.@7#, @8#, and
@9#. A systematic presentation of the theory of random dynam
systems and a comprehensive list of references can be foun
Ref. @10#.

The pth moment Lyapunov exponentLX(p) is a convex ana-
lytic function in p that passes through the origin and the slope
the origin is equal to the largest Lyapunov exponentlX , i.e.,

lX5 lim
p→0

LX~p!

p
. (1.4)

The nontrivial zerodX of LX(p), i.e., LX(dX)50, is called the
stability index.

To have a complete picture of the dynamical stability of a s
chastic system, it is important to study both the sample and
ment stability and to determine both the Lyapunov exponents
the moment Lyapunov exponents. Despite the importance of
moment Lyapunov exponents, publications are limited becaus
the difficulties in their actual determination. Furthermore, alm
all of the research on the moment Lyapunov exponents is on
determination of approximate results of a single oscillator or t
coupled oscillators under weak-noise excitations using pertu
tion methods. Using the analytic property of the mome
Lyapunov exponents, Arnold et al.@11# obtained weak-noise ex
pansions of the moment Lyapunov exponents of a tw
dimensional system in terms of«p, where« is a small parameter
under both white-noise and real-noise excitations. Khasmin
and Moshchuk@12# obtained an asymptotic expansion of the m
ment Lyapunov exponent of a two-dimensional system un
white-noise parametric excitation in terms of the small fluctuat
parameter«, from which the stability index was obtained. S
Namachchivaya and Vedula@13# obtained general asymptotic ap
proximation of the moment Lyapunov exponent and the Lyapun
exponent for a four-dimensional system with one critical mo
and another asymptotically stable mode driven by a small int
sity stochastic process. Sri Namachchivaya and Van Roessel@14#
studied the moment Lyapunov exponents of two coupled osc
tors driven by real noise. Xie obtained weak-noise expansion
the moment Lyapunov exponent, the Lyapunov exponent, and
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stability index of a two-dimensional system under real-noise
citation @15# and bounded-noise excitation@16# in terms of the
small fluctuation parameter.

Numerical determination of thepth moment Lyapunov expo
nents is important for at least four reasons. Firstly, numeric
accurate results of the moment Lyapunov exponents are esse
in assessing the validity and the ranges of applicability of
approximate analytical results. Secondly, in many engineering
plications, the amplitudes of noise excitations are not small
the approximate analytical methods, such as the method of pe
bation or the method of stochastic averaging, cannot be app
Numerical approaches have to be employed to evaluate the
ment Lyapunov exponents. Thirdly, for systems of large dim
sions, it is very difficult, if not impossible, to obtain analytic
results. Fourthly, for systems under noise excitations that ca
be described in elegant analytical forms, or if only the time se
of the response of the system is known, numerical approac
have to be resorted to.

Xie @17# evaluated numerically thepth moment Lyapunov ex-
ponents of a near-nilpotent system under white-noise param
excitation. The second-order ordinary differential eigenva
problem governing thepth moment Lyapunov exponent is con
verted to a two-point boundary-value problem, which is solv
numerically by the method of relaxation.

Recently, Xie and So@18# presented the first numerical ap
proach in literature for the determination of thepth moment
Lyapunov exponents of a two-dimensional system under n
white-noise, i.e., bounded-noise or real-noise, parametric ex
tions. The partial differential eigenvalue problems governing
pth moment Lyapunov exponents are established using the th
of stochastic dynamical systems. By expanding the eigenfunct
in double Fourier series in the bounded-noise case and in Fo
series and series involving Hermite polynomials in the real-no
case, the partial differential eigenvalue problems are transfor
to linear algebraic eigenvalue problems. The resulting linear a
braic eigenvalue problems are then solved numerically using
‘‘eigs’’ function in MATLAB for determining a few eigenvalues of
large sparse matrix. This numerical approach fulfills the first t
and partially the third purposes mentioned above. The metho
very efficient for lower dimensional systems, for which the part
differential eigenvalue problems can be easily established.
systems of larger dimensions, the conversion from partial dif
ential eigenvalue problems to linear algebraic eigenvalue p
lems using series expansions of the eigenfunctions could be
involved and the dimensions of the resulting linear algebraic
genvalue problems could be very large, which may not be han
efficiently even by using a capable algorithm for sparse matric

Monte Carlo simulation methods are usually more versat
especially when the noise excitations cannot be described in
a form that can be treated easily using analytical tools. In
paper, a Monte Carlo simulation approach is presented for de
mining the pth moment Lyapunov exponents of stochas
systems.

2 Formulation

2.1 Determination of thepth Moment. The state vector of
system ~1.1! is augmented to rewrite system~1.1! as an
N-dimensional system of autonomous Itoˆ stochastic differential
equations

dYj5mj~Y!dt1(
l 51

d

s j l ~Y!dWl , j 51,2, . . . ,N, (2.1)

where Y5$Y1 ,Y2 , . . . ,YN%T, in which Yj5Xj , for j
51,2, . . . ,n. In the remainder of this paper, vectorX and the
vector containing the firstn elements of vectorY are interchange-
able for ease of presentation.

Since the moment Lyapunov exponent is related to the ex
nential rate of growth or decay of thepth moment, only the nu-
270 Õ Vol. 72, MARCH 2005
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merical approximation of thepth moment of the solution of sys
tem ~1.1! or ~2.1! is of interest in the Monte Carlo simulation. A
a result, pathwise approximations of the solutions of the stocha
differential equations~1.1! or ~2.1! are not necessary. Only a muc
weaker form of convergence in probability distribution is r
quired. For the numerical solutions of the stochastic differen
equations~2.1!, weak Taylor approximations may be applied. T
evaluate thepth momentE@ iXip#, S samples of the solutions o
Eqs.~2.1! are generated.

If the functions mj (Y) and s j l (Y), j 51,2, . . . ,N, l
51,2, . . . ,d, are six times continuously differentiable, the simp
fied order 2.0 weak Taylor scheme of thesth realization of Eqs.
~2.1! at thekth iteration with tk2tk215D, whereD is the time
step of integration, is given by@19#

Yj ,s
k 5Yj ,s

k211mj ,s
k21

•D1
1

2
L 0~mj ,s

k21!•D2

1(
l 51

d H s j l ,s
k211

1

2
@L 0~s j l ,s

k21!1L l~mj ,s
k21!#J •DWl ,s

k21

1
1

2 (
l 151

d

(
l 251

d

L l 1~s j l 2 ,s
k21 !~DWl 1 ,s

k21
•DWl 2 ,s

k211Vl 1l 2 ,s
k21 !,

j 51,2, . . . ,N, (2.2)

where the subscript ‘‘s’’ stands for the sth sample, s
51,2, . . . ,S; the superscript ‘‘k’’ stands for the value at timetk ;
and the operatorsL 0, L l are defined as

L 05(
i 51

N

mi

]

]Yi
1

1

2 (
i 51

N

(
j 51

N

(
l 51

d

s i l s j l

]2

]Yi]Yj
,

L l5(
i 51

N

s i l

]

]Yi
, l 51,2, . . . ,d,

in which the functionsmi ands i l are evaluated at timetk21 of the
sth sample. In Eq.~2.2!, DWl ,s

k21 , l 51,2, . . . ,d, are independent
random numbers satisfying the moment condition

uE@DW#u1uE@~DW!3#u1uE@~DW!5#u1uE@~DW!2#

2Du1uE@~DW!4#23D2u<CD3,

for some constantC, in which the scripts forDW are dropped for
simplicity of presentation.DWl ,s

k21 can be taken as a normall
distributed random number with mean 0 and standard devia
AD

DWl ,s
k215nl ,s

k21AD, (2.3)

wherenl ,s
k21 is a standard normal random numberN(0,1). DWl ,s

k21

can also be taken as a random number satisfying the follow
three-point distribution:

P~DWl ,s
k2156A3D!5

1
6, P~DWl ,s

k2150!5
2
3. (2.4)

Vl 1l 2 ,s
k21 are independent random numbers with the following tw

point distribution, forl 151,2, . . . ,d;

P~Vl 1l 2 ,s
k21 56D!5

1
2, for l 251,2, . . . ,l 121,

Vl 1l 2 ,s
k21 52D, for l 25 l 1 , (2.5)

Vl 1l 2 ,s
k21 52Vl 2l 1 ,s

k21 , for l 25 l 111, l 112, . . . ,d.

For the special case whend51, the order 2.0 weak Taylo
scheme is, fors51,2, . . . ,S,
Transactions of the ASME
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Yj ,s
k 5Yj ,s

k211mj ,s
k21

•D1s j ,s
k21

•DWs
k211

1
2L 0~mj ,s

k21!•D2

1
1
2L 1~s j ,s

k21!@~DWs
k21!22D#

1L 0~s j ,s
k21!@DWs

k21
•D2DZs

k21#1L 1~mj ,s
k21!•DZs

k21 ,

j 51,2, . . . ,N, (2.6)

whereDWs
k21 and DZs

k21 are a pair of correlated normally dis
tributed random numbers generated as

DWs
k215n1,s

k21AD, DZs
k215

1

2
D3/2S n1,s

k211
n2,s

k21

)
D , (2.7)

wheren1,s
k21 andn2,s

k21 are two independent standard normally d
tributed random numbers.

Having obtainedS samples of the solutions of the stochas
differential equations, thepth moment can be determined a
follows:

E@ iX~ tk!ip#5
1

S(
s51

S

iXs
kip, iXs

ki5A~Xs
k!TXs

k, (2.8)

whereXj ,s
k 5Yj ,s

k , for j 51,2, . . . ,n.
From Eq.~1.3!, it is clearly seen that the difficulty in the Mont

Carlo simulation of thepth moment Lyapunov exponent lies i
the two large quantities: a large number of samples are require
evaluate the momentE@ iXip# at any time instancet, and a large
time period t is needed to determine the exponential rate
growth of thepth moment. Hence, in order to be able to perfo
the Monte Carlo simulation efficiently, it is important that a high
order weak scheme is employed to solve the stochastic differe
equations~2.1! so that a larger time stepD can be taken to reduc
the number of iterations in time.

There are order 3.0 and order 4.0 weak Taylor schemes@19#;
however, they are of mainly theoretical value because of the
ficulties in implementation. The extrapolation method may be
plied to obtain the order 4.0 weak extrapolation@19#:

E@ iX~ tk!ip#5
1

21
$32E@ iXD/4~ tk!ip#212E@ iXD/2~ tk!ip#

1E@ iXD~ tk!ip#%, (2.9)

where XD/4, XD/2, and XD stand for the state vectors obtaine
using Eq.~2.8!, in which the stochastic differential equations~2.1!
are solved using the order 2.0 weak scheme~2.2! with the time
steps beingD/4 , D/2, andD, respectively.

However, it has been found in the numerical experiments
the order 4.0 weak extrapolation~2.9! does not offer any advan
tages in terms of numerical efficiency and accuracy than the o
2.0 weak Taylor scheme~2.2! or ~2.6! with a smaller time stepD
when studying the dynamic stability of a stochastic system. T
reason is that, when the system~2.1! is unstable, a larger time ste
D may lead to the value of Eq.~2.9! to be negative at some tim
instances, since the solutions of the stochastic system are gro
exponentially. On the other hand, if a small enough time stepD is
used, Eq.~2.9! requires the evaluation of three sets of sam
realizations, at time stepsD, D/2, and D/4, respectively. It has
been found that it is numerically more efficient and accurate
use Eq.~2.2! or ~2.6! with a small time stepD.

2.2 Determination of the pth Moment Lyapunov Expo-
nents. Having obtained thepth momentE@ iXip# at any time
instancet using Eq.~2.8!, the moment Lyapunov exponentLX(p)
can be determined using Eq.~1.3!. However, since thepth mo-
ment grows or decays exponentially in time, periodic normali
tion of thepth moment must be applied in order to avoid nume
cal overflow or underflow and to correctly determine the mom
Lyapunov exponent.
Journal of Applied Mechanics
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Take the initial condition ofXs(0) such thatiXs(0)i51, s
51,2, . . . ,S. Note thatYj ,s5Xj ,s , for j 51,2, . . . ,n. Normaliza-
tion of the firstd elements of the state vectorYs is applied after
every time period (KD).

At the time instancem(KD), m51,2, . . . ,M , the following
ratio is determined for all values ofp of interest:

rm~p!5
E@ iX~m~KD!!ip#

E@ iX~~m21!~KD!!ip#
, m51,2, . . . ,M .

(2.10)

For s51,2, . . . ,S, the state vectorYs is then normalized in the
sense thatiXsi51 using

Yj ,s~m~KD!!5
Yj ,s~m~KD!!

iXs~m~KD!!i
, j 51,2, . . . ,n. (2.11)

After the normalization, numerical solution of the stochastic d
ferential equations is continued.

From Eq.~2.10!, it can be easily shown that

r1~p!•r2~p!¯rM~p!5
E@ iX~M ~KD!!ip#

E@ iX~0!ip#

5E@ iX~M ~KD!!ip#. (2.12)

Using Eqs.~1.3! and ~2.12!, the pth moment Lyapunov exponen
is given by, for all values ofp of interest,

LX~p!5
1

M ~KD!
logE@ iX~M ~KD!!ip#

5
1

M ~KD!
log@r1~p!•r2~p!¯rM~p!#

5
1

M ~KD! (
m51

M

log rm~p!, for large M . (2.13)

The purpose of using the ratiosrm(p) is to avoid numerical data
overflow or underflow because thepth moment of the system
grows exponentially if it is unstable or decays exponentially if it
stable.

2.3 Monte Carlo Simulation of the pth Moment Lyapunov
Exponents. The results presented in Secs. 2.1 and 2.2 are s
marized in the following procedure for the Monte Carlo simu
tion of thepth moment Lyapunov exponent.

I. Setting the Initial Conditions
For thesth sample,s51,2, . . . ,S, set the initial conditions of
the firstn elements of the state vectorYs as

Yj,s~0!5
1

An
, i 51,2, . . . ,n.

Yj ,s(0), j 5n11,n12, . . . ,N, can be set to any values; fo
simplicity of implementation, they may also be set to 1/An.

II. Conducting the Monte Carlo Simulation
For time iterationsm51,2, . . . ,M , conduct the Monte
Carlo simulation. For each increment inm, the increase in
time is KD.

1. For k51,2, . . . ,K, and samples51,2, . . . ,S, perform the
numerical integration of the stochastic differential equatio
For each increment ink, the increment in time isD.
1.1. Generate 3d standard normally distributed random
numbers to evaluateDWl ,s

k21 , DWl 1 ,s
k21 , DWl 2 ,s

k21 , for l , l 1 ,
l 251,2, . . . ,d, using Eq.~2.3!.
1.2. Generate12d(d21) uniformly distributed random num
bers in ~0,1! to evaluate Vl 1l 2 ,s

k21 , for l 151,2, . . . ,d,
l 25 l 111,l 112, . . . ,d, using Eq.~2.5!.
1.3. EvaluateYs(@(m21)K1k#D) in time stepD using the
iterative equation~2.2!.
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For the special case when d51, the following simplified
steps are taken:
1.1. Generate two standard normally distributed rand
numbers to evaluateDWs

k21 andDZs
k21 using Eq.~2.7!.

1.2. EvaluateYs(@(m21)K1k#D) in time stepD using the
iterative equation~2.6!.

2. For all values ofp of interest and samples51,2, . . . ,S,
determine the pth norms iXs(m(KD))ip using iXsi
5(Xs

TXs)
1/2, whereXj ,s5Yj ,s , j 51,2, . . . ,n.

3. Determine thepth momentsE@ iX(m(KD))ip# using Eq.
~2.8! for all values ofp of interest.

4. Evaluate the ratiorm(p) using Eq.~2.10! for all values ofp
of interest.

5. Normalize the state vectorYs(m(KD)) using Eq.~2.11!.

III. Determining the p th Moment Lyapunov Exponent

Determine thepth moment Lyapunov exponentLX(p) using
Eq. ~2.13! for all values ofp of interest.

3 Numerical Results
In this section, numerical results of Monte Carlo simulation

the pth moment Lyapunov exponents of a two-dimensional s
tem under real-noise excitation and under bounded-noise ex
tion are presented.

3.1 Two-Dimensional System Under Real-Noise Excitation
Consider a two-dimensional system under real-noise excitat
which is modeled by an Ornstein–Uhlenbeck process, as

d2q~t!

dt2 12b
dq~t!

dt
1@v0

22«0j~t!#q~t!50,
(3.1)

dj~t!52a0j~t!dt1s0dW~t!.

Equations~3.1! can be written as a three-dimensional autonom
Itô stochastic system as

H dY15Y2dt,
dY25@22bY22~12«0Y3!Y1#dt,
dY352a0Y3dt1s0dW,

(3.2)

where Y15q(t), Y25dq(t)/dt, Y35j(t), and Y1 and Y2 are
used to calculated thepth norm of the state vector of the syste
iYip5@(Y1)21(Y2)2#p/2.

Using Eq.~2.6!, the order 2.0 weak Taylor scheme is given

Y1,s
k 5Y1,s

k211Y2,s
k21

•D1
1
2Rs

k21
•D2,

Y2,s
k 5Y2,s

k211Rs
k21

•D1«0s0Y1,s
k21

•DZs
k21

1
1
2@2v0

2Y2,s
k2122bRs

k211«0Y3,s
k21~Y2,s

k212aY1,s
k21!#•D2,

(3.3)

Y3,s
k 5Y3,s

k212a0Y3,s
k21

•D1s0•DWs
k21

1
1
2a0

2Y3,s
k21

•D22a0s0•DZs
k21 ,

where

Rs
k21522bY2,s

k212~v0
22«0Y3,s

k21!Y1,s
k21 .

For small values of«0.0, a sixth-order approximation of th
pth moment Lyapunov exponent was obtained in Ref.@15# using a
method of regular perturbation.

System~3.1! may be simplified by removing the damping usin
the transformationq(t)5x(t)e2bt and applying the time scaling
t5vt, v25v0

22b2, to yield

d2x~ t !

dt2 1@12«z~ t !#x~ t !50,
(3.4)
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dz~ t !52az~ t !dt1sdW~ t !,

where«5«0 /v, a5a0 /v, s5s0 /Av.
Because of the transformationq(t)5x(t)e2bt, one obtains

dq~t!

dt
5Fdx~t!

dt
2bx~t!Ge2bt,

and

iq~t!i5Aq2~t!1Fdq~t!

dt G2

5Ax2~t!1Fdx~t!

dt
2bx~t!G2

e2bt

5ix~t!ie2bt,

since the norms defined as

ix~t!i5Ax2~t!1Fdx~t!

dt G2

and

ix~t!i5Ax2~t!1Fdx~t!

dt
2bx~t!G2

are equivalent. This leads to

iq~t!ip5ix~t!ipe2pbt,

and

Lq(t)~p!52pb1Lx(t)~p!.

On the other hand, since

ix~ t !i5Ax2~ t !1Fdx~ t !

dt G2

5Ax2~t!1
1

v2 Fdx~t!

dt G2

,

and the vector norms ofx~t! defined as

ix~t!i5Ax2~t!1Fdx~t!

dt G2

and

ix~t!i5Ax2~t!1
1

v2 Fdx~t!

dt G2

are equivalent for finitev, henceix(t)i andix(t)i are equivalent.
Furthermore, since

E@ ix~ t !ip#;eLx(t)(p)•t5evLx(t)(p)•t, as t→`,

and

E@ ix~t!ip#;eLx(t)(p)•t, as t→`,

which leads to

Lx(t)~p!5vLx(t)~p!.

