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Dynamic Steady-State Stress
Field in a Web During Slitting

Based on a dynamic fracture mechanics analysis, the stress field in a continuous film
(called a web) during slitting (or cutting) is investigated. For a homogeneous, isotropic
and linearly elastic web, the steady-state dynamic stress field surrounding the slitter blade
can be related to the interacting traction between the moving web and the blade, and to
the far-field tension that is parallel to the slitting direction. The interaction between the
moving web and the blade also includes friction that is considered to be a Coulomb type.
By solving an integral equation, the normal traction between the web and the blade can
be expressed as a function of the blade profile and the web speed. Numerical calculations
are performed for an ideal razor blade with the wedge shape. The analysis presented in
this study indicates that the contact between the moving web and the blade does not start
at the tip of the blade but rather starts at some distance behind the blade tip. Moreover,
it is found that the distance from the point where the web begins to separate to the point
where the blade and the web start to have contact, is controlled by the toughness of the
web material and also by the web speed. Some characteristic nature of the dynamic stress
field surrounding the slitter blade is investigated based on the dynamic fracture mechan-
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1 Introduction materials under certain slitting conditions. Part of the damage
A web is a thin. continuous. and flexible material such as such as voids and cracks will remain in the wake of the main
S o ; ! ; . &ack, i.e., the slit edge, and cause deterioration in the slit quality.
plastic film. Slitting, or equivalently cutting, of a web 1S 8 Processy e gefective edges that contain debris and slivers, will also gen-
that converts a web |nt_o narrower WEbs: Usual_ly, this IS the fin Fate slit dust. Therefore, understanding the stress and strain dis-
process that requires high slit-edge quality. While only high qu ribution in a slitting web near the blade, their relation to the slit

ity f_inal products such as phot_ographic films and video tapes Afge defects, and their effects on slit quality, dust formation, web
avgllable on the market, there is a tremendous amount of prod ﬁqding quality following slitting etc., is essential for quality con-
being thrown away or recycled because of the poor slit-edge qu&bl in slitting processes

ity that attributes to improper slitting conditions or improper cut- In this paper, a general representation of the stress and strain

ting tool, or slitters. To reduce the material waste and to IMProOVfistribution in a web during razor slitting is derived for an isotro-

the quality con_trol of the '_slit-edge _re_quire a better understandu’lsgc’ homogeneous, and linearly elastic material based on dynamic
of the mechanics underlying the slitting processes. fracture mechanics analysis. The solution approach is appropriate

Most publications on web slitting in the open literature are reg, 5 gjitter plade of arbitrary shape with symmetry. For an ideal
stricted to qualitative investigations; quantitative study is ver

imited. The identificati p - li ¥azor blade with the wedge profile, the stress solution is presented,
imited. The identification of appropriate controlling parameters Qi the contact condition between the moving web and the slitting
slitting process relies heavily on experience and empirical me

8 ."“Plade is investigated. The solution is used to investigate the de-
ods such as trial and error. Among the few relevant quantltat%(-‘éndence of the size of yield zone on web speed.
investigations, Meehan and Burfis] measured the cutting force

and determined the isochromatic stress lines of a shear slitler pDeformation Field Surrounding the Slitter
blade in a polycarbonate sheet; Kasuga ef&linvestigated the
shearing process of ductile materials; Arcona and D8jdeter-

mined the relation between the cutting force and the cutting sp
for plastic films; Bollen[4] studied the process of shear cutting o

In this section, the deformation field surrounding the slitter in a

elgl&)ving web is obtained based on the dynamic fracture mechanics

nalysis. Due to the nature of the web material, the deformation is
é;onsidered to be two dimensional. We also assume that the web
material is homogeneous, isotropic, and elastic. First, the general
formulation regarding the web slitting process is discussed. Then,
Ogl;l_e special case of concentrated tractions on the crack surface is
onsidered. Finally, using the scheme of superposition, the stress
beld in the web surrounding the slitter is constructed.

forces; Zheng and Wierzbickb] derived a closed-form solution
for the cutting force for a steady-state wedge cutting process.

Web slitting can be considered primarily as a process of a ¢
trolled crack propagation in the web material. A crack is initiate
by the cutting tool, or equivalently slitter blade, and is propagati
in the web under the guidance of the slitter blade. Razor slitting2.1  Mathematical Formulation. The web slitting process
can be considered primarily as an opening mode problem in tReshown schematically in Fig. 1. A web is moving at a constant
framework of fracture mechanics, while shear slitting may be coge|ocity v. A stationary slitting blade separate the moving web
sidered primarily as an antiplane shear mode problem. Near {h& two pieces. In the web plane, a Cartesian coordinate system
crack tip, there exists a high stress zone, where excessive inelagi¢ X,) is chosen and it moves with the web at the speed.of
deformation might occur. Damages, such as microvoids, Mmoshe X; axis is parallel to but pointing against the web moving
likely initiate and coalesce to form visible cracks for some wegjrection.