Therefore, the moment Lyapunov exponents of systems~3.1! and
~3.4! are related by

Lq(t)~p!52pb1vLx(t)~p!. (3.5)

The sixth-order approximation of thepth moment Lyapunov ex-
ponent obtained in Ref.@15# is given by

Lx(t)~p!5«2L21«4L41«6L61O~«8!, (3.6)

where

L25
p~p12!s2

16~a214!
,

L45
p~p12!s4~a4122a2148!

32a~a211!~a214!3 ,
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L65p~p12!s6@p2~99a1414274a12170,379a101499,596a8

115,47,568a612,119,232a411,267,200a21262,144!

1p~198a1418548a121140,758a101999,192a8

13,095,136a614,238,464a412,534,400a21524,288!

1~21080a14242,960a122650,680a1023,903,840a8

22,981,760a6127,553,280a4160,641,280a2

131,457,280!#/@8192a2~a2116!~9a214!~a211!2~a2

14!5#.

The pth moment Lyapunov exponents of system~3.1! obtained
using Monte Carlo simulation and the results given by Eq.~3.6!
are presented in Figs. 1 and 2 (a052.0), Figs. 3 and 4 (a0
51.0), and Fig. 5 (a050.5), b50.01, v051.0, s051.0, and
various values of«0 . It is seen that the approximate analytic
results agree quite well with the numerical results fora052.0 and
1.0. Large discrepancy exist fora050.5.

3.2 Two-Dimensional System Under Bounded-Noise Exci
tation. Consider the following two-dimensional system und
bounded-noise excitation:

Fig. 1 Moment Lyapunov exponent Lq „t…„p … under real-noise
excitation, a0Ä2.0

Fig. 2 Moment Lyapunov exponent Lq „t…„p … under real-noise
excitation, a0Ä2.0
Journal of Applied Mechanics
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d2q~t!

dt2 12b
dq~t!

dt
1@v0

22«0 cosj~t!#q~t!50,
(3.7)

dj5n0dt1s0dW~t!.

In the absence of noise, i.e., whens050, system~3.7! reduces
to Mathieu’s equation, a two-dimensional system under harmo
parametric excitation. It is well known that Mathieu’s equation
in the primary parametric resonance whenn0 is in the vicinity of
2v0 and in the secondary parametric resonance whenn0 is close
to v0 .

Equations~3.7! can be converted to a three-dimensional a
tonomous stochastic system as

H dY15Y2dt,
dY25@22bY22~v0

22«0 cosY3!Y1#dt,
dY35n0dt1s0dW,

(3.8)

where Y15q(t), Y25dq(t)/dt, and Y35j(t). Y1 and Y2 are
related to the state variables of the original system~3.7! and are
used to calculated thepth norm iYip5@(Y1)21(Y2)2#p/2.

The order 2.0 weak Taylor scheme is given by, from Eq.~2.6!,

Y1,s
k 5Y1,s

k211Y2,s
k21

•D1
1

2
Rs

k21
•D2,

Fig. 3 Moment Lyapunov exponent Lq „t…„p … under real-noise
excitation, a0Ä1.0

Fig. 4 Moment Lyapunov exponent Lq „t…„p … under real-noise
excitation, a0Ä1.0
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Y2,s
k 5Y2,s

k211Rs
k21

•D2
1
2@~v0

22«0 cosY3,s
k21!Y2,s

k2112bRs
k21

2«0~n0 sinY3,s
k211

1
2s0

2 cosY3,s
k21!Y1,s

k21#•D2

2«0s0Y1,s
k21 sinY3,s

k21
•DZs

k21 , (3.9)

Y3,s
k 5Y3,s

k211n0•D1s0•DWs
k21 .

where

Rs
k2152~v0

22«0 cosY3,s
k21!Y1,s

k2122bY2,s
k21 .

Under weak-noise excitation, i.e., for«0.0, a fourth-order ap-
proximation of thepth moment Lyapunov exponent has been d
termined using a method of regular perturbation in Ref.@16#. Sys-
tem ~3.7! can be simplified using the transformationq(t)
5x(t)e2bt and time scalingt5vt, v25v0

22b2, to yield

d2x~ t !

dt2 1@12« cosz~ t !#x~ t !50,

dz~ t !5ndt1sdW~ t !, (3.10)

Fig. 5 Moment Lyapunov exponent Lq „t…„p … under real-noise
excitation, a0Ä0.5

Fig. 6 Moment Lyapunov exponent Lq „t…„p … under bounded-
noise excitation, n0Ä0.5
274 Õ Vol. 72, MARCH 2005
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where «5«0 /v2, n5n0 /v, and s5s0 /Av. The moment
Lyapunov exponent of system~3.7! is related to that of Eq.~3.10!
by

Lq(t)~p!52pb1vLx(t)~p!. (3.11)

The fourth-order approximation of thepth moment Lyapunov ex-
ponent is

Lx(t)~p!5«2L21«4L41O~«6!, (3.12)

in which

L25
p~p12!S~2!

16
,

where S(2) is the power spectral density functionS(v) of the
bounded-noise cosz(t) at v52 given by

S~2!5
s2~41n21

1
2 s4!

2@~21n!21
1
4s4#@~22n!21

1
4s4#

.

The expression forL4 is quite lengthy and will not be repeate
here.

Fig. 7 Moment Lyapunov exponent Lq „t…„p … under bounded-
noise excitation, n0Ä1.0

Fig. 8 Moment Lyapunov exponent Lq „t…„p … under bounded-
noise excitation, n0Ä2.0
Transactions of the ASME
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Numerical results of thepth moment Lyapunov exponent
Lq(t)(t) from Monte Carlo simulation, along with those given b
equations~3.11! and ~3.12!, are plotted in Figures 6–8 forn0
50.5, 1.0, and 2.0, respectively,b50.01, v051.0, s051.0, and
various values of«0 . It is observed that the approximate analy
cal results agree well with the numerical results.

4 Discussion and Conclusions
In this paper, a Monte Carlo simulation procedure is develo

to numerically determine thepth moment Lyapunov exponents
The procedure can be easily implemented. The approximate
lytical results of thepth moment Lyapunov exponents obtaine
for two-dimensional systems under real-noise~@15#! or bounded-
noise~@16#! excitation compare well with the numerical results f
certain parameter ranges, as shown in Figures 1–8.

As mentioned earlier, the difficulties in conducting the Mon
Carlo simulation of thepth moment Lyapunov exponent lie in th
two large numbers: a large number of samples of the solution
the stochastic differential equations needed for the evaluatio
the pth momentE@ iXip# and a large timet required for the de-
termination of thepth moment Lyapunov exponentLX(p).

In this paper,S samples of solutions of the stochastic differe
tial equations are taken to calculate thepth moment. From the
Central Limit Theorem, it is well known that the estimatedpth
moment Lyapunov exponent is a random number, with the m
being the true value of thepth moment Lyapunov exponent an
standard deviation equal tosp /AS, wheresp is the sample stan
dard deviation determined from theS samples. The standard de
viation of the estimatedpth moment Lyapunov exponent can b
reduced by increasing the number of samplesS.

The total time period is divided intoM segments of length
(KD), whereD is the time step of integration. After each tim
segment (KD), the state vectors of the stochastic system are n
malized. It is very important to select a suitable value ofK in the
simulation. IfK is too small, the response of the system does
have enough time to develop and to exhibit its exponential gro
or decay. IfK is too large, the exponential growth or decay of t
response of the system will render the vector norm of the s
vector to overflow or underflow, yielding erroneous results. F
different systems, it may be necessary to perform test runs to
a suitable value ofK.

In the numerical examples studied in this paper, the parame
are chosen asS52000, D50.0005, K550,000, andM5200,
resulting in the state vector normalization after eacht525 and the
total time of simulation is 5000.

Recently, Xie and So@18# presented an analytical-numeric
approach for the determination of thepth moment Lyapunov ex-
ponent. For dynamic systems with certain types of stochastic
citations, such as the bounded-noise excitation, the second-o
partial differential eigenvalue problem governing thepth moment
Lyapunov exponent is transformed into a linear algebraic eig
value problem using series expansions of orthogonal functio
such as the double Fourier series expansion. The linear alge
eigenvalue problems are then solved numerically using an a
rithm for large sparse matrices, such as the ‘‘eigs’’ function
MATLAB . For two-dimensional systems with noise excitations t
can be expressed in a simple analytical form, the approach ha
advantages of being easy to implement, fast to execute, and
ing a high accuracy. Although the method can be extended
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higher dimensional systems, the amount of analytical work
volved and the dimension of the resulting linear algebraic eig
value problem increase dramatically.

The Monte Carlo simulation presented in this paper is a p
numerical method and is more general than the analyti
numerical approach@18#. The method can be easily applied fo
higher dimensional systems and any noise excitations, even
those with only time series available.
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Elastic-Plastic Wrinkling of
Sandwich Panels With Layered
Cores
Elastic-plastic wrinkling of compression loaded sandwich panels made with layered
was studied analytically and experimentally. A core with a stiff layer near the sand
skins can improve various properties, including wrinkling and impact strengths, with
a minor weight penalty. The 2D plane stress and plane strain bifurcation problems
solved analytically, save for a determinantal equation which was solved numeric
Experiments were performed on aluminum skin/foam core sandwich panels with dif
combinations of stiff and soft core materials. Good correlation between experiments
theory was obtained.@DOI: 10.1115/1.1828063#
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Introduction
Polymeric foams are frequently used as core materials in l

bearing sandwich structures. Many of the requirements of a s
wich core can be better fulfilled using a core material with m
chanical properties varying through the thickness. For exam
high stiffness and strength of a core layer next to the skins p
mote wrinkling and impact strength, and high chemical resista
of this core layer reduces chemical degradation of the core w
the skins are attached or fabricated. Even better than havin
layered core is to grade the core. Danielsson and Grenested@1#
manufactured and tested various graded combinations of Div
cell PVC based foams, and showed that a number of ben
could be obtained.

In the present paper, wrinkling strength of a sandwich pa
made with a layered foam core and aluminum skins was stud
A layered core prevents standard wrinkling formulas, such
those of Gough et al.@2# and Hoff and Mautner@3#, to be used.
Grenestedt and Olsson@4# solved the present problem when a
materials remain linearly elastic. Their solution was in many
spects similar to that of Shield et al.@5#, but with a different
application. At present, 2D plane stress and plane strain bifu
tion analyses were performed, assuming that the face skins f
eitherJ2 flow or deformation theory, and a Ramberg-Osgood n
linear uniaxial relation. Specimens as depicted in Fig. 1 were c
fully prepared and experimentally tested to failure under unia
compression.

Bifurcation Analysis
The following bifurcation theory was presented by Hill@6,7#

and the formalism presently used was given by Hutchinson@8#;
for details and further applications these papers are recommen
An outline of the theory is provided below. The elastic wrinklin
analysis of Grenestedt and Olsson@4# is here extended to includ
elastic-plastic material behavior.

The summation convention will be used with Latin indic
ranging from 1 to 3 and Greek from 1 to 2. A finite strain L
grangian formulation with convected coordinates is used. Cov
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ant and contravariant components of tensors are denoted by
scripts and superscripts, respectively. The Lagrangian strain te
is

h i j 5
1
2 ~ui , j1uj , i !1

1
2 uk, iuk , j (1)

whereui are components of the displacement vector referred
the undeformed base vectors, and comma denotes covarian
ferentiation with respect to the metric in the undeformed bo
With V and S denoting volume and surface, respectively, in t
undeformed body, andt i j components of the symmetric Kirchhof
stress referred to base vectors in the undeformed body, the
ciple of virtual work is

E
V
t i j dh i j dV5E

S
Tidui dS (2)

where Ti are components of surface traction referred to un
formed base vectors,d represents differentiation, and body force
have been omitted. The incremental form of the principle is

E
V
$ṫ i j dh i j 1t i j u̇k, iduk , j%dV5E

S
Ṫidui dS (3)

with rates of change denoted by a dot. The constitutive behavio
assumed to be of the form

ṫ i j 5Li jkl ḣkl5~Le
i jkl 2ag21mi j mkl!ḣkl (4)

wherea51 for mklḣkl>0 and the stress is on the yield surfac
anda50 otherwise;g is related to strain hardening and depen
on the deformation history,mi j are components of the unit tenso
normal to the elastic domain in strain-rate space, andLe

i jkl is the
elastic stiffness tensor.

Dead loads are applied to the body. Assume that at some s
of the deformation, characterized byui

0 , t0
i j , bifurcation is pos-

sible such that at least two solutionsu̇i
a andu̇i

b exist. Let quantities
with an overhead tilde denote differences between the two s
tions; for example,ũi5u̇i

b2u̇i
a . Since tractions are the same fo

both solutions on the part of the surface of the body where tr
tions are prescribed, and the same holds for displacements
following integral must vanish

E
S
T̃i ũi dS5E

V
$t̃ i j h̃ i j 1t0

i j ũk, i ũk , j%dV[H (5)

whereH is defined by the last equality. Hill’s sufficiency cond
tion for uniqueness is obtained by introducing the moduliLc of an

3,
the

g,
l be
E
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elastic comparison solid such thatLc equals the moduliL ob-
tained whenmklḣkl.0, independent of the actual deformatio
increment. Hill introduced the functional

F~ ũ!5E
V
$Lc

i jkl h̃ i j h̃kl1t0
i j ũk, i ũk , j%dV>H.0 (6)

where the first inequality is valid for positiveg and arbitrary
loading, and the last inequality is the sufficiency condition
uniqueness. Assume that the first bifurcation occurs with

eigenmodeui

(1)
such thatF( ui

(1)
)50. Minimizing the functionalF

leads to the eigenvalue equations

h i j

(1)

5
1
2 ~ui , j

(1)

1uj , i

(1)

!1
1
2 ~uk

0 , ju
k, i

(1)

1uk
0 , iu

k, j

(1)

! (7)

t i j
(1)

5Lc
i jkl hkl

(1)

(8)

~t i j
(1)

1tk j
(1)

u0i ,k1t0
k jui ,k

(1)

!, j50 (9)

Ti
(1)

5~t i j
(1)

1tk j
(1)

u0i ,k1t0
k jui ,k

(1)

!nj50 on ST (10)

ui

(1)

50 on Su (11)

For the presently considered problem, wrinkling of a flat sa
wich, strains are negligible compared to 1 prior to bifurcati
when, as presently assumed, moduli of skin materials are m
higher than moduli of core materials, and rotations are nonpres
Prior to bifurcation, components of Kirchhoff stresst i j then co-
incide with components of Cauchy stresss i j , etc. A Cartesian
coordinate system will from now on be used and the distinct
between covariant and contravariant components of ten

Fig. 1 Specimen under consideration, consisting of two alu-
minum skins „material #1, dark gray …, attached to two layers of
high density foam „material #2, light gray …, sandwiching a low
density foam „material #3, white …
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dropped. Subsequently, subscripts will be used for all tensor c
ponents. The equations above can then be simplified to

h i j

(1)

5
1
2 ~ui , j

(1)

1uj , i

(1)

! (12)

s i j

(1)

5Li jkl
c hkl

(1)

(13)

s i j , j

(1)

1sk jui ,k j

(1)

50 (14)

Ti

(1)

5~s i j

(1)

1sk jui ,k

(1)

!nj50 on ST (15)

ui

(1)

50 on Su (16)

in Cartesian coordinates1 ~the un-deformed body now equals th
deformed body immediately prior to bifurcation!.

Two different material models are employed,J2 flow theory
andJ2 deformation theory. ForJ2 flow theory, the instantaneou
moduli in Cartesian coordinates are

Li jkl 5
E

11n S 1

2
~d ikd j l 1d i l d jk!1

n

122n
d i j dkl2

ar 1si j skl

11n12r 1J2
D

(17)

where the stress deviator issi j 5s i j 2skkd i j /3 andJ25si j si j /2, E
is Young’s modulus, andn is Poisson’s ratio; forJ25(J2)max, a
51 if J̇2>0 anda50 if J̇2,0, whereasa50 if J2,(J2)max.
The function r 1(J2) is determined from a tensile stress-stra
curve asr 153@E/Et21#/(4J2) whereEt is the tangent modulus
For J2 deformation theory, the instantaneous moduli in Cartes
coordinates are

Li jkl 5
E

11n1r 2
S 1

2
~d ikd j l 1d i l d jk!1

3n1r 2

3~122n!
d i j dkl

2
r 28si j skl

11n1r 212r 28J2
D (18)

wherer 2(J2)53@E/Es21#/2 whereEs is the secant modulus in a
tensile stress-strain curve, andr 285dr 2 /dJ2 .

In the following the material is assumed to have a Rambe
Osgood-type uniaxial relation with

E«

s0.7
5

s

s0.7
1aROS s

s0.7
D m

(19)

wheres0.7 is the stress where the stress-strain curve intercep
line with the slope 70% of Young’s modulus, andaRO5

3
7. This

relation is plotted in Fig. 2 for 7075-T6 aluminum. The tange
and secant moduli are, respectively,

Et5
E

11aROm~s/s0.7!
m21

(20)

Es5
E

11aRO~s/s0.7!
m21

The functionsr 1(J2) and r 2(J2) then become

r 1~J2!5
9aROm

4s0.7
m21 ~3J2!(m23)/2 (21)

r 2~J2!5
3aRO

2s0.7
m21 ~3J2!(m21)/2 (22)

1Since a Cartesian coordinate system now is employed,Li jkl
c is used in Eq.~13!

and subsequently rather thanLc
i jkl as used in Eqs.~4!, ~6! and ~8!.
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Pre-Bifurcation Stress State
In the plane strain case, when«135«235«3350, the stress state

prior to bifurcation is obtained by integrating the equations

ṡ115S L11112
~L1122!

2

L2222
D «̇11

(23)

ṡ335S L11332
L1122L2233

L2222
D «̇11

whereas in the plane stress case thes11 stress equalss in Eq.
~19!. Other stresses are zero. Presently, integration was used
in the plane stress case, integrating

ṡ115S L11112
L1122~L11221L1133!

L22221L2233
D «̇11 (24)

in order to obtain an estimate of integration accuracy for the pl
strain case. The integration scheme presently used~Euler’s ex-
plicit forward method! was accurate to five or six digits. Highe
accuracy could easily be obtained using a smaller time step b
was presently not considered necessary.

Solution of the Differential Equations in Plane Strain
The partial differential equations and boundary conditions fr

which the bifurcation load is determined are given by Eqs.~12!–
~16!. A solution is presently sought in a region according to Fig
consisting of three materials: a skin~#1!, a finite thickness layer of
core material~#2!, and a semi-infinite core with a different stiff
ness~#3!. The analytical model is not limited to a semi-infinit
core sandwich per se, but is applicable to any layered struc
with arbitrarily many layers of arbitrary thicknesses. Howev

Fig. 2 Stress-strain relation of the aluminum skins according
to the Ramberg-Osgood relation and the parameters in Table 1.
The ‘‘yield’’ strain «Ä0.62% is also plotted.

Fig. 3 Geometry of the analytically analyzed structure
278 Õ Vol. 72, MARCH 2005
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with the present sandwich structure in mind, it is preferred
reduce the number of parameters by letting the core thickn
increase without bounds. With this assumption some bifurca
modes, such as global~Euler-like! buckling and shear buckling
also disappear while wrinkling remains. Plane strain deformat

is assumed during bifurcation, i.e.,u3

(1)
50 andui ,3

(1)
50. Prior to

bifurcation, the stress and deformation state will be considere
be either plane strain or plane stress. In the latter case the pos
incompatibility of deformation between core and skin due to d
ferent transverse deformations is tacitly ignored~however, defor-
mation rate compatibility is enforced during bifurcation!. Before
bifurcation in the former case,s11Þ0, s33Þ0 in general, and
others i j 50, whereas in the latter case alsos3350. The stresses
will differ between the different materials but the strainh11 is the
same. These assumptions lead to the equations

Labgd
c ug ,db

(1)

1s11ua ,11

(1)

50 (25)

and the boundary conditions

Ti

(1)

5~s i j

(1)

1s11ui ,1

(1)

d j 1!nj50 on ST (26)

ui

(1)

50 on Su (27)

and continuity of deformations and tractions between differ
materials. Note thatLabgd

c depends on the stress state prior
bifurcation and thus differs between the plane strain and pl
stress situations. In the present settingLabg3

c 50, La333
c 50 prior to

bifurcation.
An ansatz of the form

u1

(1)

5 f 1~x2!sinvx1 (28)

u2

(1)

5 f 2~x2!cosvx1

leads to two coupled ordinary differential equations forf 1 and f 2 .
It is assumed that the extension of the structure in thex1-direction
is such that it will always be an integer times the wave len
2p/v. For a structure which is long compared to the wave len
in the x1-direction, this is always fulfilled with reasonable acc
racy. The functionsf 1 and f 2 are of the form

f i5elx2 (29)

leading to the fourth degree characteristic equation

c0l41c1v2l21c2v450 (30)

where

c052L1212
c L2222

c

c15s11~L1212
c 1L2222

c !1L1111
c L2222

c 2~L1122
c !222L1122

c L1212
c

(31)

c252~s111L1111
c !~s111L1212

c !

If l is a root to the characteristic equation, then so is2l, and the
solution is

f 15A1el1x21A2e2l1x21A3el2x21A4e2l2x2

(32)
f 25B1el1x21B2e2l1x21B3el2x21B4e2l2x2

for real and uniquel,

f 15A1el1x21A2e2l1x21Ā1el̄1x21Ā2e2l̄1x2

(33)

f 25B1el1x21B2e2l1x21B̄1el̄1x21B̄2e2l̄1x2
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for complexl, etc. Above, an overhead bar indicates a comp
conjugate,Ai are constants to be determined from the bound
conditions, andBi are related toAi through Eq.~25!. Necessary
but not sufficient conditions for reall are

s11>maxF2L1111
c ,2L1212

c ,
2L1122

c L1212
c 1~L1122

c !22L1111
c L2222

c

L1212
c 1L2222

c G
(34)

Collecting the boundary conditions leads to ten homogene
linear equations for theAi in the different materials (A25A450
in material #3 is required for finite stresses atx252`), thus a
determinantal equation is obtained. The wave numberv and the
strain h11 are parameters in this equation. The smallesth11 for
which the determinant is zero for somev is the wrinkling strain,
hcr . This was solved numerically by incrementally integrati
Eq. ~23! or ~24! by Euler’s explicit forward method, and in eac
increment scanning a large range ofv to find a root of the deter-
minant. As soon as a root was found, it was bracketed in thv
2h11 space, and the solution~v andh11) was determined with a
least five-digit precision using a simple bisection algorithm.

Experimental Tests and Comparison With Analytical
Predictions

Symmetric sandwich specimens as depicted in Fig. 1 w
manufactured and experimentally tested under uniaxial comp
sion loads. The skins were made ofh151.57 mm thick 7075-T6
aluminum. This was material #1 in Fig. 1. Two different densit
of Divinycell H-grade@9# expanded PVC based structural foam
were used: Divinycell H100~material #2 in Fig. 1!, which is a
medium density foam, and Divinycell H30~material #3!, which is
the lowest density foam in the Divinycell H-grade family. Th
nominal densities of the foams were 100 and 36 kg/m3, respec-
tively. The specimens were manufactured by bonding the c
layers and skins using a two component polyurethane adhe
The skins were attached by spreading the adhesive onto the
rather than onto the foam cores in order to not fill the cells in
foam core and thereby creating an overly stiff bond line. The jo
between the H30 and H100 foam core layers was made by spr
ing the adhesive on the H100 foam, which has smaller cells t
the H30 foam. Four different specimen configurations were ma

1. a 100 mm thick H30 core sandwiched between twoh1
51.57 mm thick aluminum skins. No H100 foam was us
in this specimen, and thush250,

2. an 88 mm thick H30 core between twoh256 mm thick
layers of H100 core, sandwiched between twoh1
51.57 mm thick aluminum skins,

3. a 76 mm thick H30 core between twoh2512 mm thick
layers of H100 core, sandwiched between twoh1
51.57 mm thick aluminum skins,

4. a 100 mm thick H100 core, sandwiched between twoh1
51.57 mm thick aluminum skins. No H30 was used in th
specimen.

The total thickness of the core wasd5100 mm in all configura-
tions. These specimens were believed to be sufficiently thick to
treated as infinitely thick regarding skin wrinkling. The width
the specimens wasw5140 mm, and the total height was 150 mm
The specimens had to be very thick also in order to not sh
buckle. The shear buckling load of a specimen with a homo
neous core~a single core material! is approximately

Fcr
shear'Gcdw (35)

whereGc is the shear modulus of the core. If the skins were lin
elastic, with Young’s modulusEskin, then the strain in the skins a
shear buckling would be

«cr
shear'

Fcr
shear

2h1wEskin'
Gcd

2Eskinh1
(36)
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assuming that the two skins carry all load. For the H30 and H1
cores, this strain is 0.58% and 1.8%, respectively, using the p
erties in Table 1. These are higher than the wrinkling strains
these specimen, which are on the order of 0.4% and 0.7%, res
tively; see Fig. 4. Shear buckling should thus not occur bef
skin wrinkling.

Wrinkling strength is known to be sensitive to geometric im
perfections as well as imperfections in load introduction a
therefore a major effort was made in preparing the specimens
the test procedure. Effects of initial imperfection on wrinkling
sandwich structures have been reviewed by Ley et al.@10#, which
is recommended for further details. A very stiff test machine w
used. Each specimen was molded directly into steel shoes in
test machine in order to obtain uniform load introduction. Stra
were recorded using strain gages, and loads using a calibr
load cell. Four specimens of each configuration were tested.
test specimens remained flat until they suddenly failed ca
strophically. No prebuckling out-of-plane deformation was n
ticed. The specimens that wrinkled in the linear elastic range
the skins, i.e., configurations 1, 2, 3, failed dramatically w
loud bangs and foam core fragments flying. There were la
cracks in these specimens after the tests. The specimens of
figuration 4 failed with a soft ‘‘thug’’ and no visible cracks. How
ever, the skins developed large permanent plastic wrinkles.
results of the tests are summarized in Fig. 4, where the normal
wrinkling stress in the skin,s11

skin/Eskin, is plotted versush2 /h1 .
In Fig. 4, the 2D analytical predictions using the theory outlin

in previous sections are also plotted. The material data used
the calculations are given in Table 1. The Divinycell cores a
linear elastic to strains above 1%, and thus remained elastic
through the wrinkling initiation. The aluminum was modeled wi
a Ramberg-Osgood constitutive relation, as depicted in Fig. 2.
yield strain of the aluminum skins is approximately 0.62%. T

Table 1 Material data for core and skin materials. aROÄ 3
7 for

the aluminum.

Material

Young’s
modulus
E ~MPa!

Poisson’s
ratio

n

Ramberg-Osgood
stress

s0.7 ~MPa!
Hardening

m

7075-T6 aluminum 72 000 0.3 550 13
H30 foam 32.5 0.25 ¯ ¯

H100 foam 99 0.2375 ¯ ¯

Fig. 4 Comparison between experimental and theoretical
wrinkling stress for a sandwich with a layered core. Elastic
analysis „dotted line …, elastic-plastic analysis „solid line …, and
experiments „X…. The experimental configuration with h 2 Õh 1
Ä` is plotted near the right end of the graph and marked with
an arrow.
MARCH 2005, Vol. 72 Õ 279
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results plotted in Fig. 4 were obtained assuming plane st
(s3350) in all materials prior to wrinkling, and plane strai
(«3350) in all materials during wrinkling.

Both plane stress and plane strain analyses, using both flow
deformation theory, were performed. The results consiste
showed that the wrinkling stresses obtained by flow theory p
dictions were slightly higher than those obtained by deformat
theory. A discussion of this phenomenon as seen in other app
tions is given by Hutchinson@8#. However, for the present case
the difference between the flow and deformation theory pre
tions was very slight, and not even noticeable in a plot such
Fig. 4.

The analytical analyses assumed that the total core thick
was semi-infinite as in Fig. 3, whereas in the tests it was alw
100 mm, and that the length of the specimens was such tha
wavelength that minimizes the wrinkling strainh11 could be ob-
tained. The analytical model could have been used for the fi
length and finite core thickness sandwich by incorporating eq
tions like ~32! and ~33! for each layer and limitingh11 to values
compatible with the boundary conditions in the length directio
However, instead finite element~FE! bifurcation analyses were
performed and the predictions compared with the analytical
sults. Only linear elastic material properties were used for the
analyses. Two-dimensional~2D! FE models were made using th
geometries of the experimental specimens. Three different sp
men lengths were used: 150, 200 and 250 mm. Analyses w
performed using either plane stress during both pre-bifurca
and bifurcation, or using plane strain during both pre-bifurcat
and bifurcation. The difference in wrinkling stress between
three lengths was less than 2%. The difference in wrinkling str
between the plane stress and the plane strain cases varied be
2% and 5%, with the plane strain case always being stronger.
analytical results fell between the plane strain and the plane s
FE results forh250 and for h2 /h1→`. For h2 /h156/1.57
53.82 and h2 /h1512/1.5757.64, the wrinkling stresses pre
dicted by both the plane stress and the plane strain FE ana
were higher than the analytically predicted wrinkling stress
There are a few reasons the results from the FE and the analy
analyses differ slightly: the difference in geometry~finite versus
infinite thickness and length!, different plane stress/strain assum
tions, discretization errors in FE, etc. The difference in wrinkli
stress between the analytical elastic analysis and any elasti
analysis was less than 4%. The elastic FE analyses naturally o
estimated the wrinkling stress when the skins approached the
of the linear elastic limit. This certainly occurred for the spe
mens with only high density~H100! core. However, also the skin
in the specimens with the thick high density core layer (h2
512 mm) reached stresses approaching the linear elastic l
This can be seen in Fig. 4, where the results from the ela
analysis slightly deviate from those of the elastic-plastic analy
already ath2 /h1512/1.5757.64.

Discussion and Conclusions
The bifurcation loads of compression loaded sandwich pa

were calculated and compared to results from carefully prepa
and executed experimental tests. The scatter in the experim
tests was less than what is usually encountered in compres
loaded imperfection sensitive structures. We attribute this to
careful preparation of the specimens and the fact that the sp
mens were bonded to loading shoes inside the test machine
to testing. The correlation between analytical elastic-plastic p
dictions and experimentally measured wrinkling stresses was
ceptionally good for the two specimen configurations with on
one foam core~either H30 or H100!. For the two specimen con
figurations with layered foam cores, the experimental wrinkli
stresses were higher than those analytically predicted (h2 /h1
53.82 andh2 /h157.64 in Fig. 4!. The conjecture is that this wa
a result of added stiffness of the bond line between the low
high density foam cores. The bond line added a thin intermed
280 Õ Vol. 72, MARCH 2005
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layer of relatively high stiffness. Any additional stiffness increas
bifurcation load, a fact which is easily shown using a Raylei
quotient. It may be mentioned that layered and graded foam c
have been produced by co-expansion, resulting in foam cores
uniform transitions between different grades and densities and
bond lines~Danielsson and Grenestedt@1#!.

The advantage of a layered core over a conventional cor
terms of load carrying capability before wrinkling may be dem
onstrated with a simple example using the data in Fig. 4. T
sandwich panels with the same total thickness and the same
will be compared. Each sandwich has two aluminum skins an
foam core. One sandwich~configurationA) has a thicker alumi-
num skin ~thicknessh1

A) and only H30 core, whereas the oth
~configurationB) has a slightly thinner aluminum skin~thickness
h1

B), an intermediate layer of H100 core~thicknessh2
B) and an

H30 core in the middle. In order for the two sandwiches to ha
the same mass and total thickness, the skin thicknesses have
related by

h1
B

h1
A 5

1

11S rH1002rH30

ral2rH30
D h2

B

h1
B

(37)

if the weight of a possible bond line is neglected. The load car
ing capability of a sandwich is approximately equal to the wr
kling stress of the skins times the thickness of the skins. Us
this approximation and the data presented in Fig. 4, the norm
ized load carrying capabilityswr

skinh1
B/(Eskinh1

A) is plotted versus
h2

B/h1
B in Fig. 5 for a sandwich with constant thickness and ma

ConfigurationA is obtained forh2
B/h1

B50. As can be seen in this
figure, the load carrying capability of configurationB is approxi-
mately 33% higher than for configurationA, whenh2

B/h1
B'12 and

the plastic data is used. The aluminum skins of this sandwich
22% thinner than those of configurationA. In conclusion, without
changing the total thickness or the mass of the sandwich, the
carrying capability could in this particular example be increas
by more than 30% by changing from a homogeneous to a laye
sandwich core.

Fig. 5 Normalized load carrying capability swr
skin h 1

B Õ„Eskin h 1
A
… of

a sandwich with given mass and thickness, as a function of
normalized thickness h 2

B Õh 1
B of a layer of high density core
Transactions of the ASME



N

e

r

n-

th
ce

ic
h.,

tic

J.

-

,
/

ich
Acknowledgments
This material is based upon work supported in part by the

tional Science Foundation under Grant No. 0092406~JLG!, in
part by Wallenberg Stiftelsen~Incentive! ~MD!, and in part by the
Department of Mechanical Engineering and Mechanics, Leh
University. Dr. John W. Hutchinson and the late Dr. Bernard B
diansky are gratefully acknowledged for helpful comments. Ch
Kilbourn at DIAB is gratefully acknowledged for providing th
core materials.

References
@1# Danielsson, M., and Grenestedt, J. L., 1998, ‘‘Gradient Foam Core Mate

for Sandwich Structures, Preparation and Characterisation,’’ Composites,
A, 29~8!, pp. 981–988.

@2# Gough, G. S., Elam, C. F., and de Bruyne, N. A., 1940, ‘‘The Stabilization
a Thin Sheet by a Continuous Supporting Medium,’’ J. R. Aeronaut. Soc.,44,
pp. 12–43.
Journal of Applied Mechanics
a-

igh
u-
ris

ials
Part

of

@3# Hoff, N. J., and Mautner, S. E., 1945, ‘‘The Buckling of Sandwich-Type Pa
els,’’ J. Aeronaut. Sci.,12, pp. 285–297, eq.~103!.

@4# Grenestedt, J. L., and Olsson, K.-A., 1995, ‘‘Wrinkling of Sandwich wi
Layered Core or Non-Symmetric Skins,’’ Proc. Third International Conferen
on Sandwich Construction, Southampton, UK, 12–15 September.

@5# Shield, T. W., Kim, K. S., and Shield, R. T., 1994, ‘‘The Buckling of an Elast
Layer Bonded to an Elastic Substrate in Plane Strain,’’ ASME J. Appl. Mec
61, pp. 231–235.Corrections: ASME J. Appl. Mech.,61, pp. 796, and further,
1994,b5v@12P(122n)/(2m(12n))#1/2 in Eq. ~4!.

@6# Hill, R., 1957, ‘‘On Uniqueness and Stability in the Theory of Finite Elas
Strains,’’ J. Mech. Phys. Solids,5, pp. 229–241.

@7# Hill, R., 1967, ‘‘Eigenmodal Deformations in Elastic/Plastic Continua,’’
Mech. Phys. Solids,15, pp. 371–386.

@8# Hutchinson, J. W., 1974, ‘‘Plastic Buckling,’’ inAdvances in Applied Mechan
ics, C.-S. Yih, ed.,14, pp. 67–144.

@9# DIAB. Divinycell H-Grade Technical Manual, 10.00. DIAB AB, Box 201
S-312 22 Laholm, Sweden~also available at www.diabgroup.com/DIAB
filecabinet.nsf/LookupFiles/H–Man–M/$file/H–Man–M.pdf!

@10# Ley, R. P., Lin, W., and Mbanefo, U., 1999, ‘‘Facesheet Wrinkling in Sandw
Structures,’’ NASA/CR-1999-208994.
MARCH 2005, Vol. 72 Õ 281



ub-
This

ture,
pling
have
alism
ates
tions,
now
full

is of
e hole

the
lane

cases
Chyanbin Hwu
Institute of Aeronautics and Astronautics,

National Cheng Kung University,
Tainan, Taiwan, ROC

e-mail: chwu@mail.ncku.edu.tw

Green’s Functions for
Holes/Cracks in Laminates With
Stretching-Bending Coupling
Consider an infinite composite laminate containing a traction-free elliptical hole s
jected to concentrated forces and moments at an arbitrary point outside the hole.
problem for two-dimensional deformation has been solved analytically in the litera
while for the general unsymmetric composite laminates stretching and bending cou
may occur and due to the mathematical complexity the associated Green’s functions
never been found for complete loading cases. Recently, by employing Stroh-like form
for coupled stretching-bending analysis, the Green’s functions for the infinite lamin
(without holes) were obtained in closed-form. Based upon the nonhole Green’s func
through the use of analytical continuation method the Green’s functions for holes are
obtained in explicit closed-form for complete loading cases and are valid for the
fields. The Green’s functions for cracks are then obtained by letting the minor ax
ellipse be zero. By proper differentiation, the stress resultants and moments along th
boundary and the stress intensity factors of cracks are also solved explicitly. Like
Green’s functions for the infinite laminates, only the solutions associated with the in-p
concentrated forces fˆ

1 , f̂ 2 and out-of-plane concentrated moments mˆ 1 , m̂2 have exactly
the same form as those of the corresponding two-dimensional problems. For the
under the concentrated force fˆ

3 and torsion m̂3 , new types of solutions are obtained.
@DOI: 10.1115/1.1839589#
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1 Introduction
The problems of holes and cracks are important not only

macromechanics but also in micromechanics. From the viewp
of macromechanics, holes are usually parts of the structure de
Due to the stress concentration induced by the existence of h
and pre-existing flaws, the cracks may initiate, propagate,
fracture. From a micromechanical viewpoint of composite ma
rials, microcracks and voids always exist in the materials due
imperfect composite fabrication. Thus, understanding holes
cracks is of importance due to the increased utilization of co
posites in recent aerospace and commercial applications. Bec
of its importance, many analytical, numerical, and experimen
studies have been published in journals and books. Among th
the study of Green’s function attracts many researchers’ atten
because analytically it may provide solutions for arbitrary load
through superposition, and numerically it can be employed as
fundamental solutions for the boundary element method and
the kernel functions of integral equations to consider interacti
between holes and cracks.