For two-dimensional planar deformation, we may consider the

Contributed by the Applied Mechanics Division ofiff AMERICAN SOCIETY OF two displacement potentialsh(Xy X, 1) and W(X;,X,,0), in
MECHANICAL EN)(lBINEERpSF;m publication in the ASME QURNAL OF APPLIED ME- t.he Cartesian SyStem(.ﬂ'xﬁ' Wlt.h respect to the undeformed
CHANICS. Manuscript received by the Applied Mechanics Division, October 27f|eld, the two nonzero in-plane displacement components can be
1999; final revision, June 17, 2004. Editor: R. M. McMeeking. expressed through
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ua:mb();;,xz,t) e 3\1’(;()1(,X2,t)' a=12, 1) e=—6,=1, e;;=en=0.

@ B The components of stress for a homogeneous, isotropic, and lin-
where the summation convention has been used. Notefjgris  early elastic material that we consider, can be expressed through
the two-dimensional alternator defined by the displacement potentials as

[ POKD)  FO(X X)W (KXo D)) )
THTH 2T aX, X2 IX19X;
C? PD(Xy X, t)  PD(Xy, Xp 1) PW(Xy, Xp,t) X
72 2T X X, X2 IX19X ‘ )
2&2¢(X1,X2,t) PPV (X1, Xa,1)  92W(Xq,X,1)
oo
2 IX10X;, X3 ox3 )

wherec, andcg are, respectively, the dilatational and shear wavatraight crack propagates with a constant velogitynder the load
speeds of the elastic material. They can be expressed, in termsygblied by the slitter which is also traveling with the same speed.

the shear modulug, Poisson’s ratia’, and the mass densipy as In the “moving” coordinate system, the equation of moti(&)
PEERRET: |22 becomes
C| = K— 1 T CS: _) ’ (3) 1
p p
. . ¢,11(X11X2)+ _2¢,22(X11X2):01
wherex=3—4v for plane strain deformation ane=(3—v)/(1+v) o)

for plane stress deformation, respectively. In the absence of the

body force density, equations of motion are given b 1
Y v ed g y ¥11(X1,X2) + — ¥ 2o X1, X2) =0, (6)
I0,5 U, %s
Xy Pz Th® () where ¢(x;,%,) =P (x1+vt,X;) and g(xy,xz) =¥ (x,+vt,Xy),

and the steady-state condition has been used in writing(&g.
By using the constitutive relatio®), the equations of motiotd) Meanwhile the two parameterg and a are defined by
can be rewritten in terms of the displacement potentials,

2\ 12 2\ 12
D(X1,X5,1) andP(X,,X,,t), as a,—<1—v—> as—(l—v—)
2 ’ 2 .
ﬂZ(D(Xl,Xz,t) 1 ﬁZCD(X].!XZrt) Cl CS
aX_aX v 12 =0, (58)  The two equations in Eq6) are Laplace’s equations in the cor-
o ¢ responding scaled plane(,a;x,) for ¢, and q,axX,) for i,
respectively. As a result, the most general solutions fo an
&Z\P(XIIX21t) 1 &Z\P(Xllxzi) _ be gxpl’eSSyed dg] g r(aq:
XiXe @ o &
° d(X1. %) =REF(z)],  #(X1,X2)=IM[G(z5)], )

Suppose that the slitting process has started for quite som
time, and the deformation surrounding the slitter has reaché(
steady state. In other words, for an observer sitting at the slitter, Z=X1 Xy, Ze=Xtias,
the surrounding field does not change with time. Introduce a co- . . .
ordinate systemx( ,x,) with the origin located at the point where@1di = —1. FunctionsF(z) andG(z,) are analytic everywhere
the web starts to separate and with theaxis pointing against the N the complexz,, or z; planes except along the nonpositive real
web moving direction. Then the relation between the two coordfXiS ~®<X;=<0 occupied by the crack. In terms of the analytic

nate systemsX;,X,) and (x;,x,) is a simple translation: functionsF(z) and G(z), the displacement and stress compo-
nents, in the X;,X,) system, are

Up(Xq,%2) =R F'(2)+ @G’ (Z5)],

ere the complex variables andzg are given by

Xl:Xl_Ut, X2:X2.