Although many Green’s functions have been presented in
literature, due to mathematical infeasibility most of them are
stricted to two-dimensional problems. For two-dimensional isot
pic elasticity, most of the analytical solutions concerning ho
and cracks can be found in the books of Muskhelishvili@1# and
Savin @2#. In the case of monoclinic materials subjected to
plane forces or out-of-plane pure bending moments, solutions
be found in the books of Lekhnitskii@3,4#. For general anisotropic
materials considering the coupling of in-plane and anti-plane
formations, solutions can be found in the book of Ting@5#. In

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the Applied Mechanics Division, March 9, 20
final revision, August 27, 2004. Editor: R. M. McMeeking. Discussion on the pa
should be addressed to the Editor, Prof. Robert M. McMeeking, Journal of App
Mechanics, Department of Mechanical and Environmental Engineering, Unive
of California—Santa Barbara, Santa Barbara, CA 93106-5070, and will be acce
until four months after final publication in the paper itself in the ASME JOURNAL OF
APPLIED MECHANICS.
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addition to the above books, which present most of the analyt
solutions, there are also many papers dealing with these kind
two-dimensional problems. However, because of anisotropy
asymmetry of lay-up, pure two-dimensional or pure bending f
mulation is not enough to describe the mechanical behavio
general asymmetric composite laminates. Due to mathema
complexity relatively few Green’s functions have been found
closed-form for the coupled stretching-bending analysis.

To deal with the laminates with stretching-bending couplin
some complex variable formulations have been proposed in
literature such as Refs.@6–11#. By these formulations, some prob
lems related to holes and cracks have been solved such as@12–
17#. However, most of the solutions are for the case of unifo
loadings. Although Chen and Shen@15# have provided Green’s
functions for hole problems, the loading cases they considered
not complete enough to cover all the possible loading conditio
especially the transverse forces and bending moments that
important roles in the laminate plate theory. Moreover, their so
tions left a system of linear algebraic equations to be solved
numerical algorithm. This is inconvenient when we employ t
Green’s function as a fundamental solution of the boundary
ment formulation to solve more practical engineering problem

From our recent studies@16,18#, we see that without consider
ing the transverse loading and in-plane torsion, many soluti
keep the same mathematical forms as their corresponding
dimensional problems. Thus, by simple analogy, many stretch
bending coupling problems can be solved directly from their c
responding two-dimensional problems. However, the key load
that distinguishes the in-plane problem~or axially loaded bars!
from the plate bending problem~or transversely loaded beams! is
the transverse loading. Therefore, inclusion of the complete lo
ing cases such as transverse loading, in-plane loading, ou
plane bending moment and in-plane torsion into the study
Green’s function for hole problems is an important task for t
present paper.

Recently, by our newly established Stroh-like formalism@11#,
we obtain the Green’s function of the infinite composite lamina
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~or called nonhole problems! @18# for the complete loading cases
As in the two-dimensional problems, by the method of analyti
continuation it seems that use of Green’s functions for nonh
problems may help us to obtain Green’s functions for hole pr
lems. As in the Green’s function for the nonhole problem@18#,
there are three different loading cases that should be of con
for the present problem, and two of them have different outlo
from that of two-dimensional problems. Careful derivation, su
as the selection of the unperturbed functions for the method
analytical continuation, becomes important for the present st
All the works that are different from the two-dimensional mat
ematical routine derivations will be discussed in detail in t
paper.

2 Stroh-Like Formalism for Coupled Stretching-
Bending Analysis

Based upon the Kirchhoff’s assumptions for thin plate, the
nematic relations, constitutive laws, and equilibrium equations
the coupled stretching-bending analysis of composite lamin
can be written in tensor notation as@11#

« i j 5
1

2
~ui , j1uj ,i !, k i j 5

1

2
~b i , j1b j ,i !,

Ni j 5Ai jkl «kl1Bi jkl kkl , Mi j 5Bi jkl «kl1Di jkl kkl ,
(2.1a)

Ni j , j50, Mi j ,i j 1q50, Qi5Mi j , j , i , j ,k,l 51,2,

where

b152w,1 , b252w,2 . (2.1b)

In the above, the subscript comma stands for differentiation:u1 ,
u2 , andw are the middle surface displacements in thex1 , x2 , and
x3 directions, respectively;b i , i 51, 2 are the negative of the
slope of the middle surface;« i j andk i j denote the midplane strai
and plate curvature;Ni j , Mi j , andQi denote the stress resultant
bending moments, and shear forces, respectively;Ai jkl , Bi jkl , and
Di jkl are, respectively, the extensional, coupling, and bend
stiffness tensors;q is the lateral distributed load applied on th
laminates. Repeated indices imply summation.

A general solution satisfying all the basic equations stated
Eqs. ~2.1! has been obtained@11# and purposely arranged in th
form of a Stroh formalism@5,19# of two-dimensional anisotropic
elasticity, and hence is called aStroh-like formalism. With this
formalism, the solution fields of displacements and stresses
expressed as@11#

ud52 Re$Af ~z!%, fd52 Re$Bf~z!%, (2.2a)

where

ud5 H u
bJ , fd5 H f

cJ , u5 Hu1

u2
J , b5 Hb1

b2
J ,

f5 Hf1

f2
J , c5 Hc1

c2
J , (2.2b)

and

f~z!5H f 1~z1!

f 2~z2!

f 3~z3!

f 4~z4!
J , za5x11max2 , a51,2,3,4, (2.2c)

A5@a1 a2 a3 a4#, B5@b1 b2 b3 b4#. (2.2d)

Re stands for the real part of a complex number. In Eq.~2.2b!2 ,
f1 , f2 and c1 , c2 are the stress functions related to the str
resultantsNi j , shear forcesQi , effective shear forcesVi , and
bending momentsMi j by
Journal of Applied Mechanics
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Ni152f i ,2 , Ni25f i ,1 ,

Mi152c i ,22l i1h, Mi25c i ,12l i2h, i 51,2, (2.3a)

Q152h ,2 , Q25h ,1 , V152c2,22, V25c1,11,

where

h5
1

2
ck,k5

1

2
~c1,11c2,2!, (2.3b)

andl i j is the permutation tensor defined as

l115l2250, l1252l2151. (2.3c)

f a(za), a51, 2, 3, 4, are four holomorphic functions of comple
variablesza , which will be determined by the boundary cond
tions set for each particular problem.ma and (aa ,ba) are, respec-
tively, the material eigenvalues and eigenvectors, which can
determined by the following eigenrelation:

Nj5mj, (2.4a)

where N is a 838 real matrix andj is a 831 column vector
defined by

N5FN1 N2

N3 N1
TG , j5 H a

bJ . (2.4b)

The superscriptT denotes the transpose of a matrix. The subm
trices N1 , N2 and N3 are the fundamental matrices of elastici
related to the extensional, coupling, and bending stiffness tens
respectively. The detailed definitions ofNi for the coupled
stretching-bending problems have been given in Refs.@11#, @18#
which are little different from those of two-dimensional problem
@5#. Moreover, the explicit expressions ofN1 , N2 andN3 as well
as their associated eigenvectorsa andb have been found in Refs
@11#, @20#.

By using the relations given in Eq.~2.3!, the stress resultant
Nn , Ns , Nns , bending momentsMn , Ms , Mns , shear forcesQn ,
Qs , and effective shear forcesVn , Vs in the tangent–norma
(s–n) coordinate system, can be obtained directly from the str
functions as@16#

Nn5nTf,s , Nns5sTf,s52nTf,n , Ns52sTf,n ,

Mn5nTc,s , Mns5sTc,s2h52nTc,n1h, Ms52sTc,n ,

(2.5a)

Qn5h ,s , Qs52h ,n , Vn5~sTc,s! ,s , Vs52~nTc,n! ,n ,

where

h5
1

2
~sTc,s1nTc,n!,

(2.5b)
sT5~cosu,sinu!, nT5~2sinu,cosu!.

andu is the angle directed clockwise from the positivex1-axis to
the tangential directions ~Fig. 1!.

By using the relations~2.3!, from A to B of the boundary sur-
face the resultant forcest̃ i and momentsm̃i about the coordinate
origin can also be expressed in terms of the stress function
@18#

t̃15E
A

B

2N11dx21N12dx15f1] A
B ,

t̃25E
A

B

2N12dx21N22dx15f2] A
B , (2.6a)

t̃35E
A

B

2Q1dx21Q2dx15h] A
B ,
MARCH 2005, Vol. 72 Õ 283
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m̃15E
A

B

M12dx22M22dx12x2~Q1dx22Q2dx1!

52~c22x2h!] A
B ,

m̃25E
A

B

2M11dx21M12dx11x1~Q1dx22Q2dx1!

5~c12x1h!] A
B , (2.6b)

m̃35E
A

B

x1~2N12dx21N22dx1!1x2~N11dx22N12dx1!

5~x1f22x2f12F!] A
B ,

whereF is the Airy stress function related tof i by

f152F ,2 , f25F ,1 . (2.6c)

3 Green’s Functions for Composite Laminates„With-
out Holes…

In the following sections, we will employ the method of an
lytical continuation to find Green’s functions for hole problems.
that method, we need to know the unperturbed solutions for n
hole problems. With this concern, in this section we first consi
an infinite laminate subjected to a concentrated forcef̂
5( f̂ 1 , f̂ 2 , f̂ 3) and moment m̂5(m̂1 ,m̂2 ,m̂3) at point x̂
5( x̂1 ,x̂2). The elasticity solution of this problem can be used a
fundamental solution of boundary element method and is ge
ally calledGreen’s function. From Eq.~2.6!, we see that the rela
tions between the resultant forces/moments and the stress
tions are different for different loading directions. Therefore,
the convenience of discussion, the Green’s functions are usu
presented in three different loading conditions:~1! f̂ 1 , f̂ 2 , m̂1 ,
m̂2 ; ~2! f̂ 3 ; and ~3! m̂3 @18,21#. From the relation~2.6! and the
discussions provided in Ref.@18#, the boundary conditions fo
each loading case can be written as

Case 1:f̂ 1 , f̂ 2 , m̂1 , m̂2

R
C
dfd5p̂, R

C
dud50, p̂5~ f̂ 1 f̂ 2 m̂2 2m̂1!T.

(3.1a)

Fig. 1 An elliptic hole in laminates subjected to concentrated
forces and moments
284 Õ Vol. 72, MARCH 2005
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Case 2:f̂ 3

R
C
dh5 f̂ 3 , R

C
dc15~x12 x̂1! f̂ 3 , R

C
dc25~x22 x̂2! f̂ 3 ,

(3.1b)

R
C
dud,150, R

C
dud,250, i1

Tb,25 i2
Tb,1 .

Case 3:m̂3

R
C
d~~x12 x̂1!f22~x22 x̂2!f12F!5m̂3 , R

C
dw50,

nTf,s5nTc,s5~sTc,s! ,s50, along any arbitray surface boundar
(3.1c)

Through satisfaction of boundary conditions~3.1!, the unknown
complex function vectorf(z) of Eq. ~2.2! has been determined t
be @18#

case 1: f~z!5^ log~za2 ẑa!&q1 ; (3.2a)

case 2: f~z!5^~za2 ẑa!@ log~za2 ẑa!21#&q2 ; (3.2b)

case 3: f~z!5 K 1

za2 ẑa
L q3 ; (3.2c)

where

q15
1

2p i
ATp̂, q25

f̂ 3

2p i
ATi3 , q35

m̂3

2p i
ATi2 , (3.2d)

and

i25H 0
1
0
0
J , i35H 0

0
1
0
J . (3.2e)

The angular bracket stands for the diagonal matrix whose com
nents vary according to the subscripta, a51, 2, 3, 4; i.e.,̂ f a&
5diag@f1,f2,f3,f4#.

4 Green’s Functions for Hole Problems
Consider an infinite composite laminate containing an ellipti

hole under a concentrated force and moment at pointx̂ ~Fig. 1!.
The contour of the hole boundary is represented by

x15a cosc, x25b cosc, (4.1)

where 2a, 2b are the major and minor axes of the ellipse resp
tively, andc is a real parameter related to the tangent angleu by

r cosu52a sinc, r sinu5b cosc, (4.2a)

where

r25a2 sin2 c1b2 cos2 c. (4.2b)

The force equilibrium and single-valued requirement of this pro
lem are the same as those shown in Eq.~3.1! for each different
loading case. If the hole is assumed to be traction free, the a
tional boundary conditions are

Nn5Nns5Mn5Vn50, along the hole boundary. (4.3

Because in the Stroh-like formalism the solution fields are
pressed in terms of the augmented displacement and stress
tion vectors (ud and fd , respectively!, in order to employ this
formalism it is better to rewrite Eq.~4.3! in terms of the stress
functions. With this understanding, by the relation~2.5a! the
traction-free boundary conditions~4.3! can now be written in
terms of the augmented stress function vectorfd as

nTf,s5sTf,s5nTc,s5~sTc,s! ,s50, along the hole boundary
(4.4a)
Transactions of the ASME
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fd50, along the hole boundary. (4.4b)

Since the elliptical hole boundary in thez-plane will map to
four different slanted elliptical hole boundaries in theza-plane, it
is not convenient to solve problems with an elliptical boundary
using the argumentza defined in Eq.~2.2c!. Therefore, to treat the
problems with an elliptical boundary, most of the solutions sho
in the literature are expressed in terms of the transformed com
variableza , which can transform all four different slanted ellip
tical hole boundaries into the same hole boundary in the shap
a unit circleuzu51. The relation betweenza andza is

za5
1

2 H ~a2 ibma!za1~a1 ibma!
1

za
J , a51,2,3,4,

(4.5a)

or inversely,

za5
za1Aza

22a22b2ma
2

a2 ibma
, a51,2,3,4. (4.5b)

Substituting Eq.~4.1! and Eq.~2.2c!2 into Eq. ~4.5b!, we have

za5cosc1 i sinc5eic5s, along the hole boundary.
(4.6)

Using the method of analytical continuation and understand
that the unknown complex function vectorf(z) is better expressed
in terms of the argumentsza , the general solution~2.2! for the
present problem can now be written as

ud52 Re$A@ fu~z!1fp~z!#%, fd52 Re$B@ fu~z!1fp~z!#%,
(4.7)

where fu is the function associated with the unperturbed ela
field andfp is the holomorphic function corresponding to the pe
turbed field of the problem and will be determined through sa
faction of the boundary conditions. To solvefp , we first need to
have a proper choice forfu . If some parts offu are holomorphic
outside the hole (S1) while others are holomorphic inside th
hole (S2), we may splitfu into two functionsfu

1 and fu
2 ; i.e.,

fu~z!5fu
1~z!1fu

2~z!, (4.8)

wherefu
1 is holomorphic inS1 and fu

2 is holomorphic inS2.
Employing the general solution~4.7! and the relation~4.8!, the

traction-free boundary condition~4.4b! now becomes

B@ fu
1~s!1fu

2~s!1fp~s!#1B̄@ fu
1~s!1fu

2~s!1fp~s!#50,
(4.9)

which can also be written as

Bfu
1~s!1Bfp~s!1B̄fu

2~s!52Bfu
2~s!2B̄fu

1~s!2B̄fp~s!.
(4.10)

One of the important properties of holomorphic functions used
the analytical continuation method is that iff (z) is holomorphic

outside the unit circleS1 then f (1/z̄) will be holomorphic inside
the unit circle S2, and vice versa. With this background, E
~4.10! can be rewritten as

u~s1!5u~s2!, (4.11a)

where

u~z!5H Bfu
1~z!1Bfp~z!1B̄fu

2~1/z̄ !, zPS1,

2Bfu
2~z!2B̄fu

1~1/z̄ !2B̄fp~1/z̄ !, zPS2.
(4.11b)

By the holomorphic conditions discussed before this equation,
conclude that this newly defined functionu~z! will be holomor-
phic in S1 andS2, and is continuous across the unit circle. Th
means thatu~z! is holomorphic in the wholez-plane, including the
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points at infinity. By Liouville’s theorem we haveu~z![constant.
However, the constant function corresponds to rigid body moti
which may be neglected. Therefore,u~z![0. With this result, Eq.
~4.11b!1 leads to

fp~z!52fu
1~z!2B21B̄fu

2~1/z̄ !. (4.12)

Note that when employing the method of analytical continuati
the subscripta of za has been dropped in Eq.~4.12! and a re-
placement ofz1 , z2 , z3 , z4 should be made for each compone
function of fp(z) after the multiplication of matrices~see Appen-
dix for detailed explanation!.

The problem now becomes how to select an appropriate un
turbed solutionfu and split it into fu

1 and fu
2 , and then use Eq

~4.12! to get fp . Following are the discussions based upon t
Green’s functions of nonhole problems provided in Sec. 3, wh
are presented in three different loading cases.

Case 1:f̂ 1 , f̂ 2 , m̂1 , m̂2
In order to save the effort of considering the force equilibriu

and single-valued requirement caused by the concentrated fo
and moments, it is appropriate to selectfu to be the solution for
the nonhole problems; i.e., the solution given in Eq.~3.2a!. From
Eq. ~4.5a! we know that

za2 ẑa5ca$za2 ẑa1ga~za
212 ẑa

21!%5ca~za2 ẑa!S 12
ga

ẑaza
D ,

(4.13a)

where

ca5
1

2
~a2 ibma!, ga5

a1 ibma

a2 ibma
. (4.13b)

In order to presentfu in terms ofza , we substitute Eq.~4.13a!
into Eq. ~3.2a! and get

fu~z!5K log~za2 ẑa!1 logS 12
ga

ẑaza
D 1 log caL q1 ,

(4.14)

Knowing that uga /( ẑaza)u,1 when zaPS1 and uza / ẑau,1
when zaPS2, we may splitfu of Eq. ~4.14! into the following
two parts:

fu
1~z!5K logS 12

ga

ẑaza
D 1 log caL q1 ,

(4.15)

fu
2~z!5^ log~za2 ẑa!&q1 .

Substituting Eq.~4.15! into Eq. ~4.12! and understanding that th
subscript ofza should be dropped before the matrix multiplicatio
~see Appendix!, we get

fp~z!52K logS 12
ga

ẑaz
D 1 log caL q12B21B̄^ log~z212 z̄̂a!&q̄1 .

(4.16)

Using the translating technique~see Appendix!, the explicit full-
field solution offp(z) can now be written as

fp~z!52K logS 12
ga

ẑaza
D 1 log caL q12(

k51

4

^ log~za
21

2 z̄̂k!&B
21B̄I kq̄1 . (4.17)

Adding fu and fp obtained in Eqs.~4.14! and ~4.17! together and
using ~3.2d!1 , we have
MARCH 2005, Vol. 72 Õ 285
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f~z!5fu~z!1fp~z!5
1

2p i H ^ log~za2 ẑa!&AT1(
k51

4

^ log~za
21

2 z̄̂k!&B
21B̄I kĀ

TJ p̂, (4.18)

which is exactly the same as that obtained in Refs.@5#, @22#, @23#
for the Green’s function of a hole in two-dimensional problems.
Ref. @22#, the solution was found by proper selection of the fun
tion form of f(z), which is then improved by Ting@5# using the
concept of image singularities. The analytical continuat
method was first introduced by Hwu and Yen@23# for general
elastic inclusion problems. In Ref.@23#, fu was selected to befu

2 of
Eq. ~4.15!, which means thatfu

150. By their selection,fp will be
different from the one obtained in Eq.~4.17!, while the final result
of f5fu1fp still stays the same.

Note that the selections offu given in Ref.@23# and Eq.~4.14!
are different only in their arguments. One is^ log(za2ẑa)&q1 , and
the other is^ log(za2ẑa)&q1 . It appears thatfu can be selected
directly from the nonhole problems, i.e., Eq.~4.14!, or just by
replacing the argument of the nonhole problems fromza to za .
However, in general, the latter way may not be correct, wh
should depend on the satisfaction of the force equilibrium a
single-valued requirement described in Eq.~3.1!. Unlike Eq.
~3.2a!, when za is replaced byza , the unperturbed solution
~3.2b! and ~3.2c! cannot satisfy their associated boundary con
tions ~3.1b! and~3.1c!. Therefore, in the following two cases on
should be very careful about the selection offu .

Case 2:f̂ 3
As stated above,fu cannot be chosen to be the nonhole solut

~3.2b! with za replaced byza since it does not satisfy the bound
ary conditions given in Eq.~3.1b!. As in Case 1, to save the effo
of considering the force equilibrium and single-valued requi
ment ~3.1b!, it is appropriate to selectfu directly from Eq.~3.2b!
without making replacement. In order to presentfu in terms ofza ,
we substitute Eq.~4.13a! into Eq. ~3.2b! and get

fu~z!5K ca~za2 ẑa!S 12
ga

ẑaza
D F log~za2 ẑa!1 logS 12

ga

ẑaza
D

1 log ca21G L q2 . (4.19)

Knowing that

log~za2 ẑa!5 log~2 ẑa!2(
k51

`
1

k S za

ẑa
D k

, for Uza

ẑa
U,1,

(4.20)

logS 12
ga

ẑaza
D 52(

k51

`
1

k S ga

ẑaza
D k

, for U ga

ẑaza
U,1,

and carrying out the multiplication of Eq.~4.19! into series expan-
sion and then check the holomorphic condition of each term,
may split fu of Eq. ~4.19! into two functionsfu

1 and fu
2 wherefu

1

is holomorphic inS1 ~outside the hole! and fu
2 is holomorphic in

S2 ~inside the hole!. They are

fu
1~z!5K ~za2 ẑa!S 12

ga

ẑaza
D logS 12

ga

ẑaza
D L qc1^ga~za

21

2 ẑa
21!&qc* 1^~za

212 ẑa
21!&qc** ,

(4.21a)

fu
2~z!5K ~za2 ẑa!S 12

ga

ẑaza
D log~za2 ẑa!L qc1^~za2 ẑa!&qc*

2^~za
212 ẑa

21!&qc** ,

where
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qc5^ca&q2 , qc* 5^ca~ log ca21!&q2 ,
(4.21b)

qc** 5^caga log~2 ẑa!&q2 .

Substituting Eq.~4.21a! into Eq.~4.12! and understanding that th
subscript ofza should be dropped before the matrix multiplic
tion, we get

fp~z!52K ~z2 ẑa!S 12
ga

ẑaz
D logS 12

ga

ẑaz
D L qc2^ga~z21

2 ẑa
21!&qc* 2^~z212 ẑa

21!&qc** 2B21B̄^~z212 ẑ
¯

a!~1

2ḡaẑ
¯

a
21z!log~z212 ẑ

¯
a!&q̄c2B21B̄^~z212 ẑ

¯
a!&q̄c*

1B21B̄^~z2 ẑ
¯

a
21!&q̄c** . (4.22)

Using the translating technique~see Appendix!, the explicit full-
field solution offp(z) can then be written as

fp~z!52K ~za2 ẑa!S 12
ga

ẑaza
D logS 12

ga

ẑaza
D L qc2^ga~za

21

2 ẑa
21!&qc* 2^~za

212 ẑa
21!&qc** 2(

k51

4

^~za
212 ẑ

¯
k!~1

2ḡkẑ
¯

k
21za!log~za

212 ẑ
¯

k!&B
21B̄I kq̄c2(

k51

4

^~za
21

2 ẑ
¯

k!&B
21B̄I kq̄c* 1(

k51

4

^~za2 ẑ
¯

k
21!&B21B̄I kq̄c** . (4.23)

Adding fu and fp obtained in Eqs.~4.19! and ~4.23! together and
using Eq.~4.13!, we get

f~z!5fu~z!1fp~z!5^~za2 ẑa!log~za2 ẑa!&q22(
k51

4

^~za
212 ẑ

¯
k!

3~12ḡkẑ
¯

k
21za!log~za

212 ẑ
¯

k!&B
21B̄I k^c̄a&q̄21^~za

2 ẑa!&qc* 2(
k51

4

^~za
212 ẑ

¯
k!&B

21B̄I kq̄c* 2^~za
21

2 ẑa
21!&qc** 1(

k51

4

^~za2 ẑ
¯

k
21!&B21B̄I kq̄c** . (4.24)

Case 3:m̂3
Similar to Case 2,fu is selected to be the unperturbed soluti

~3.2c!, in which za2 ẑa is related toza and ẑa by Eq. ~4.13!, and
hence

fu~z!5K 1

ca~ ẑa2ga / ẑa!
H ẑa

za2 ẑa

2
ga / ẑa

za2ga / ẑa
J L q3 .

(4.25)

Sinceẑa andga / ẑa are located inS1 andS2, respectively,fu can
be split into the following two parts:

fu
1~z!5K 21

za2ga / ẑa
L q3** , fu

2~z!5K 1

za2 ẑa
L q3* ,

(4.26a)

where

q3* 5
ẑa

ca~ ẑa2ga / ẑa!
q3 , q3** 5

ga / ẑa

ca~ ẑa2ga / ẑa!
q3 .

(4.26b)
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Substituting Eq.~4.26! into Eq. ~4.12! and using the translating
technique described in the Appendix, the full field solution
fp(z) can be obtained as

fp~z!5K 1

za2ga / ẑa
L q3** 2(

k51

4 K 1

za
212 ẑ

¯
k
L B21B̄I kq̄3* .

(4.27)

Adding fu and fp obtained in Eqs.~4.25! and ~4.27! together we
get

f~z!5fu~z!1fp~z!5K 1

za2 ẑa
L q3* 2(

k51

4 K 1

za
212 ẑ

¯
k
L B21B̄I kq̄3* .

(4.28)

Stress Resultants and Moments Along the Hole Boundary.
In engineering applications, one is usually interested in the st
resultants and moments along the hole boundary. Since the
considered in this paper is in the shape of an ellipse, it is bette
calculate the stress resultants and bending moments in
tangent–normal (s–n) coordinate instead of the Cartesia
(x1–x2) coordinate. By the relations given in Eqs.~2.5! and
~2.2b!2 , we know that the calculation of stress resultants and m
ments relies upon the calculation of the differentialsfd,s and
fd,n . Moreover, due to the traction-free boundary condition p
scribed in Eq.~4.4!, along the hole boundaryfd,s should be zero,
which will then be used as a check of our solutions.

From ~2.2a!2 , we have

fd,n52 Re$Bf,n~z!%, (4.29)

in which each term off,n(z) can be obtained by using chain ru
for differentiation, such as

] f

]n
5

] f

]za

]za

]c

]c

]za
F]za

]x1

]x1

]n
1

]za

]x2

]x2

]n G . (4.30)

Along the hole boundary,

za5eic,
]za

]c
5 ieic,

]za

]c
52a sinc1mab cosc5r~cosu1ma sinu!, (4.31)

]x1

]n
52sinu,

]x2

]n
5cosu,

]za

]x1
51,

]za

]x2
5ma ,

and hence,

] f

]n
5

ieicma~u!

r

] f

]za
, along the hole boundary,

(4.32)

wherema(u) is the generalized material eigenvalue related toma
by

ma~u!5
2sinu1ma cosu

cosu1ma sinu
. (4.33)

By the relation~4.32!, each term offn(z) in Eqs. ~4.18!, ~4.24!,
and~4.28! along the hole boundary can be obtained explicitly. F
example,

] log~za2 ẑa!

]n
5

ieic

r~eic2 ẑa!
ma~u!, . . . ,

]~za
212 z̄̂k!

21

]n
5

ieic

r~12eicz̄̂k!
2

ma~u!, . . . ,etc.,
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along the hole boundary.
(4.34)

Substituting these results into Eq.~4.29! and carefully performing
the summation such as

(
k51

4

BK ma~u!

e2 ic2 z̄̂k

L B21B̄I kĀ
Tp̂

5B^ma~u!&B21B̄(
k51

4

~e2 ic2 ẑ
¯

k!
21I kĀ

Tp̂

5B^ma~u!&B21B̄^~e2 ic2 ẑ
¯

a!21&ĀTp̂ (4.35)

we obtain

fd,n5
22

pr
G3~u!Im$B^hi~c!&AT%pi , i 51,2,3,

(4.36a)

where

h1~c!5eic~eic2 ẑa!21,

h2~c!5ca@eic log~ca~eic2 ẑa!!2gae2 ic log~12 ẑa
21eic!

2gaẑa
21#, (4.36b)

h3~c!52
eicẑa

ca~ ẑa2ga / ẑa!~eic2 ẑa!2
,

and

p̂15p̂, p̂25 f̂ 3i3 , p̂35m̂3i2 . (4.36c)

The subscriptsi 51, 2, 3, denote the loading cases discussed
this paper. Note that in deriving Eq.~4.36!, an identity converting
complex form into real form has been used, which is

B^ma~u!&B215G1~u!1 iG3~u!, (4.37)

where G1(u) and G3(u) are two real matrices defined by th
generalized fundamental matricesNi(u) and Barnett–Lothe ten-
sorsS andL as

G1~u!5N1
T~u!2N3~u!SL21, G3~u!52N3~u!L21.

(4.38)

This identity is just one of several useful identities developed
Stroh formalism for two-dimensional problems@5#. By deliberate
arrangement it has been proved that these identities are still v
for Stroh-like formalism of coupled stretching-bending problem
@11#.

Discussion and Verification. Although the Green’s functions
for hole problems play important roles in stress analysis, mos
the closed-form solutions presented in the literature are for t
dimensional problems. As to the holes in laminates w
stretching-bending coupling, as far as I know no analytical clos
form solution has been presented in complete loading cases w
out leaving any unsolved coefficients. Since no other analyt
solutions can be used to compare our solutions, detailed dis
sion and verification are necessary. When we employed the
eral solution~2.2!, all the basic equations for the laminates wi
stretching-bending coupling have been satisfied. Thus, all we n
to do is check the satisfaction of the boundary conditions p
scribed in Eqs.~3.1a,b,c! and Eq.~4.4!. By the method of analyti-
cal continuation, when we selected the nonhole solutio
~3.2a,b,c! as our unperturbed solutionsfu , the boundary condi-
tions ~3.1a,b,c! have been satisfied. Moreover, the perturbed so
tions fp obtained in Eqs.~4.17!, ~4.23!, and~4.27! are all holomor-
phic in the region outside the hole, and hence will make all
contour integrals shown in Eqs.~3.1a,b,c! vanish and let the
boundary conditions~3.1a,b,c! be satisfied not only byfu but also
MARCH 2005, Vol. 72 Õ 287
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by fu1fp . After verifying the force equilibrium and single-value
requirement shown in Eqs.~3.1a,b,c!, we now check the traction
free condition~4.4a!.

Similar to the derivation given in Eqs.~4.30!–~4.32!, the differ-
entiation with respect to the tangential direction can be calcula
by

] f

]s
5

ieic

r

] f

]za
, along the hole boundary. (4.39

With this relation, by following the steps described in Eq
~4.34!–~4.36!, we get

fd,s50, along the hole boundary, (4.40

which shows that the traction-free boundary conditions are a
satisfied by our solutions.

In addition to the basic check of the present solutions, from
boundary conditions shown in Eq.~3.1a! for the first loading case
we noticed that they are identical to those of the two-dimensio
problems in their mathematical form. If the mathematical forms
the general solution~2.2a! and the boundary conditions~3.1a! are
all exactly the same as those of two-dimensional problems, t
solutions should also be identical in their mathematical form. T
can be proved by the solutions shown in Eqs.~4.18! and~4.36! for
i 51 and those presented in Refs.@5,22,23#. For Case 1, if the
force p̂ is applied on the hole surface, we may letẑa5eico. With
this value, the solution~4.36! can be further reduced to

fd,n5
1

2pr
G3~u!H sin~c2co!

12cos~c2co!
I1STJ p̂, (4.41)

whose mathematical form is also identical to that shown in R
@5# for two-dimensional problems.

5 Green’s Functions for Crack Problems
An elliptic hole can be made into a crack of length 2a by

letting the minor axis 2b be equal to zero. The Green’s function
for crack problems can therefore be obtained from Eqs.~4.18!,
~4.24!, and~4.28! by letting b50, in which the mapped variable
za becomes

za5
1

a
$za1Aza

22a2%. (5.1)

Substituting Eqs.~4.18!, ~4.24!, and ~4.28! with b50 into Eq.
~2.2a!2 , and using the relations~2.3! for x250, ux1u.a, we see
that the stress resultants ahead of the crack tip are singula
deal with the stress singularity, the stress intensity factors are
ally defined as

K5H K II

K I

K IIB

K IB

J 5 lim
r→0

A2prH N12

N22

M12

M22

J , (5.2)

wherer is the distance ahead of the crack tip. By using the re
tions given in Eq.~2.3!, the definition~5.2! can now be rewritten
in terms of the stress functions as

K5 lim
r→0

A2pr ~fd,12h i3!, h5~ i3
Tfd,11 i4

Tfd,2!/2. (5.3)

From this relation, we know that to obtain the stress intens
factors we need to calculatefd,1 andfd,2 . By the approach simi-
lar to those described in Eqs.~4.29!–~4.38!, and lettingx250,
x1.a, x12a5r , andr→0, which will lead toza→1, we obtain

lim
r→0

A2pr fd,15
2

Apa
Im$B^hi~0!&AT%p̂i ,

(5.4)
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lim
r→0

A2pr fd,25
2

Apa
G1~0!Im$B^hi~0!&AT%p̂i , i 51,2,3.

For Case 1, if the forcep̂ is applied on the upper crack surfac
x5c where 0,c,a, the solution~5.4! can be further reduced to

lim
r→0

A2pr fd,15
1

2Apa
HAa1c

a2c
I2STJ p̂,

(5.5)

lim
r→0

A2pr fd,25
1

2Apa
G1~0!HAa1c

a2c
I2STJ p̂.

The mode I and mode II stress intensity factors,K I and K II ,
respectively, calculated from Eq.~5.5!1 are identical to the solu-
tions given in Refs.@22,24#.

6 Conclusions
By using Stroh-like formalism and analytical continuatio

method, the Green’s functions for holes/cracks in laminates w
stretching and bending coupling are obtained in this paper. L
the Green’s functions for the infinite laminates, the concentra
forces and moments will influence the mechanical behavior of
laminates in different ways when they are applied in differe
directions. The results show that the solutions correspondin
the in-plane concentrated forcesf̂ 1 , f̂ 2 and out-of-plane concen
trated momentsm̂1 , m̂2 ~Case 1! have exactly the same form a
that of the corresponding two-dimensional problems. While
the cases~Cases 2 and 3! under the concentrated forcef̂ 3 and
torsionm̂3 , respectively, new types of solutions are obtained
plicitly. The Green’s functions are expressed in complex form a
are valid for the full field. By using the relations between t
stress functions and stress resultants/moments, relatively sim
solutions are obtained for the stress resultants and moments a
the hole boundary. Furthermore, through the use of some ide
ties developed in the literature, real form solutions are obtai
for loading Case 1. Similarly, we also get the explicit solutions
the stress intensity factors for crack problems.

It should be noticed that unlike the corresponding tw
dimensional problems, for the satisfaction of force equilibriu
and single-valued requirement, the unperturbed solutions of C
2 and 3 cannot be selected from the Green’s functions of non
problems by just replacing the function argument fromza to za .
The relation betweenza andza should be used when we chang
the function argument, and hence the holomorphic conditions
the complex function may also change. Thus, when we emp
the analytical continuation method the unperturbed soluti
should be split into two parts: one is holomorphic outside the h
and the other is holomorphic inside the hole.
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Appendix: Translating Technique
When we employ the method of analytical continuation, it

quite usual that a new analytical function will be introduced bas
upon the relation of the boundary condition. For example, the n
analytical functionu~z! given in Eq.~4.11b! is introduced accord-
ing to the relation~4.10!, which comes from the traction-free
boundary condition. If the function argumentsza , a51, 2, 3, 4,
have the same value on the boundary,~e.g.,z15z25z35z45s
on the hole surface!, the arguments of the new analytical functio
can be any one ofza because their introduction is based upon t
boundary conditions. Therefore, when we introduce the new a
Transactions of the ASME
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lytical function, it is better to represent its associated solutions
using the function vector without indicating the subscript; for e
ample,

u~z!5$u1~z! u2~z! u3~z! u4~z!%T. (A1)

With this understanding, the function vectorfp(z) obtained in Eq.
~4.12! also has the form of~A1! which is not consistent with the
solution form shown in Eq.~2.2c! and is valid only on the bound
ary. To obtain the explicit full-domain solution, a mathematic
operation based upon the following statement is needed: ‘‘O
the solution off(z) is obtained from the condition of analytica
continuation with the understanding that the subscript ofz is
dropped before the matrix product, a replacement ofz1 , z2 , or z3
should be made for each component function after the multipl
tion of matrices.’’ A technique translating the above mathemat
operation was first introduced by Hwu@25# and is described be
low.

If a solution with the subscript ofz dropped is written as

f~z!5C^ga~z!&q, (A2)

its associated full-field solution with the form shown in Eq.~2.2c!
can be expressed as

f~z!5(
k51

4

^gk~za!&CI jq, (A3)

where

I15diag@1,0,0,0#, I25diag@0,1,0,0#,
(A4)

I35diag@0,0,1,0#, I45diag@0,0,0,1#.
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Analytical Solution of a Dynamic
System Containing Fractional
Derivative of Order One-Half by
Adomian Decomposition Method
The fractional derivative has been occurring in many physical problems, such as
frequency-dependent damping behavior of materials, motion of a large thin plate in a
Newtonian fluid, creep and relaxation functions for viscoelastic materials, the PI�D�

controller for the control of dynamical systems, etc. Phenomena in electromagnetics,
acoustics, viscoelasticity, electrochemistry, and materials science are also described by
differential equations of fractional order. The solution of the differential equation contain-
ing a fractional derivative is much involved. Instead of an application of the existing
methods, an attempt has been made in the present analysis to obtain the solution of an
equation in a dynamic system whose damping behavior is described by a fractional
derivative of order 1/2 by the relatively new Adomian decomposition method. The results
obtained by this method are then graphically represented and compared with those avail-
able in the work of Suarez and Shokooh [Suarez, L. E., and Shokooh, A., 1997, ‘‘An
Eigenvector Expansion Method for the Solution of Motion Containing Fraction Deriva-
tives,’’ ASME J. Appl. Mech., 64, pp. 629–635]. A good agreement of the results is
observed. �DOI: 10.1115/1.1839184�
1 Introduction

The fractional differential equations appear more and more fre-
quently in different research areas and engineering applications.
An effective and easy-to-use method for solving such equations is
needed. It should be mentioned that from the viewpoint of frac-
tional calculus applications in physics, chemistry, and engineer-
ing, it was undoubtedly the book written by K. B. Oldham and J.
Spanier �1� that played an outstanding role in the development of
this subject. Moreover, it was the first book that was entirely de-
voted to a systematic presentation of the ideas, methods, and ap-
plications of the fractional calculus.