Here we have assumed that at the momentt=o08, the two sys- , ,
tems coincide. If we view the material systey(X,) as station- Ua(X1,Xp) = —Im[eyF'(z)+ G (z4)], (8)
ary, then the web slitting process can be considered as one thaj,g

011(X1,%) = RE (14 222 — a2)F"(2)) + 2aG"(z)]

ToA X1, %)= — u R (14 ad)F"(2)) + 2asG"(2)]

AX2 Twz 01(X1,%0) = — pu IM[2eqF"(2) + (1+ @) G"(z4) ]
vt >

9)

where the prime represents the derivative with respect to the cor-
responding complex argument. From the above discussion, one

e 2 —— "% can see that the whole deformation field will be determined if the
. two analytic functiond=(z) and G(z) can be obtained.
<— Web moving direction Slitting blade
2.2 Concentrated Tractions on the Crack Surface. In this
Fig. 1 Schematics of the web slitting process section, we consider the stress field surrounding a steadily moving
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A tends to open the crack. Meanwhile, another concentrated force,
o Mo, is applied at the same location and is pointing to the direction
of crack growth. The second concentrated force is due to friction
and the Coulomb-type of contact condition is assumed with
Ao be the friction coefficient. Therefore, the boundary conditions are
- v described by

0'22(X1,0t) = - 0'5()(1"1‘ C)
0'12(X1,0t): I)\05(X1+C) !

Ao
where &(+) is the Dirac’s delta function. Far away from the crack
o tip, or at infinity, the stress field is such that

C 011= 00, 0'22:0, 0'12:0, aS(X%+X§)1I24>w, (11)

whereo, characterizes the remote tension alongxhelirection.

T for —o<x;<0, (10)

Fig. 2 Steady crack growth due to symmetrically applied con- One can see that the deformation field is symmetric with respect
centrated tractions on the crack surface at a fixed distance, c, tothex, axis. As a result, the two analytic functioris(z) and
behind the crack tip G(zs) introduced in the previous section, have to satisfy the fol-
lowing restrictions:
F(z)=F(z), G(z9)=0G(zy), 12)

crack where concentrated tractions are applied on the crack sur-
face. Then, the stress field surrounding the slitter can be comhkere the overline stands for the complex conjugate, and there-
structed using superposition. fore, we only need to consider the upper half of the,k,) plane.

As shown in Fig. 2, a crack is propagating at a constant veloc-The problem of a steady growing crack subjected to concen-
ity, v, through an unbounded two-dimensional region. At a fixetlated shear traction on the crack surface has been discussed by
distance,c, behind the moving crack tip, a pair of concentrate@reund[7]. Following similar procedure, the two analytic func-
forces with the magnituder, is applied to the crack surface andtions, F(z) andG(zs), can be obtained as

() 1+ ag g \/E 2 Ao 1 N 1 o
" @D) u Jz(z+c) mDO) w ztC 2(aP—ad) M 13
&'(2) 20y O Jc 1+a? \o 1 1+a? oo’
Z = —_ - —_ - —_— —_— . —_—
s D) u z(zs+c) D) m ZHC dayaf—al) M
I
where . 1+a2 (© o(s) -s 4 2N g
Z| = . S—
mD(v) ) _.. — 7D (v
D(v) =4 as—(1+a?)?. @) ) s a(@-s) @)
0 o(s) ds 1 oy
Note, thatD(v) =0 whenv =cg, wherecy is the Rayleigh wave X % 7—s + o ah (162)
speed of the elastic material. Therefore, we exclude situation - ! (af = ag)
where the crack propagates with the Rayleigh wave smpged
The stress field surrounding the moving crack can be obtained b%;" . 2a o a(s) V—S
combining Egs(13) and (9). (z)=— D) | . & zlz—s) ds
According to the theory of linearly elastic fracture mechanics, sis
the dynamic mode-I stress intensity factor at the moving crack tip, N1+ a?) [0 1+ a?
K,, is defined by (1+as) f o(s) _ds @ %
mD(w) J_. u  zZs—s 4as(a/|2—a§) M
K|: I|m \/277)(10'22()(1,0). (14) (16b)
x;—0"
' By combining Eqs(9) and (16), the stress field surrounding the
From Eqs.(9) and(13), we have slitter can be calculated and therefore, the deformation field can
be determined. Also, by using the superposition scheme, the dy-
5 namic stress intensity factor at the crack #f,, is given by
K=o/ — (15)

2 (0 oa(s)
K= p ? ds. 17)
One can see that the dynamic stress intensity fakigrdoes not —eVTS

explicitly depend on the crack-tip speed, One can observe that for the dynamic stress intensity fator,

2.3 Stress Field Surrounding the Slitter. Now, consider to be finite, the normal traction(x;) has to be bounded as
that the crack surface is subjected to a distributed normal tractien0~, and o(x;)—|X4|P as|x,|—c for somep<—1/2. On the
o(x4). The associated friction traction is therefore, given bwther hand, if the normal tractionr(x;) is applied in a finite
No(X4). Using the superposition scheme, the two analytic funcegion, where the crack tip is not an end point, the normal traction
tions, F(z) andG(zs), can be expressed as o(x4) has to be integrable at both end points of the region.