Later there appeared several fundamental works on various as-
pects of the fractional calculus including extensive survey on frac-
tional differential equations by Miller and Ross �2�, I. Podlubny
�3�, and others. Furthermore, several references to the books by
Oldham and Spanier �1�, Miller and Ross �2�, and Podlubny �3�
show that applied scientists need first of all an easy introduction to
the theory of fractional derivatives and fractional differential
equations, which could help them in their initial steps to adopting
the fractional calculus as a method of research.

Fractional calculus has been used to model physical and engi-
neering processes that are found to be best described by fractional
differential equations. For that reason we need a reliable and ef-
ficient technique for the solution of fractional differential equa-
tions. In this connection, it is worthwhile to mention that the re-
cent papers on numerical solutions of fractional differential
equations are available from the notable works of Diethelm, Ford,
and Freed �4–8�. Recently, applications have included classes of
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nonlinear fractional differential equations �9� and their numerical
solutions have been established by Diethelm and Ford �10�.

The fractional derivative models are used for accurate modeling
of those systems that require accurate modeling of damping. It has
been shown that fractional derivative models describe very well
the frequency-dependent damping behavior of materials and sys-
tems �11–13�. Koeller �14� considered a fractional derivative
model to obtain expressions for creep and relaxation functions for
viscoelastic materials. Mbodje et al. �15� presented a linear-
quadratic optimal control of a rod whose damping mechanism was
described in terms of fractional derivatives. Makris and Constan-
tinou �16� presented a fractional-derivative Maxwell model for
viscous dampers and validated their model using experimental
results. They also presented some analytical results for a fraction-
ally damped single-degree-of-freedom system. Techniques based
on fractional derivative to model damping behavior of materials
and systems have also been considered by Shen and Soong �17�,
Pritz �18�, and Papoulia and Kelly �19�.

Several methods have been proposed to find the response of a
fractionally damped system. These methods include Laplace
transform �12,13,20–22�, Fourier transform �20,23,24� and nu-
merical methods �25,26�. It has been seen that in the above works,
the Laplace transform method requires the numerical evaluation
of an improper integral and Fourier transform method also re-
quires a numerical implementation, either via an fast Fourier
transform or numerical integration. Although recently Suarez and
Shokooh �27� presented an eigenvector expansion method for the
solution of motion containing fractional derivatives of order 1/2,
in the present analysis an attempt has been made to obtain the
solution by a different method.

In this paper, we use the Adomian decomposition method
�28,29� to obtain a solution for dynamic analysis of a single-
degree-of-freedom spring-mass-damper system whose damping is
described by a fractional derivative of order 1/2. Large classes of
linear and nonlinear differential equations, both ordinary as well
as partial, can be solved by the Adomian decomposition method
�28–35�. A reliable modification of Adomian decomposition
method has been done by Wazwaz �36�. The decomposition
005 by ASME Transactions of the ASME



method provides an effective procedure for analytical solution of a
wide and general class of dynamical systems representing real
physical problems �29–32�. Recently, the implementations of the
Adomian decomposition method for the solutions of generalized
regularized long-wave and Korteweg–de Vries equations have
been well established by the notable researchers �37–40�. This
method efficiently works for initial-value or boundary-value prob-
lems and for linear or nonlinear, ordinary or partial differential
equations, and even for stochastic systems. Moreover, we have the
advantage of a single global method for solving ordinary or partial
differential equations as well as many types of other equations.
Recently, the solution of fractional differential equation has been
obtained through the Adomian decomposition method by the re-
searchers �41–45�. The application of the Adomian decomposition
method for the solution of nonlinear fractional differential equa-
tions has also been established by Shawagfeh �44�.

2 Mathematical Aspects

2.1 Mathematical Definition. The mathematical definition
of fractional calculus has been the subject of several different
approaches �1,3�. The most frequently encountered definition of
an integral of fractional order is the Riemann-Liouville integral, in
which the fractional order integral is defined as

d�q f �x �

dx�q
�

1

��q � �0

x f � t �dt

�x�t �1�q
(2.1.1)

while the definition of fractional order derivative is

dq f �x �

dxq
�

dn

dxn � d��n�q � f �x �

dx��n�q � � �
1

��n�q �

dn

dxn �
0

x f � t �dt

�x�t �1�n�q

(2.1.2)

where q (q�0 and q�R) is the order of the operation and n is an
integer that satisfies n�1�q�n .

2.2 Definition: Mittag-Leffler Function. A two-parameter
function of the Mittag-Leffler type is defined by the series expan-
sion �3�

E	 ,
�z ���
k�0

�
zk

��	k�
�
, �	�0,
�0 � (2.2.1)

2.3 The Decomposition Method. Let us discuss a brief out-
line of the Adomian decomposition method, in general. For this,
let us consider an equation in the form

Lu�Ru�Nu�g (2.3.1)

where L is an easily or trivially invertible linear operator, R is the
remaining linear part, and N represents a nonlinear operator.

The general solution of the given equation is decomposed into
the sum

u��
n�0

�

un (2.3.2)

where u0 is the complete solution of Lu�g .
From Eq. �2.3.1�, we can write

Lu�g�Ru�Nu

Because L is invertible, an equivalent expression is

L�1Lu�L�1g�L�1Ru�L�1Nu

For initial-value problems, we conveniently define L�1 for L
dn/dtn as the n-fold definite integration operator from 0 to t. For
the operator Ld2/dt2, for example, we have L�1Lu�u�u(0)
�tu�(0), and therefore

u�u�0 ��tu��0 ��L�1g�L�1Ru�L�1Nu (2.3.3)
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For boundary-value problems �and, if desired, for initial-value
problems as well�, indefinite integrations are used and the con-
stants are evaluated from the given conditions. Solving for u
yields

u�A�Bt�L�1g�L�1Ru�L�1Nu (2.3.4)

The first three terms in Eq. �2.3.3� or �2.3.4� are identified as u0 in
the assumed decomposition u��n�0

� un . Finally, assuming Nu is
analytic, we write Nu��n�0

� An(u0 ,u1 ,u2 , . . . ,un) where An’s
are special set of polynomials obtained for the particular nonlin-
earity Nu� f (u) and were generated by Adomian �28,29�. These
An polynomials depend, of course, on the particular nonlinearity.

The An’s are given as

A0� f �u0�

A1�u1�d/du0� f �u0�

A2�u2�d/du0� f �u0���u1
2/2! ��d2/du0

2� f �u0�

A3�u3�d/du0� f �u0��u1u2�d2/du0
2� f �u0���u1

3/3! �

��d3/du0
3� f �u0�

¯

and can be found from the formula �for n�1)

An��
��1

n

c�� ,n � f ����u0� (2.3.5)

where the c(� ,n) are products �or sums of products� of � compo-
nents of u whose subscripts sum to n, divided by the factorial of
the number of repeated subscripts �29�.

Recently, the Adomian decomposition method is reviewed and
a mathematical model of Adomian polynomials is introduced
�46,47�.

Therefore, the general solution becomes

u�u0�L�1R�
n�0

�

un�L�1Nu (2.3.6)

�u0�L�1R�
n�0

�

un�L�1�
n�0

�

An (2.3.7)

where

u0���L�1g and L��0 (2.3.8)

so that

un�1��L�1Run�L�1An , n�0 (2.3.9)

Using the known u0 , all components u1 , u2 , . . . ,un , . . . , etc.
are determinable by using Eq. �2.3.9�. Substituting these u0 , u1 ,
u2 , . . . ,un , . . . , etc. in Eq. �2.3.2�, u is obtained.

Convergence of this method has been rigorously established by
Cherruault �48�, Abbaoui and Cherruault �49,50�, and Himoun,
Abbaoui, and Cherruault �51�.

3 Fractional Dynamic Model and the Solution
To develop an analytical scheme for a fractionally damped

model, let us consider a single-degree-of-freedom spring-mass-
damper system whose dynamics is described by the following
fractional differential equation:

mDt
2x� t ��cDt

1/2x� t ��kx� t �� f � t � (3.1)

where m, c, and k represent the mass, damping, and stiffness co-
efficients, respectively, f (t) is the externally applied force, and
Dt

1/2x(t) is the fractional derivative of order 1/2 of the displace-
ment x(t).

It is well known that selection of an appropriate set of initial
conditions for fractional differential equations is a particular issue.
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Lorenzo and Hartley have treated the issue of initializations in
several papers wherein they formulated the problem correctly,
analyzed the effect of a wrong initialization, and proposed solu-
tions �52–54�.

To follow the previous authors Suarez and Shokooh �27�, in the
present analysis, we will assume homogeneous initial conditions
that correspond to the equilibrium state at the beginning of a dy-
namical process:

x�0 ��0 and Dtx� t �� t�0�0 (3.2)

Homogeneous initial conditions have been taken as we are pursu-
ing the paper of Suarez and Shokooh �27� to compare their solu-
tions with those obtained by the Adomian decomposition method.

We adopt the Adomian decomposition method for solving Eq.
�3.1� under homogeneous conditions �3.2�. In the light of this
method, we assume that x(t)�x0(t)�x1(t)�x2(t)� . . . to be
the solution of Eq. �3.1�.

Now, Eq. �3.1� can be written as

d2x� t �

dt2
�

c

m

d1/2x� t �

dt1/2
�

k

m
x� t ��

f � t �

m
(3.3)

Let us suppose that Ld2/dt2, which is an easily invertible linear
operator.

Now, comparing Eq. �3.3� and Eq. �2.3.1�, we can observe that
d1/2/dt1/2 in Eq. �3.3� represents the remaining linear operator, and
the nonlinear part Nx , fortunately linear in this case, is
(k/m)x(t).

Therefore,

Nx� f �x ���
n�0

�

An�x0 ,x1 , . . . ,xn��
k

m
x (3.4)

The Adomian polynomials An , as discussed in subsection 2.3,
become in the present case

A0� f �x0��
k

m
x0

A1�x1

d f �x0�

dx0
�

k

m
x1

A2�x2

d f �x0�

dx0
��x1

2/2! �
d2 f �x0�

dx0
2

�
k

m
x2

A3�x3

d f �x0�

dx0
�x1x2

d2 f �x0�

dx0
2

��x1
3/3! �

d3 f �x0�

dx0
3

�
k

m
x3

and so on.
Therefore, by the Adomian decomposition method, we can

write

x� t ��x�0 ��tDtx� t �� t�0�
1

m
L�1 f � t �

�L�1� c

m
Dt

1/2� �
n�0

�

xn� t �� � �L�1�
n�0

�

An (3.5)

�
1

m
L�1 f � t ��

c

m
L�1� Dt

1/2� �
n�0

�

xn� t �� �
�L�1� �

n�0

�
k

m
xn� t �� (3.6)

This implies that

w

a

4

o
u
W
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x� t ��
1

m

d�2

dt�2
f � t ��

c

m

d�3/2

dt�3/2 � �n�0

�

xn� t ��
�

k

m

d�2

dt�2 � �
n�0

�

xn� t �� (3.7)

here

x0� t ��
1

m

d�2

dt�2
f � t �

x1� t ���
c

m

d�3/2x0� t �

dt�3/2
�

k

m

d�2x0� t �

dt�2

x2� t ���
c

m

d�3/2x1� t �

dt�3/2
�

k

m

d�2x1� t �

dt�2

x3� t ���
c

m

d�3/2x2� t �

dt�3/2
�

k

m

d�2x2� t �

dt�2

nd so on.
Therefore, the general solution of Eq. �3.1� is

x� t ��
1

m

d�2

dt�2
f � t ��

c

m �d�3/2x0� t �

dt�3/2
�

d�3/2x1� t �

dt�3/2
�

d�3/2x2� t �

dt�3/2

�
d�3/2x3� t �

dt�3/2
�¯��

k

m �d�2x0� t �

dt�2
�

d�2x1� t �

dt�2

�
d�2x2� t �

dt�2
�

d�2x3� t �

dt�2
�¯� (3.8)

Step Function Response
At first let us examine the response of an initially stationary

scillator subject to an excitation of the form f (t)�Au(t), where
(t) is the Heaviside function and A is a constant, for Eq. �3.1�.
e will then obtain

x0� t ��
1

m

d�2

dt�2
f � t ��

At2

2m

x1� t ���
c

m

d�3/2x0� t �

dt�3/2
�

k

m

d�2x0� t �

dt�2
��

cA

m2

t7/2

��
9
2�

�
kA

m2

t4

��5 �

x2� t ���
c

m

d�3/2x1� t �

dt�3/2
�

k

m

d�2x1� t �

dt�2
�

c2A

m3

t5

��6 �

�
2kcA

m3

t11/2

��
13
2 �

�
k2A

m3

t6

��7 �

x3� t ���
c

m

d�3/2x2� t �

dt�3/2
�

k

m

d�2x2� t �

dt�2
��

c3A

m4

t13/2

��
15
2 �

�
3kc2A

m4

t7

��8 �
�

3k2Ac

m4

t15/2

��
17
2 �

�
k3A

m4

t8

��9 �
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x4� t ���
c

m

d�3/2x3� t �

dt�3/2
�

k

m

d�2x3� t �

dt�2
�

c4A

m5

t8

��9 �

�
4kc3A

m5

t17/2

��
19
2 �

�
6k2c2A

m5

t9

��10�
�

4k3cA

m5

t19/2

��
21
2 �

�
k4A

m5

t10

��11�

and so on.
Therefore, the solution �3.8� becomes

x� t ��
A

m �
r�0

�
��1 �r

r! � k

m � r

t2�r�1 ��
j�0

� � �c

m � j � j�r �!t3 j /2

j!�� 3 j

2
�2r�3 �

�
A

m �
r�0

�
��1 �r

r! � k

m � r

t2�r�1 �E3/2,r/2�3
�r � � �c

m
t3/2� (4.1)

where E� ,�(z) is the Mittag-Leffler function in two parameters:

E� ,�
�r � �y �

dr

dyr
E� ,��y �

��
j�0

�
� j�r �!y j

j!��� j��r���
, �r�0,1,2, . . . �

5 Impulse Response
As a second example, let us now examine the response of the

oscillator to a unit impulse load f (t)��(t), where �(t) is the unit
impulse function. Here we will obtain

x0� t ��
1

m

d�2

dt�2
f � t ��

t

m

x1� t ���
c

m

d�3/2x0� t �

dt�3/2
�

k

m

d�2x0� t �

dt�2
��

c

m2

t5/2

��
7
2�

�
k

m2

t3

��4 �

x2� t ���
c

m

d�3/2x1� t �

dt�3/2
�

k

m

d�2x1� t �

dt�2
�

c2

m3

t4

��5 �
�

2kc

m3

t9/2

��
11
2 �

�
k2

m3

t5

��6 �

x3� t ���
c

m

d�3/2x2� t �

dt�3/2
�

k

m

d�2x2� t �

dt�2
��

c3

m4

t11/2

��
13
2 �

�
3kc2

m4

t6

��7 �
�

3k2c

m4

t13/2

��
15
2 �

�
k3

m4

t7

��8 �

x4� t ���
c

m

d�3/2x3� t �

dt�3/2
�

k

m

d�2x3� t �

dt�2
�

c4

m5

t7

��8 �
�

4kc3

m5

t15/2

��
17
2 �

�
6k2c2

m5

t8

��9 �
�

4k3c

m5

t17/2

��
19
2 �

�
k4

m5

t9

��10�

and so on.
Therefore, the solution �3.8� becomes
Journal of Applied Mechanics
x� t ��
1

m �
r�0

�
��1 �r

r! � k

m � r

t2r�1�
j�0

� � �c

m � j � j�r �!t3 j /2

j!�� 3 j

2
�2r�2 �

�
1

m �
r�0

�
��1 �r

r! � k

m � r

t2r�1E3/2,r/2�2
�r � � �c

m
t3/2� (5.1)

where E� ,�(z) is the Mittag-Leffler function in two parameters,

E� ,�
�r � �y �

dr

dyr
E� ,��y �

��
j�0

�
� j�r �!y j

j!��� j��r���
, �r�0,1,2, . . . �

The solutions �4.1� and �5.1� agree with the solution obtained by
Podlubny �3� using a fractional Green’s function.

6 Verification of the Solutions
The fractional Green’s function discussed by Podlubny ��3�,

Section 5.4� for the fractional differential Equation �3.1� is

G3� t ��
1

m �
r�0

�
��1 �r

r! � k

m � r

t2r�1E3/2,r/2�2
�r � � �c

m
t3/2�

Therefore, the solution of Eq. �3.1� under homogeneous initial
conditions is

x� t ���
0

t

G3� t��� f ���d�

This implies that

x� t ��
A

m �
r�0

�
��1 �r

r! � k

m � r

t2�r�1 �E3/2,r/2�3
�r � � �c

m
t3/2� ,

if f � t ��Au� t � (6.1)

�
1

m �
r�0

�
��1 �r

r! � k

m � r

t2r�1E3/2,r/2�2
�r � � �c

m
t3/2� ,

if f � t ���� t � (6.2)

The solutions �6.1� and �6.2� are exactly identical with the solu-
tions in Eq. �4.1� and Eq. �5.1�.

7 Numerical Results and Discussions
To make a comparison of the present analysis through the Ado-

main decomposition method with that of other available method
�27�, the graphs have been drawn using MATLAB software.

In the present numerical computation, we have assumed c/m
�2��n

3/2 , �n
2�k/m , and m�1, where � is the damping ratio and

�n is the natural frequency, as is taken in �27�.
It is interesting to note that the graphs obtained in our case

exactly coincide with those of Suarez and Shokooh �27� in cases
of Figs. 1 and 4. In the present analysis, Fig. 2 also coincides with
that of Suarez and Shokooh �27�, but in this case the natural
frequency �n should be 5 rad/s, instead of 10 rad/s, as taken by
Suarez and Shokooh �27�.

It may be mentioned in this connection that the graph drawn in
Fig. 2 of Suarez and Shokooh �27� for �n�10 rad/s should be for
�n�5 rad/s. This is definitely a mistake to be reckoned with and
should be taken into account for further study. However, the cor-
responding graph for �n�10 rad/s is also drawn by us and given
in Fig. 3.

Equation �5.1� has been used to calculate the impulse response
functions shown in Fig. 1 for oscillators with natural frequency
�n�10 rad/s and damping ratios ��0.05, 0.5, and 1.
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Figure 2 shows the impulse response function for an oscillator
with natural frequency �n�5 rad/s and damping ratios ���� , 3,
and 5, and it has been drawn with the help of Eq. �5.1�.

The graph drawn in Fig. 2 of Suarez and Shokooh �27� for
�n�10 rad/s should be for �n�5 rad/s., Figure 3 in the present
study confirms our assertion. Figure 3 shows the impulse response
function for an oscillator with natural frequency �n�10 rad/s and
damping ratios ���� , 3, and 5. Here, Eq. �5.1� has also been
used to draw the following figure.

It can be noted that, when the damping ratio is equal to �� , the
curves in Figs. 2 and 3 touch the axis of zero displacement. In
addition, the curves in Figs. 2 and 3 tend to zero without crossing
the axis of zero displacement for damping ratios greater than �� .

Fig. 1 Impulse response function for oscillators with natural
frequency �nÄ10 radÕs and damping ratios �Ä0.05, 0.5, and 1

Fig. 2 Impulse response function for oscillators with natural
frequency �nÄ5 radÕs and damping ratios �Äsqrt„�…, 3, and 5

Fig. 3 Impulse response function for oscillators with natural
frequency �nÄ10 radÕs and damping ratios �Äsqrt„�…, 3, and 5
294 Õ Vol. 72, MARCH 2005
Consequently, the value ���� is considered as the critical
damping ratio. Moreover, one can easily verify the validity of Fig.
3 by observing Fig. 1. From these two figures, we see that with
natural frequency �n�10 rad/s, as damping ratio � increases
from 0.05 to 5, the axis of zero displacement tends to become the
asymptote of the curves. In other words, with natural frequency
�n�10 rad/s, as damping ratio � increases, the displacement de-
creases and finally tends to the axis of zero displacement with the
increase of time.

In the next numerical example, three oscillators with natural
frequency of �n�5 rad/s and damping ratios ��0.05, 0.5, and 1
are subjected to a step load magnitude A�1. In this case, Eq. �4.1�
has been utilized to draw Fig. 4. This figure shows the displace-
ment response of the oscillators. It shows that the curves for
��0.5 and 1 do not exhibit oscillations around the static equilib-
rium response A/�n

2�0.04 and the same result was obtained by
Suarez and Shokooh �27�.

8 Conclusion
This present analysis exhibits the applicability of the decompo-

sition method to solve fractional differential equation of fractional
order 1/2. In this work we demonstrate that this method is well
suited to solve linear fractional differential equations. The decom-
position method is straightforward, without restrictive assump-
tions, and the components of the series solution can be easily
computed using any mathematical symbolic package. Moreover,
this method does not change the problem into a convenient one
for the use of linear theory. It, therefore, provides more realistic
series solutions that generally converge very rapidly in real physi-
cal problems. When solutions are computed numerically, the rapid
convergence is obvious. Moreover, no linearization or perturba-
tion is required. It can avoid the difficulty of finding the inverse of
Laplace transform and can reduce the labor of the perturbation
method. This paper presents an analytical scheme to obtain the
dynamic response of a fractionally damped system. Although
other methods �as already mentioned� are available in open litera-
ture, the present Adomian decomposition method justifies its effi-
ciency and gives quite satisfactory results.
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1 Introduction
Tejeda et al.@1# presented a new exact solution in a rece

publication on a plane distortion study of the next generation i
beam projection lithographic~IPL! masks. An IPL circular mask
is supported by a relatively stiff frame and held in a vertical o
entation during exposure to the ion beam@2#. It is typically made
of silicon of 3.0mm in thickness and of the order of 200 mm
diameter. The problem was modeled as a clamped circular m
brane loaded by in-plane gravity, and an exact plane stress s
tion was derived@1#.

The elastic distortions due to gravitational loading are ne
gible in most engineering applications. However, they can be
nificant in next generation IPL masks used for semiconductor
vice fabrication. Therefore, the plane stress solution@1# is of
practical importance to accurately predict the IPL deformatio
in order to enhance the quality of the microcircuit to
manufactured.

1To whom correspondence should be addressed.
Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF

MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Septe
ber 27, 2001, final revision, May 10, 2004. Associate Editor: N. Triantafyllidis.
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While gravity plays an important role for in-plane deformatio
it also becomes significant for out-of-plane deformation. This
especially the case for such a thin mask with a thickness
diameter ratio on the order of 1025. The in-plane gravity could be
large enough to induce the mask in a buckling or postbuckl
state. Thus, the plane stress solution is only valid within the p
buckling range and the mask would be in an unstable state bey
it. It is the purpose of this technical note to provide the limit
buckling by modeling the mask as a thin plate and studying
bending deformation under the in-plane stresses. As will be s
for a silicon mask with thickness of 3.0mm, the radius must be no
more than 84.459 mm to prevent the mask from being in
buckling state. This provides designers a precaution that the p
stress solution@1# is subjected to a limit of buckling and beyon
this limit either the mask is in an instable state or a nonlin
postbuckling analysis will have to be performed.

2 Buckling Solution
Because the plate is symmetric in its midplane, the plane st

deformation is decoupled from the bending deformation. The
fore, we can first deal with the plane stress deformation. A str
function approach in polar coordinates was adopted in@1#. In the
present study, we use an alternative displacement approac
rectangular coordinates. As will be seen, this approach appea
be more straightforward and simpler.

For the specific problem of a clamped circular plate loaded
its in-plane gravity, we use a Cartesian coordinate system with
y-axis in the vertical direction. Assume that the in-plane displa
ment fields are

u50, v5k~x21y22R2!, (1)

whereu andv are the in-plane displacements in thex andy direc-
tions, respectively,R is the radius of the plate, andk is a constant
to be determined. The displacements satisfy the boundary co
tions for a rigidly clamped edge; i.e.,u5v50 at r[Ax21y2

5R. Using the plane stress constitutive relation for an isotro
material yields

sxx
0 5

2nE

12n2
ky, syy

0 5
2E

12n2
ky, sxy

0 5
E

11n
kx, (2)

whereE is Young’s modulus andn is the Poisson ratio. The gov
erning equations for a thin plate, held in a vertical orientation,

]sxx
0

]x
1

]sxy
0

]y
50,

]sxy
0

]x
1

]syy
0

]y
2rg50, (3)-
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whererg is the gravitational force in the vertical direction. Th
unknown constantk is determined by substituting Eq.~2! into Eq.
~3! as

k5
~12n2!rg

~32n!E
. (4)

Thus, we complete the solution for the plane stress problem.
approach yields exactly the same solution as given in@1#. Inciden-
tally, with such a approach an exact solution could also be
tained for the plane stress problem of an elliptic thin plate mad
an anisotropic material.

Having obtained the plane stress distribution, the bending
formation problem is in order. This is a buckling problem of
circular plate under the gravity. As is seen from Eq.~2!, the stress
distribution in the midplane of the plate varies. In particular, th
are both stretching and compression deformations. Such a b
ling problem differs from conventional buckling cases in which
constant in-plane loading is assumed. The governing equation
the bending deformation of the plate is~see Reddy@3#!

]2Mxx

]x2
12

]2Mxy

]x]y
1

]2M yy

]y2
1h

]

]x S sxx
0

]w

]x
1sxy

0
]w

]y D
1h

]

]y S sxy
0

]w

]x
1syy

0
]w

]y D50, (5)

where

Mxx52DS ]2w

]x2
1n

]2w

]y2 D , M yy52DS ]2w

]y2
1n

]2w

]x2 D ,

Mxy52~12n!D
]2w

]x]y
, (6)

D is the bending stiffness

D5
Eh3

12~12n2!
, (7)

andh is the thickness of the plate. In view of Eqs.~2!–~4! and~6!,
Eq. ~5! reduces to the following differential equation for the d
flection w:

2DS ]2

]x2
1

]2

]y2D 2

w1rgh
]w

]y
1

2

32n
rghFny

]2w

]x2
1y

]2w

]y2

1~12n!x
]2w

]x]yG50. (8)

We need to find the limit of the gravity loadrg under which the
plane stress state is stable, and beyond which there are bifurc
points and its plane state is no longer stable. Any small transv
perturbation would cause an out-of-plane deformation of the p

Table 1 Convergence study of the buckling factor l
ÄrghR 3ÕD for a clamped circular plate subjected to in-plane
gravity „nÄ0.2…

Polynomial degree,p Buckling factor,l5rghR3/D

1 144.391
2 121.461
3 118.729
4 111.548
5 110.239
6 110.210
7 110.078
8 110.054
9 110.054

10 110.054
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beyond the limit. Thus, the first bifurcation point, which corr
sponds to the critical buckling mode, is of practical interest.

Because the differential equation~8! has variable coefficients, i
seems to be very difficult, if not impossible, to find an exa
solution. The Ritz method is employed to solve the problem. T
following strain energy is needed in the Ritz method~see Reddy
@3,4# and Liew et al.@5#!:

U52
1

2 EA
S Mxx

]2w

]x2
12Mxy

]2w

]x]y
1M yy

]2w

]y2 D dA

1
h

2 EA
Fsxx

0 S ]w

]x D 2

12sxy
0

]w

]x

]w

]y
1syy

0 S ]w

]y D 2GdA, (9)

whereA is the area of the plate. Assuming

w5~x21y22R2!2(
q50

p

(
i 50

q

cmxq2 i yi , (10)

andp is the degree of the two-dimensional complete polynom
used in the trial function in Eq.~10! andm5(q11)(q12)/22 i
~see@5#!. The solution in the form of Eq.~10! satisfies the geo-
metric boundary conditionsw5]w/]r 50 for a rigidly clamped
edge atr 5R. The Ritz method requires

]U

]ci
50, i 51,2, . . . ,~p11!~p12!/2. (11)

Using Eqs.~2!, ~6!, and~9!–~11!, we obtain an eigenvalue equa
tion. Table 1 provides a convergence study of the Ritz method
is seen that numerical convergence to six significant digits
reached atp58.

The Ritz method requires that the trial functionsf i(x,y) satisfy
f i5]f i /]x5]f i /]y50 for a fixed edge atr 5R. When we
construct them in terms of power series inx and y, it can be
proved that such a function of the lowest-order power seriesx
and y ~not in r! must be in quartic form, and more specificall
(x21y22R2)2. The representation shown in Eq.~10! provides a
complete set of the trial functions up to additional orderp, and
thus provides a global minimum of the buckling load. It should

Fig. 1 The buckling modal shape for a clamped vertical circu-
lar plate subjected to gravity
MARCH 2005, Vol. 72 Õ 297
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noted that the trial function (r 2R)2 is the lowest order inr;
however, it does not furnish a power series representation.

For a nontrivial solution ofw, we obtain the critical valuelcr

5110.054 for the dimensionless buckling factorl[rghR3/D.
With this solution, a restriction is placed in the plane stress st
The above-mentioned exact elasticity solution@1# for the plane-
stressed circular thin plate is only valid within the limit; i.e.,l
<lcr . Figure 1 shows the first buckling mode shape of the t
circular plate subjected to in-plane gravity.

The circular thin plate is made of silicon material. The mater
properties correspond to the average isotropic values for^100&
silicon @2#

E5160 GPa, n50.2, r52330 kg/m3. (12)

As mentioned earlier in Sec. 1, the typical thickness of the silic
plate is 3.0mm. From the conditionl<lcr , the radius of the
circular plate must be within the range of

R<84.459 mm. (13)
298 Õ Vol. 72, MARCH 2005
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Note that the Ritz method predicts the upper bound of a r
solution. The distortion of the IPL circular mask with a radius 1
mm or larger mentioned in@1# is already in either an instable
plane state or a postbuckling state. In order to minimize the
tortion, the mask has to be designed by reducing the radius o
providing extensional prestresses such that it is within a prebu
ling range.
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Connections Between Stability,
Convexity of Internal Energy, and the
Second Law for Compressible
Newtonian Fluids

Stephen E. Bechtel
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Francis J. Rooney
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M. Gregory Forest
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In this note we provide proofs of the following statements fo
compressible Newtonian fluid: (i) internal energy being a conv
function of entropy and specific volume is equivalent to nonne
tivity of both specific heat at constant volume and isothermal b
modulus; (ii) convexity of internal energy together with the seco
law of thermodynamics imply linear stability of the rest state; a
(iii) linear stability of the rest state together with the second la
imply convexity of internal energy.@DOI: 10.1115/1.1831297#

1 Introduction
In thermodynamics of fluids one encounters different notions

stable equilibrium. One is that internal energy is a convex funct
of entropy and specific volume. Another is that certain mate
properties must be nonnegative. A third is that all small pertur
tions of the rest state do not grow.

In this brief note we connect these three notions in a compr
ible Newtonian fluid by providing proofs that nonnegativity
specific heat at constant volume and isothermal bulk modulu
equivalent to convexity of internal energy, that the second law
convexity of internal energy together imply linear stability of th
rest state, and that the second law and linear stability of the
state together demand convexity of internal energy.

2 Governing Equations for Newtonian Fluids
The equations of conservation of mass, linear momentum,

gular momentum, and energy for a continuum are, respective

ṙ1r“"v50, r v̇5“"T1rf, T5TT, rė5T"D1rr 2“"q,
(1)

wherer is the density,v the velocity,T the Cauchy stress,D the
symmetric part of the velocity gradient,f the specific body force,
r the internal heat production,q the heat flux, ande the specific
internal energy, and~•! denotes the material time derivative.
Newtonian fluid is characterized by the constitutive equations

T52pI1l~“"v!I12mD, q52k“u, (2)

wherep is the pressure,u the absolute temperature,l the dilata-
tional viscosity,m the shear viscosity, andk the thermal conduc-
tivity. Entropy h can be defined through@1#

ė5p
ṙ

r2
1uḣ. (3)

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
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The material parametersl, m, andk may depend upon the inde
pendent thermal variable~u or h, depending on the formulation!
and independent mechanical variable~either p or r!. Here we
selectr andh as the independent variables. In this formulation t
auxiliary mechanical~p! and thermal~u! variables are prescribed
in terms ofr, h, ande through

p~r,h!5r2
]e

]r
, u~r,h!5

]e

]h
; (4)

Eqs.~1!–~4! determine a closed system.
We employ the second law of thermodynamics in the form

the Clausius-Duhem inequality,

Ṡ5
d

dt EV
rhdV>E

V

r

u
rdV2E

]V

q"n

u
dA, (5)

where volumeV is arbitrary. Using Eqs.~1!–~3!, this implies

E
V

1

u F S l1
2

3
m D ~“"v!212mDd"Dd1

k

u
u“uu2GdV>0, (6)

whereDd denotes the deviatoric part ofD. Thus the second law
for Newtonian fluids is equivalent to

l1
2

3
m>0, m>0, k>0. (7)

3 Equivalence of Convexity ofe and Stability of the
Rest State

The conditions that internal energye is a convex function of
entropyh and specific volume (t5r21) ~mathematically equiva-
lent to entropy being a concave function of internal energy a
specific volume! are @2#

]2e~t,h!

]t2
>0,

]2e~t,h!

]h2
>0,

]2e~t,h!

]t2

]2e~t,h!

]h2
2S ]2e~t,h!

]t]h D 2

>0. (8)

Note, that the three conditions~8! are not independent:~8!1 and
~8!3 imply ~8!2 , and~8!2 and ~8!3 imply ~8!1 .

One notion of stable thermodynamic equilibrium is in@3#: ‘‘Us-
ing the principle—often attributed to Le Chatelier—that any spo
taneous change in the parameters of a system that is in s
equilibrium will give rise to processes that tend to restore
system to equilibrium,’’ Stanley argues that specific heats a
compressibilities~reciprocals of bulk moduli! must be nonnega-
tive. Since specific heat at constant pressure is in general gre
than or equal to specific heat at constant volumeCV , and the
adiabatic bulk modulus is in general greater than or equal to
isothermal bulk modulusk, these conditions for stability becom

CV[u
]h~u,t!

]u
>0, k[2t

]p~u,t!

]t
>0. (9)

Using Eqs.~4!, conditions~9!1,2 are directly equivalent to condi
tions ~8!2,3, respectively, and from~8!2,3 condition ~8!1 can be
deduced. Hence, nonnegativity ofCV andk is equivalent to inter-
nal energy being a convex function of entropy and specific v
ume, in the sense of satisfying conditions~8!.

With the change of variables from specific volume to dens
the convexity conditions Eqs.~8! are translated into

2er

r
1err>0, ehh>0,

(10)

S 2er

r
1errD ehh2erh

2 >0,h
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where subscripts denote partial differentiation.
We now consider an equilibrium state in the absence of a b

force and internal heat supply,

v50, u5u0 , r5r0 , p5p0 , h5h0 , (11)

where r0 , v0 , and h0 are arbitrary constant solutions of Eq
~1!–~3!, and p0 , u0 are determined from equations of state~4!
evaluated atr0 andh0 . We allow an infinitesimal disturbance o
this rest state,

v5v* , u5u01u* , h5h01h* , r5r01r* , p5p01p* ,
(12)

the starred quantities are infinitesimal variations of which o
linear terms will be retained. Disturbancesp* , u* are deduced
from r* , h* by linearization of the constitutive relations~4!. The
linearization of problem Eqs.~1!–~3! then consists of constant
coefficient linear partial differential equations forr* and h* ,
along with two linear algebraic equations forp* , u* , for which
Fourier analysis applies. We posit eigenfunctions for each pri
tive variable of the form

F* ~x,t !5F̃ exp~ isn"x2st !, (13)

where the wave vectorsn has norms and directionn. The rest
state Eq.~11! is linearly stable if Re(sj)>0 for all rootss j of the
linearized dispersion relation at all wave numberss, and unstable
if Re(sj),0 for some roots j at somes.

The linearized disperson relation fors(s) is @4#

S s2
m0

r0
s2D 2F s2

l012m0

r0
s2

1

s2S s~r0
2err

~0!12r0er
~0!!2

k0r0

u0
s2D0D

sS s2ehh
~0!

k0

r0u0
s2D G50, (14)

where m0 , l0 , k0 , err
(0) , er

(0) , ehh
(0) , and erh

(0) denote functions
evaluated on the equilibrium state and

D05S err
~0!12

er
~0!

r0
D ehh

~0!2~erh
~0!!2. (15)

3.1 Proof That Stability of the Rest State and Conse-
quences„7… of the Second Law Imply Convexity Conditions
„10…. Assume the second law holds, so thatl012/3m0>0, m0
>0, k0>0. A repeated root of dispersion relation~14! is

s45s55s2m0 /r0 . (16)

Note, thats45s5>0 since m0>0. The other three dispersio
branches satisfy

s32s2S l012m0

r0
1ehh

~0!
k0

r0u0
Ds21s2S r0

2err
~0!12r0er

~0!

1
l012m0

r0
ehh

~0!
k0

r0u0
s2Ds2

k0r0

u0
s4D050. (17)

Since the coefficients of this cubic equation are real, either
three roots are real or one is real and the other pair consis
complex conjugates. We label the roots of Eq.~17! by s1 , s2 ,
s3 . We assume the rest state is stable, so thats1 , s2 , ands3 all
have nonnegative real parts, and hence the products1 , s2 , s3 is
nonnegative. The constant term of Eq.~17! shows

s1s2s35
k0r0

u0
s4D0 . (18)
300 Õ Vol. 72, MARCH 2005
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Sincek0>0, we haveD0>0, which is inequality~10!3 evaluated
at arbitrary valuesr0 andh0 of density and entropy.

We next consider the special perturbations given by

f̃5~0,0,h̃ !, (19)

for which the linearized problem reduces to

S s2
s2k0

r0u0
ehh

~0!D h̃50.

Since we have assumed the rest state is stable for all perturbat
s is nonnegative, so thatehh>0 at arbitrary values of density an
entropy, which is inequality~10!2 . We have proved inequalities
~10!2 and~10!3 , and~10!2 and~10!3 imply ~10!1 . Hence inequali-
ties ~7! and stability of the rest state demand convexity of inter
energy, in the sense that conditions~10! are satisfied.