Journal of Applied Mechanics MARCH 2005, Vol. 72 / 159
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Fig. 3 Geometric profile of the slitter and contact condition

3 Interaction Between Moving Web and Slitting Blade aligned with the web moving directipn, within the contact region,
In the previous section, the stress field in the moving web sul* have 55(xy) = &(xy). By denoting 7,=—x;/b and 7=

rounding the slitting blade, is obtained based on the dynamic fraE—S/b’ from Eq.(20), one can write:
Vot m| D)

ture mechanics analysis. In determining the stress field, we have «
to know the functiono(x;), which is assumed to be prescribe((j)\fg( 7)In 7=
along the crack surface in the analysis. With the normal tractioha Vn—m| 201(1-a?)
o(X,), together with the remote tensile stresg,(also called web (21)
stres$, we can calculate the stress field at any point surroundi%
the slitting blade. However, in the web slitting process, the trac-
_ O'(Xl) ) 5( 771): 5()(1) , a= %

(), for asn <1,

ere we have defined the following,

tion applied on the crack surface or the web edggx,), is the *

result of interaction between the slitting blade and the moving o(n)= m
web. Intuitively, this interacting traction will depend on the mov- One can observe from Eq21) that the interacting traction
ing velocity of the web and the shape of the slitting blade. In this . o *

section, we will determine the traction(x,) and investigate its between the moving web and the slitting blade7;), can be

properties. expressed in the form of
Behind the crack tip, the crack opening displacement at any .
positionx, is defined by ()= %z(m), for a<pm=<1,  (22)
8(X1) = Ux(X3,07) ~Up(x,,07), for —e<x,<0.  (18) e
With the help of Eqs(8) and (16), one can show that which indicates thatr(#,) is composed by two parts. The first
) one is a function of the web speeB,(v)/2a|(1—a§), which
S)(xy) = 2a/(1-ay) ) 1 0 o(s) S ds intrinsically also depends on the Poisson’s ratio,The second
277 D(v) o ) —X; S—X;’ part, denoted by (7,), does not depend on the web speed, it is
only a function of the blade profile. We may refer to the first part
for —oo<x;<0. (19) as the speed factor and the second part as the shape factor. The

variation of the speed factor as a function of the web speed is
presented in Fig. 4 for different Poisson’s ratios. Here we have
assumed that the deformation is plane stress. One can see that the

By using the fact that at the crack tif;(0)= 0, the crack opening
displacement can be obtained as

2a|(1—a§) 0 g(s) [“s+ /_Xl speed factor is a monotonic function of the web speed. It starts
8y(Xq)= D In ds, from the value of 2kk+1) at v=0 and decreases to zero when
7D(v) - M VTS—V X v=_Cg, Wherecg is the Rayleigh wave speed of the material.
for —oo<x,<0. (20) The shape factor, A (7,), is determined in the following. By

substituting Eq(22) into Eq. (21), we have
Note that in the above expression, the normal opening displace-

ment 8,(x;) depends only on the normal traction applied on the 1 12 | v+ d _3 ; <=1 (2
crack surface or web edge(x;). The shearing traction associ- ). (7)In —\/7]_ NEY n=0(n1), for asmn=<1. (23)

ated with the friction coefficient\, and the remote tensile

stresso, do not enter the expression for the crack openingquation(23) is an integral equation for the unknown function

displacement. >.(74). This integral equation is of the first kind, Fredholm type,
Consider the situation depicted in Fig. 3. Here the slitting bladend linear. To solve Eq(23), we differentiate both sides with

has a finite length. The distance between the crack tip and the téspect ton,, which leads to

of the blade isq and the distance between the crack tip and the

end of the blade i®. The profile of the slitting blade is charac- Ln3(n) A \/—*, for e e

terized by the functions(x;). We assume that the slitting blade w—m T 18 (), for a<m<1. (24)

and the moving web keep contact in the region-di<x,<-—a

where a=q. Therefore, when the slitting blade is perfectlyThe solution to the above integral equation can be obtain¢fllas

160 / Vol. 72, MARCH 2005 Transactions of the ASME
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Fig. 4 \Variation of the speed factor as a function of the web tance behind crack tip for different values of @

speed for different Poisson’s ratios

To study the properties of the shape fackfz,), we consider
1 L Inp(np—a)(l—17n) 5 (1;) an ideal shape, a wedge profile, for the slitting blade. The wedge

()= NT(m—a)(l—7 ) n— 7]1 profile can be described as
171 1
A d(x1)=2|x,+qltans, for —bs=x;<-q, (29)
+ , for as=m<1, (25) where @ is the angle of the wedge. In nondimensional form, the
(71— @) (1= 7y) wedge shape in Eq29) can be rewritten as
whereA is a real constant. The situation depicted in Fig. 3 has *
_sl_LrJ]ggesteq that tthe cgntactthtractiorlzit;cg has to be bounded. 8(m)=2(m—ytans, for y<n;<1, (30)
s requirement renders the cons e .
1S requi where y=g/b and y<a. The shape facto.(7,), is expressed
f Vrp(l—n)* for slitting blade with wedge slitter as
——6'(dn. (26)
SO 2tan0 7— f \/77(1 7). dn
Now, the function(7,) can be rewritten as n ™ 771(1 71) -’
1 \/ n(1—7n) & (%) for as=n;<1. (31)
()= 771(1 ,71) J n—a ' n—m 7 The variation ofyI—7:2(7,)/tan# as a function of the position
behind the crack tip, is plotted in Fig. 5 for different values of the
for a<n<1. (27) parameterr. Note that for smallew (e.g.,«=0.01 or 0.1 in Fig.

. - 5), as 7, changes froma to 1, 3(7,) starts from zero, which
If we let the parameterr vanish, or _the slitting l_)lade and thesatisfies the requirement imposed®(w;), and decreases. Then,
moving web start to have contact right at the tip of the blad (,) starts to increase and becomes positive. For largér
From Fig. 3, such assumption also implies that the tip of the blade 5in Fig. 5, 3(7,) becomes a monotonically increasing func-
and the crack tip are coincide, q=0. As a result, the expressmntlon However, the interacting traction between the moving web

for the functionX(7,) becomes and the slitting blade cannot be negative. Therefore, the above
observation suggests that there exists a lower bound for the

B 1 V11— 715'( 7) _ parameter denoted by, and we must have= a4 . This lower

2(m)=- imlo 7-m dzy, for 0<#<l1. bound parametera, can be obtained from the following
! (28) condition:
One can show that ag;— 0", the above functior®(7,) is un- d(71) o 23
bounded. However, from E@17), we have observed that the nor- dos |, _ e (32)
1~ %

mal tractiona(x;) has to be bounded ag—0~. Such observa-
tion indicates that in Eq27) we must havex#0. Therefore, the for any given slitting blade profile. Specifically, for blades with
exclusion ofe=0 indicates that the contact between the movinthe wedge profile Eq(29), a numerical estimation giveg,

web and the slitting blade does not start at the tip of the blade ba0.1739. It is interesting to note that the limiting valag does
rather starts at some distance behind the blade tip. As a mattenot depend on the wedge anglé. However, since the analysis
fact, the above conclusion is consistent with observations thaesented in this study is based on the infinitesimal deformation
during the slitting of some brittle webs, the crack tip is indeetheory, the above conclusion should be understood of being true
ahead of the tip of the slitting blade. only for small anglef.
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Through the above discussions, we have shown that the inter- [ ]

acting traction between the moving web and the slitting blade is Lok ? g

the product of two factors, the speed factor and the shape factor. : 2| o ]

We also showed that the parametehas to be in the range of osl : /\\“ 5 ]

ap=a<1, (33) A\ 7 Na) 8 ]
e L ]

in order for the interacting traction to be positive. Nevertheless, 0‘?2,0 15 <10 -05 00 015 LIO 1‘0 2.0

the constantr still remains as a free parameter and needs to be a1 /b

determined. Recall that the dynamic stress intensity factor at the

crack tip, K;, is given in Eq.(17). Also note that during the (b) o22/p

slitting process, the stress intensity factdy, has to be equal to

3.0 ey

the fracture toughness of the web material, which is denoted by
K,c(v). Here the notation has suggested that the fracture tough-
ness of the web materidf,-, also depends on the web speed
In terms of the shape facta¥(7,), Kic(v) can be rewritten as

[2b D(v) 13(n)
Kic(v)=u ?'2a|(1—a§) TV dz.

Using the requirement E¢34), the parametew is therefore de-
termined. From Eq(34), one can see that will depend on the
material's fracture toughness, web speed, and the shape of the
blade. For slitting blades with the wedge profile Eg9), the
relation between the fracture toughness of the web matéGjal,

and the parametes is presented in Fig. 6 for several different
web speeds. Here we have chosen that the Poisson’'sirall @5

and the deformation is plane stress. One can see from Fig. 6 that
for given wedge angle,® and web speed,, if the toughness of

the web materiaK ¢ is known, the length of the contact region,
characterized by (% a)b, can be determined by using the rela-
tion shown in Fig. 6. On the other hand, by measuring the leng
of contact region, or the parameterthe fracture toughness of the
web materialK,c, can be determined by using the relation shown
in Fig. 6, as well. Another observation from Fig. 6 is that for given
wedge angle, & and web speedy, the length of the contact
region will be longer for tougher web materials.