3.2 Proof That Convexity Conditions „10… Together With
the Consequences„7… of the Second Law Imply Stability of the
Rest State. Recall that either all three rootss1 , s2 , ands3 of
the cubic Eq.~17! are real or one is real and the other pair consi
of complex conjugates. Sincek0>0 from inequality~7!3 , if we
assume inequality~10!3 then D0>0, and from Eq.~18! at least
one of the roots, says1 , must be real and nonnegative. We r
write Eq. ~17! in the form

s5

s2s2S l012m0

r0
1ehh

~0!
k0

r0u0
D1

k0r0

u0
s4D0

s21s2S r0
2err

~0!12r0er
~0!1

l012m0

r0
ehh

~0!
k0

r0u0
s2D . (20)

The coefficients on the right-hand side are all positive becaus
the convexity ofe and the second law. Hence if the remaining tw
rootss2 ands3 are real they must be nonnegative, and if they a
complex conjugates then

Re~s2!5Re~s3!5
us2

21Cu2

2D
, (21)

where

C5s2S r0
2err

~0!12r0er
~0!1

l012m0

r0
ehh

~0!
k0

r0u0
s2D ,

(22)

D5s4~l012m0!~r0err
~0!12er

~0!!1~l012m0!2ehh
~0!

k0

r0
3u0

s61~l0

12m0!~ehh
~0!!2

k0
2

r0
3u0

2
s61~erh

~0!!2
r0k0

u0
s4,

and so Re(s2)5Re(s3) is nonnegative. This completes the arg
ment that the convexity conditions on internal energy plus
second law imply stability. Combined with the earlier result th
stability plus the second law imply the convexity ofe, it follows
that, assuming the second law, the convexity conditions on in
nal energy are equivalent to linear stability of the rest state.
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1 Introduction
Elastic buckling of cylindrical shells under axial compressi

results in sudden and catastrophic failure. By contrast, for thic
shells that buckle in the plastic range, failure is preceded b
cascade of events where the first instability and failure are s
rated by strains of up to 5%. The first instability is uniform ax
symmetric wrinkling. The wrinkle amplitude gradually grows an
in the process, the axial rigidity of the shell is reduced. For thic
shells, this eventually leads to a limit load instability beyo
which failure takes the form of localized buckling that can lead
concertina folding. For thinner shells, a second bifurcation invo
ing nonaxisymmetric deformation can precede this limit load. T
buckling mode again localizes and can again result in folding

Axisymmetric wrinkling is a classic plastic bifurcation from
uniaxial stress state with the following buckling mode:

w̃5a cos
px

l
and ũ5b sin

px

l
. (1)

It can be easily shown that the critical stress (sC) and half-
wavelength of this buckling mode (lC) are, respectively,

sC5FC11C222C12
2

3 G1/2S t

RD and

lC5pF C11
2

12~C11C222C12
2 !

G 1/4

~Rt!1/2, (2)

whereR and t are the radius and wall thickness of the shell
spectively, and@Cab# are the instantaneous moduli of the mater
at the bifurcation point@1#. During the last fifty years, use of th
J2 deformation theory instantaneous moduli in Eq.~2! has gained
wide acceptance primarily because it yields better results than
corresponding flow theory@2#.

The problem was recently revisited in order to establish
extent to which tubes can be deformed plastically before failu
Because failure follows the onset and evolution of axisymme
wrinkling, its prediction requires establishing first accurate
$sC ,eC ,lC% ~see Refs.@3–5#!. Experiments were conducted o
super-duplex stainless steel~SAF 2507! tubes with D/t values
ranging from about 23 to 52. The experiments involved buckl
and failure under pure axial compression and under comb
internal pressure and axial compression. In both sets of exp
ments, some discrepancies between the classical bifurcation
dictions of Eqs.~2! and measured values of the critical states w
found. The cause of the discrepancies was shown to be pl
anisotropy present in the tubes used. This brief note reports
how the discrepancy was resolved.

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, April
2004, final revision, September 2, 2004. Editor: R. M. McMeeking.
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2 Buckling Experiments
Super-duplex SAF 2507 specimens with D/t values in the ra

of 23 to 52 were machined from thicker tube stock. They we
turned both on the inside and outside, resulting in nearly para
test section walls. The test section length varied between 3R and
5R. Linear tapers were machined at the ends, reducing edge
fects and resulting in nearly uniform stress in the test section.
specimens were compressed to failure under displacement con
The evolution of wrinkles was monitored by periodically inte
rupting the loading, and scanning the specimen axially usin
custom surface scanner. In the case of combined loading,
specimens were pressurized to a chosen pressure and compr
to failure while holding the pressure constant. The wrinkle wa
length increases with pressure and, as a result, all pressure
had the longer test section of 5R.

All specimens initially deformed uniformly. At some value o
strain, wrinkles became discernible on the surface of the tu
Figure 1~a! shows stress-shortening response (sx2dx) recorded
for a tube withD/t526.3 loaded under pure compression. Figu
1~b! shows a set of axial scans taken at the positions marked
the response by solid circles. Because of the discrete nature o
scans, the onset of wrinkling will be bounded between two str
values. In this case, wrinkling occurred between strains of 1.0
and 1.18%~indicated by↓!. Under continued compression, th
wrinkle amplitude grew, gradually reducing the axial rigidity. Th
growth of the wave approximately at the midspan of the test s
tion accelerated, indicating localization in deformation. A lo
maximum developed at an ‘‘average’’ strain of approximate
4.75% and a stress of 111.2 ksi~767 MPa, marked by ‘‘ˆ’’ on the
response!. Following the limit load, deformation in the centra
wave accelerated significantly. At some stage in the process,
fore the limit load, deformation in the neighborhood of this wa
reverted to a nonaxisymmetric mode with two lobes (m52). The
test was terminated at a net shortening of 6.5%.

The critical strains~bounds! from 14 experiments are plotte
against D/t in Fig. 2. They range from about 1.5% for the low
D/t tubes to about 0.7% for the higher values. Some of the exp
ments were repeated while others were run with a longer
section~j,h! to ensure that the test section length did not infl
ence the results. Figure 3 shows a plot of the measured h
wavelengths as a function of D/t. They vary from about 0.4R for
the lower D/t tubes to about 0.2R for the high values. Upper and
lower bound values are again given in the figure.

Despite the careful machining of the specimens, imperfecti
were unavoidable. These include small wall thickness variati
around the circumference and the length, small eccentricitie
the applied load, and some local hardening and surface mar
from machining. Although generally small, the imperfections
fluenced the onset, the wavelength, and evolution of wrinkles
addition, in the perfect case, wrinkling is a nearly tangential
furcation, making it very difficult to establish its onset experime
tally. Thus, the experiments were not repeatable, and the resu
Figs. 2 and 3 exhibit some scatter, although their trend is q
clear.

The material stress–strain response is well represented by
Ramberg–Osgood fit given by

e5
s

E F11
3

7 S s

sy
D n21G , (3)

whereE528.23103 ksi ~194 GPa!, sy583.0 ksi~572 MPa!, and
n513. Included in Figs. 2 and 3 are the predicted critical stra
and half-wavelengths usingJ2 flow and deformation theories in
Eqs.~2!. As expected, flow theory overpredicts the measured c
cal strains~and stresses! considerably. By contrast, the deforma
tion theory results follow the trend and generally are in go
agreement with the experiments. The flow theory overpredictslC
significantly as well, while the deformation theory predictions a
closer to the measured values but are still higher by a facto

,

005 by ASME MARCH 2005, Vol. 72 Õ 301
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about 2. Interestingly, similar overprediction of measured val
of lC were reported in Refs.@6# and@7# for the related problem of
inelastic bending of long tubes.

BecauselC is the starting point of all postbuckling calcula
tions, this difference is a significant problem that had to be
dressed. It was found that plastic anisotropy introduced by
manufacturing process to the seamless tube stock was at
partly responsible for the discrepancy. The anisotropy was m

Fig. 1 „a… Measured tube axial stress-shortening response for
pure compression. „b… Axial scans showing evolution of
wrinkles.

Fig. 2 Comparison of measured and predicted critical strains
for pure compression
302 Õ Vol. 72, MARCH 2005
es

-
d-

the
least
od-

eled through Hill’s quadratic anisotropic yield function~Ref. @8#!.
For relatively thin-walled circular tubes, the radial stress (s r) can
be neglected. If, in addition, the tube is under a principal state
stress (sx ,su), Hill’s yield function can be written as

Fig. 3 Comparison of measured and predicted wrinkle half-
wavelengths for pure compression

Fig. 4 „a… Equivalent stress–strain curves from three paths.
„b… Equivalent stress–strain curves from three paths.
Transactions of the ASME
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su
2G 1/2

5se max, (4)

where Su5sou /sox , Sr5sor /sox , and $sox ,sor ,sou% are the
yield stresses in the respective directions. A work compatible m
sure of equivalent plastic strain increment is

Fig. 5 „a… Critical strain as a function of anisotropy variables
„DÕtÄ26.3…. „b… Half-wavelength as a function of anisotropy vari-
ables „DÕtÄ26.3….
Journal of Applied Mechanics
ea-

dee
p5A2F 1

Su
2

~dex
p!21~deu

p!21S 11
1

Su
2
2

1

Sr
2D dex

pdeu
p

1

Su
2

1
1

Sr
2
2

1

2
2

1

2 S 1

Su
2
2

1

Sr
2D 2 G 1/2

.

(5)

The anisotropy constants were evaluated by conducting unia
experiments in the axial~A! and circumferential directions~L!,
and a hydrostatic pressure inflation test~H! as described in Ref.
@9#. Figure 4~a! shows a comparison ofse2ee

P for the three tests
assuming the material yields isotropically. The extent to wh
they are different is a measure of the anisotropy. The three
sponses coalesce, as shown in Fig. 4~b!, when the valuesSu
51.15 andSr50.85 are used in Eqs.~4! and ~5!.

The strain increments are assumed to consist of an elastic
and a plastic part as follows:

de i j 5de i j
e 1de i j

p , (6a)

where

de i j
e 5

1

E
@~11n!ds i j 2ndskkd i j #. (6b)

The plastic strain increments obey the flow rule given by

de i j
p 5

1

H S ] f

]smn
dsmnD ] f

]s i j
. (6c)

Specializing Eq.~6! to Eq. ~4! results in

Fig. 6 Critical stress versus pressure: experiments and
predictions
H dex

deu
J 5

1

E F 11Q~2sx2bsu!2, 2n1Q~2sx2bsu!~2asu2bsx!

2n1Q~2sx2bsu!~2asu2bsx!, 11Q~2asu2bsx!
2 G H dsx

dsu
J (7)
MARCH 2005, Vol. 72 Õ 303
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Deformation theory inelasticity is essentially nonlinear elastic
The corresponding formulation to the anisotropic flow theo
above is developed by assuming that there exists a compleme
strain energy density functionUc(se), such that

Fig. 7 Critical strain versus pressure: experiments and
predictions
n
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i
e
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ty.
ry
tary

e i j
P5

]Uc

]s i j
5

]Uc

]se

]se

]s i j
5S 1

Es
2

1

EDse

]se

]s i j
. (8)

The incremental version of Eq.~8! required in bifurcation calcu-
lations is developed in the usual manner~e.g., Ref.@10#!. When
specialized to the two stress problems of interest here, it can
written as follows:

Fig. 8 Wrinkle half-wavelength versus pressure: experiments
and predictions
H dex

deu
J 5

1

Es
F 11q~2sx2bsu!2, 2 n̂s1q~2sx2bsu!~2asu2bsx!

2 n̂s1q~2sx2bsu!~2asu2bsx!, a1
Es

E
~12a!1q~2asu2bsx!

2 G H dsx

dsu
J (9)
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where

q5
1

4se
2 S Es~se!

Et~se!
21D and n̂s5

b

2
1

Es

E S n2
b

2 D .

The moduli@Cab# in Eqs. ~2! are the inverse of the matrices i
Eqs. ~7! and ~9!. The calculations of the critical states were r
peated using the anisotropic versions of@Cab# with the anisotropy
values given above. The results are drawn with solid lines in F
2 and 3. Anisotropy has an insignificant effect on the critical str
and strain for both the flow and deformation theory predictio
By contrast, it changes significantly the wavelength of the bu
ling mode for both material models as illustrated in Fig. 3. Bo
anisotropic results now pass through the data with the deforma
theory yielding the better agreement.

The broader effect of the anisotropy variables$Sr ,Su% on the
critical strain and wrinkle wavelength was considered and the
sults are plotted in Fig. 5. Interestingly, the anisotropy has
opposite effect oneC ~and sC) than onlC . Thus, whenSu.1
andSr,1, as was the case for our tubes, the effect onlC is large
and oneC is small. A similar effect is seen whenSu,1 andSr
.1, but now the predicted wavelength is longer than that of
-

gs.
ss
s.
k-
th
tion

re-
the

he

isotropic case. On the other hand, when bothSu andSr are either
.1 or ,1, the effect oneC is large and onlC is small.

Anisotropy was found to also have a significant effect on
critical states of the combined loading problem of axial compr
sion under internal pressure. This study involves tubes of the s
alloy with D/t539.5 compressed at constant displacement rate
fixed values of internal pressure. The experimental procedur
similar to the one described for pure compression. The prebu
ling state is now calculated using the anisotropic flow theo
while the critical states are again calculated using the increme
deformation theory moduli. In this case, the measured stre
strain response represented as piecewise linear was used i
calculations ~approximately represented by the followin
Ramberg–Osgood fit parametersE528.13103 ksi, ~193.8 GPa!,
sy587.0 ksi~600 MPa! andn513.5). The anisotropy paramete
were found to beSu51.08 andSr50.86 ~mother tube different
than the one used for pure compression!. Figures 6–8 show plots
of the measured critical values ofsC , eC , andlC , respectively,
as a function of internal pressure~P!. Included in each are the
predicted values for the isotropic and anisotropic materials. In
case, anisotropy affects the critical stress also because of th
Transactions of the ASME
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axial loading. The wrinkle wavelength increases with pressure
this is reproduced well by the anisotropic model. The critic
strain is affected the least, but again, the anisotropic predict
are seen to be an improvement over those from the isotr
material.

In conclusion, it has been found that yield anisotropy can s
nificantly affect the onset of plastic instabilities and their char
teristic wavelengths. The onset of wrinkling of axial cylinde
under pure compression and under combined internal pressure
compression have been shown to be predicted with accuracy u
an anisotropic deformation theory based on Hill’s anisotro
yield function.
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In the article, the damage discussed is the microcracks exis
in any brittle material. It is a time-independent theory. Howev
the authors seem not to know that I published two books:Rock
Rheologyby N. Cristescu, 1988, Kluwer Academic, 336 pp. a
Time Effects in Rock Mechanicsby N. D. Cristescu and U. Hun
sche, 1998, Wiley, 342 pp. In these books are chapters on dam
in the first, ‘‘Damage and Failure of Rocks’’ and in the secon
‘‘Damage and Creep Failure.’’ The damage I have considere
based on the same idea: increase or decrease of microcracks
the distinction that I have considered also the hydrostatic te
which the authors disregard. For instance, in Fig. 1~Fig. 4.25! ~all
figures are from the second book! one can see the initial contri
bution of the hydrostatic contribution on the alumina powder o
tained in a three-axial test apparatus. I have considered the
nomenon to be time-dependent. Thus, if you stop everything
certain level of stress, the strains are increasing in creep. In a
tion, the authors consider only elastic properties. I have con
ered inelastic properties with respect to developing damage. T
I have considered damage produced by shear. For instance
Fig. 2 ~Fig. 6.11! is shown, in an octahedral plane, various po
sible pure three-axial tests. A pure hydrostatic test is shown as~b!,
~c! is a typical true three-axial test. One can see that initially O
are the microcracks closed during the initial hydrostatic test. T
are followed by a continuous increase of the microcracks. Onl
the last part one is forming other microcracks and the curve
going down. Finally, curve~d! corresponds to a very high initia
hydrostatic tests. When the stress state close to the failure c
the failure is imminent. Departing from this curve and approa
ing the incompressible domain would increase the time to fail
to infinity. The damage rate is defined by the evolution law
306 Õ Vol. 72, MARCH 2005 Copyright © 2
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whereH(T)5*0
Ts(t) ėV

I (t)dt1*0
Ts8(t): ėI 8(t)dt measures the ir-

reversibility, H(s) is the yield function,F(s) is the viscoplastic
potential for transient creep,S(s) is the potential for the steady
state creep,kT and kS are two viscosity constants, and^A&5A if
A.0 and^A&50 if A<0.

I have also considered decrease of damage, not only incre
as produced by hydrostatic or deviatory tests. It was very w
checked experimentally. For instance, on Fig. 3~Fig. 9.17! is
shown the damage produced at a tunnel. The results prese
concerning damage over time and the instantaneous one are
well accepted. My approach is also used for particulate mater
Here, however, they are applied to particulate materials wit
grain size 20mm or bigger. For small particles—nanopart
cles—my approach does not work for failure.

Fig. 1 „Fig. 4.25 Compressibility of alumina powder in classi-
cal triaxial tets …
005 by ASME Transactions of the ASME
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Fig. 3 „Fig. 9.17 Short term failure and creep failure for a tun-
nel excavated in andesite at h Ä900 m „Cristescu †1986‡……

Fig. 2 „Fig. 6.11 Schematic variation of W v during true triaxial test: „a… stress trajectories
shown in constitutive plane; „b… during hydrostatic test; „c… during deviatoric test start-
ing from small or moderate pressure; and „d… during deviatoric test starting from very
high pressures above s0…
Mechanics MARCH 2005, Vol. 72 Õ 307
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We would like to highlight that one of the contributions of o
papers@1,2# is to propose the assumption of displacement equ
lence and the other contribution is to apply this assumption
derive a constitutive model for brittle materials. For simplific
tion, the material is assumed to be ideal brittle, and hence o
elastic damage is considered. We have indicated that it is a
plified model, which is invalid for the case of the material und
triaxial compression and for the case of the principal directions
damage not coinciding with those of stress and strain.

The displacement equivalence-based damage model for b
materials has been generalized for quasibrittle materials suc
concrete by dealing with the above two cases, as presente
Chap. 5 of Ref.@3#. The first modification is to consider the cas
in which the principal directions of damage do not coincide w
those of stress and strain, and the model is thus established
randomly selected system. The effect of shear stress has
dealt with in the auxiliary system. The second modification ai
to consider the plastic effect of concrete under triaxial compr

1To whom correspondence should be addressed.
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sion. Besides the opening cracks considered in Refs.@1,2#, the
slipping cracks occurring in the case of triaxial compression h
also been taken into account. The damage activation criterion
the additional normal strain have been modified to reflect the
fect of confinement. The stiffness degradation due to hydrost
compression has also been considered. In addition, a new dam
evolution rule of concrete under triaxial compression has b
developed using the experiment-based method.

According to Eqs.~4!, ~7!, and~15! of Ref. @2#, the damage is
time dependent. However, in engineering applications, it is v
difficult to perform dynamic analysis for specimens or structu
made of brittle materials such as concrete. A time-independ
constitutive model is also necessary for the case of quasis
loading. Hence, although the damage evolution rule was defi
as time dependent, it has been simplified to be time indepen
by assuming that the strain rate remains constant while loadi

On the other hand, we believe that the constitutive model gi
in Ref. @4# is derived using viscoplasticity. The total decrease
irreversible stress work due to volumetric deformation from
maximum value is defined as the damage parameter. As indic
by its authors, ‘‘the damage of the rock due to a loading hist
producing dilatancy is described by the constitutive equation
self, more exact by the part of the constitutive equation describ
the irreversible deformation of the volume by dilatancy.’’ To u
this definition of damage parameter is a dispensable part of t
constitutive equation. Furthermore, according to the theory
continuum damage mechanics~CDM!, the damage in the materia
is irreversible and the damage-induced dissipation is n
negative. However, the damage parameter defined in Ref.@4# can
increase and decrease, and is thus reversible. Because of thes
reasons, we concluded that the model given in Ref.@4# is not
based on CDM but on viscoplasticity. Hence, this is different fro
our model presented in Refs.@1,2# which is based on CDM.

We would like to thank Professor Cristescu for his comme
on our paper.
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