(34)

J’)g/b

r‘1||||\|;v||\||‘|1\||
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It—]?g. 7 Contour plots of the three stress components of the
dynamic steady-state stress field surrounding the slitter

In Fig. 7, contour plots of the three components of the dynamic

steady-state stress field surrounding the slitter with a wedge pro-
. . . file are presented. In this numerical calculation, we choose the
4 Numerical Results and Discussions web speed to be/c,=0.1 wherec, is the shear wave speed of the
In this section, some general characteristics of the dynamieb material with Poisson’s ratio=0.3. The half angle of the
steady-state stress field surrounding the blade during web slittiwgdge is#=5.0° and the friction coefficient between the moving
are studied based on the dynamic fracture mechanics analysis pveb and the slitter is set to be=0.1. We also assume that the
sented in the previous sections. fracture toughness of the web material is a constant and
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K,c/mb=0.075, whereu is the shear modulus of the material 30 T
andb is the distance from the crack tip to end point of the contact
region as shown in Fig. 3. The remote tension is assumed to b
oo/ n=0.008. As shown in Fig. 6, for a given fracture toughness,
the length of the contact region can be determined and from thit
relation we haver=0.3913. 2.0
According to the analysis by Cotterell and R{& on slightly

curved and kinked stationary cracks, the sign of Th&tress(the °
second term next to the singular term in the asymptotic expansiol &'
near the crack tipdetermines the stability of the crack, where
under mode-| loading, the straight crack remains stable when th 10
T stress is compressive, i.&.<0, and the straight crack becomes

(LI L D A I S Sy B B W B |

2.5

0.1

_lj\rl1||\|||$||\llll(||<

0.15

LIS ) L L B B N Qi ey B |

),

unstable for positivel’ stress, i.e.T>0. The unstable crack will M E

tend to kink out of its original direction or bifurcate into several N\

branches. On the other hand, M€]it0] suggested that the direc- g
tional stability of a mode-I crack is not only controlled by the 0-020 NI
so-calledT stress, but also controlled by the opening stress norma - 00051015 20
to the crack. Through a model problem, Melit0] showed that z1/b

the mode-| crack will lose its directional stability when the ratio (a)

of the T stress to the opening stress is bigger than certain value

Although directional stability remains as an unsolved problem S L T s A B L e+
(see[11]), the loss of stability of a mode-I crack still has some

significant implications in the quality control of web slitting. This . :

is because that after the crack becomes unstable, many micro

small cracks tend to form along the cutting edge of the web anc :

the quality of the final product would be poor. Since the so-called
T stress in mode-| type of deformation, is determined by the dis-
tribution of theo;; component ahead of the crack tip, in Figaj/
the contour ofo11/ u is presented. One observes that ahead of the
crack tip and in a wedge-shape region, the stress compeonerg
indeed positive. As a result, the value of thetress is also posi-
tive. However, from the dynamic fracture mechanic analysis, the
o1, component ahead of the crack tip is determined by the remott
tensionoy and the web speewl. Therefore, the web slitting qual-
ity might be controlled by adjusting these two parameters so tha
the T stress is controlled beneath certain threshold and this will
eliminate the tendency that the crack loses its stability during 21 /b
slitting.

Meanwhile, from Figs. ®&) and 7b), we see that near the con- (b)
tact region between the moving web and the slitter, i.e., fam )
—-0.3913 to x,= — b, botho, and o, are negative. One can Tg. 8 Contour pl(fs of the effective stress, o, for (a) vicg
deduce that the two principal stresses will also be negative ne_a?'l and (b) vic,=0.3
the contact region. This situation might trigger the web material to
buckle and this will also lead to poor quality of web cutting edges.

Finally, the contour plot of the effective streggy is shown in
Fig. 8, whereo is defined by

=1

)
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blade. However, this enlargement is not very significant. Never-
theless, crack-tip plasticity and plastic deformation near the end of

1 1 1 12 the contact region might change the contact condition between the
Oeii=| 5 | Tij = 3 TkkSij | | Tij — 3 Tkkij moving web and the slitter and this remains to be investigated
2 3 3 further.
5 4 1/2
:(glffﬁ 30102t gU§2+3U§2 (35)

5 Concluding Remarks

Idnefv(\)/ Pr::re]t%iotgeise)igfesi(r)gslsn IE(E,’S)’SWSNQ%Y%?:?FVT:S?:;T eA stress analysis for the slitting process of a thin web material
: P o 9. 5, - P LS presented in this study based on the dynamic fracture mechan-
considered and they amg/c,=0.1 andv/c,=0.3, respectively. .

Other parameters are the same as those shown in Fig. 7. By no cs. The a_nalysig leads to the determingtion of tht_a stress and _strain
that the von Mises yield criterion can be expressed a:s ) & for given slitter profile, web material properties, and moving
velocity. It is shown that under the steady state conditions, the
(36) dynamic stress field surrounding the slitter is a function of the
interacting traction and the friction between the moving web and
where 7 is the yield stress in pure shear, the contour plots shovtine slitter, as well as a function of the web tension. By solving an
in Fig. 8 indicate the effect of the web speed on the size of tlietegral equation, the normal interacting traction between the
yielding zone near the slitting blade. There are two singular poimsoving web and the slitter is determined as a function of the
in the stress field. One is the crack tip and the other is the endsbitter profile and the web speed. For an ideal razor blade with the
contact region. From Fig. 8, we can see that although the stregsdge profile, the contact condition between the moving web and
concentration at the tip of the crack will cause plastic deformdhe slitting blade is investigated and we found that the contact is
tion, the majority of the yielding occurring in the area surroundingontrolled by the fracture toughness of the web material and the
the slitting blade is dominated by the contact condition, especiallyeb speed. The fracture toughness of the web material itself might
near the end of the contact region. Also, we can see that elevatésb depend on the web speed. The results presented in this paper
web speed will enlarge the yielding area surrounding the slittiqgovides the analytical foundation for studying the yielding zone

Oef=T,
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Tohoku University, Advances in computing have allowed for the development of high performance concretes
Aoba-yama 06, mathematically. We develop a method which combines the generalized self consistent
Sendai 980-8579, Japan model together with the boundary element method and the statistical averaging procedure
to study the multiple scattering of plane elastic waves in concrete containing randomly
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1 Introduction model of dispersed aggregate structure is used. Numerical results
The frequent use of the civil infrastructure under severe en\;?rq"t:;iil ga%r'{ﬁéngof;ggg %(;nrfwrueli?plaeresc(ﬁilr?ne; ;r? dan?ijcr;(c:)i(t)rrlljg-f
ronments has increased the worldwide demands to develop teﬁﬁés on the phase velocities and attenuations of the coherent

2? el?egsles_”f](;r r(}iief]lgneraflgrdmrgr?clr;tecr;e:]rggt:; Eg}e peorg;rirg}ﬁttri]ecse tf) aves, and the effective moduli for the steel fiber-reinforced con-
) gn p P &te are discussed in detail.

applied by the various industries and to be developed to improve
resistance to the hostile environments. In order to design, develgp, .
and maintain the high performance concretes as new generation Problem Statement and Analysis
materials, especially fiber-reinforced concretes with the speciallyWe consider a random distribution of identical fibers in an in-
designed microstructures, there is a need to quantitatively descriilpéte concrete matrix. To take into account the complex interac-
the different classes of microstructure-physical property relatiotion among the concrete matrix and fibers, we must have a geo-
ships from the viewpoints of nanoscopic, microscopic, mesostetric model which consists of randomly distributed composite-
copic, and macroscopic scales. Sato and Shif¢} analyzed the inclusions in an infinite effective medium as shown in Fig. 1. It
scattering of in-plane compressiorf®) and sheafSV) waves by should be mentioned here that unknown complex wave numbers
a distribution of complex fibers by using the boundary elemenf the effective compression&P) and shear(SV) waves in the
method(BEM) to control and catch the signs of the degradatioreffective medium are defined i, andKy, , respectively. For the
These methods neglect multiple scattering effects, and is suitedétevant roots, the real, and imaginary parts should be positive.
the composite materials containing dilute concentrations of fibers.In order to study the propagations of effective P and SV waves
In the composite materials containing dense concentrations ofifi-the composite-inclusions medium of Fig. 1, we first considered
bers, the problem of the propagation of multiple scattering wavésat the tentative scattered fields are assumed to be caused by a
has been investigatd@]. Recently, Sato and Shindd] studied single composite inclusion. In the composite inclusion, which is
the multiple scattering waves in a functionally graded materiembedded in the infinite effective medium with the mass density
(FGM) and characterized the microstructures for the purpose @f and the effective Lameonstants\*, u* where a superscript
seeking ideally stable composite materials in any environmentgx) denotes the effective component within the effective medium,
In this study, we consider the multiple scattering of plane elafiber of radiusa is surrounded by the concentric concrete matrix
tic waves by a random distribution of fibers in concrete. We ashell of outer radius. Let\, u, p be the Lamesonstants, the mass
sume same-size fibers of identical properties, and concrete matiensity of the concrete matrix, ang, nq, po those of the fiber.
which consists of mortar and small aggregates compared with fRiee geometry is depicted in Fig. 2, whene, (X,,X3) is the Car-
wavelength. To account for the multiple scattering at high concetesian coordinate system with origin at the center of the concrete
trations of fibers, a method which combines the generalized seiftrix shell and fiber3, D, and() are the domains of the effective
consistent model together with the boundary element method ameédium, concrete matrix shell and fiber, ahdand I’y are the
the statistical averaging procedure is used to calculate frequerstyfaces of the concrete matrix shell and fiber, respectively. Here,
dependent phase velocities and attenuations of coherent wawbe.shape variation df  makes it possible to consider the effect
The solutions obtained are based on the plane strain assumptifrfiber shape, though', is assumed to be circular in this study.
In analysis, the microstructure of the concrete matrix changes withe outer radiug of the circular concrete matrix shell, which
the change on the volume concentration of aggregates which acgresponds to a spatially isotropic distribution of fibers, is related
isolated from one another in the mortar. For calculating the elastiz the volume concentration of fibecsby
properties of the concrete matrix analytically, micromechanical c=a?/b? o

To whom correspondence should be addressed. The displacement components of the effective medium ixthe

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF ; ; * * B *
MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- and x, directions areuj and Uz, while th(.a components Is
CHANICS. Manuscript received by the Applied Mechanics Division, October 178DSENt because the problem is plane strain. For the same reason,

2000; final revision; June 17, 2004. Associate Editor: S. Mukherjee. derivatives with respect t; are zero. The medium is in time-
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wherek,=w/c, andkg, = w/cg, are the wave numbers of the P
and SV waves in the concrete matrix, aog=[(\+2u)/p]*?
andcg, = (u/p)*? are the P and SV wave speeds in the concrete
matrix, respectively. For the perfect bonding of fiber, the boundary

I @Eﬁ”ﬁ”g‘“ ©)
© 00
©

I conditions onl” andI’y can be written as
i

ut=u,, tr+t,=0, onT, (5)
{l @ u,=u, t,+t%,=0, on Ty, (6)

where a superscripgt denotes the transmitted component within
the fiber,t} =o%,nj , t,=0g.Ng, andt,=op,n; are the trac-
tion components on the effective medium, concrete matrix shell
and fiber, andwg , Ng, andn% are the unit outward normal com-
ponents fromB, D, and (), respectively. The boundary integral
equations for the effective medium, concrete matrix shell and fiber
are written as

©
©

Fig. 1 Schematic diagram of composite-inclusions medium

Fiber Concrete Matrix

CZB(X)UZ(XFJrUzﬁ(x,y)tz(y)dF(y)

harmonic motion, but the term exp{wt), wherew is the circular
frequency and is the time, will be omitted. Under these condi-
tions, the stress equations of motion are given byaﬁ

+ p* w?u* =0. Here a comma denotes partial differentiation with
respect to the coordinate, Greek indices can assume the values 1
and 2 only,aga define the stress components which are related to
the displacement gradients by Hooke's layj, denote the dis-
placement components, aptl is given by the average mass den-
sity as follows:

- frTZB(X.y)uz(y)dF(y)JrUS exp(iK pxy) €

+Wwg expiKg,X1)e;, @)

Cap(X)UB(X):f

r+r

Uop(XY)ta(y)dIT(y) +To(y) ]

—f Tap(XY)ugNAIT(y)+To(y)], (8)
p*=p(1=c)+peC. 2 T+Tg

Then the effective Lameonstants\*, x* can be obtained from
the phase velocities Re(K,) and Rek, /K,) of the effective P

Chp()U(X)= f UL s(x yth(y)do(y)
and SV waves as follows: o

- f T (X Y)u(Y)dlo(Y), 9)
Io
X2 wherex=x,€e; +x,6, andy=y;e, +Yy,e, are the field and source
A points,e, ande, are the unit base vectors in tlg¢ andx, direc-
tions,uy andwg are the amplitudes of the incident effective P and
SV waves, the coefficients af;;, c,z and ctaﬁ depend on the
r local geometries of” andI'y at x, and U{;B, Tzﬁ, Uagr Taps
U‘aﬁ, andT;ﬁ are the fundamental solutions for displacement and
traction in the effective medium, concrete matrix shell and fiber,
b I respectively, given in Appendix A. Thus the tentative scattered
fields at a large distance from a single composite inclusion is
a determined by Eqg5)—(9) and
+H> » X urS~ug A% (K, ,%) Lex i| K |x\—z
0 Sl a T0RaA TR N K X PR g
{iber Q 5
0s Hos Po T wWEB* % i _r
w§ B (K, ,X) \/ KN ex;{l(st|x| it
Concr;te Matrix D (10)
M. P whereX is a unit vector in the direction of observation, and the
Effective Medium B tentative far-field scattering amplitudes are
x u* p*

Fig. 2 Composite inclusion embedded in the effective medium
and coordinate systems

166 / Vol. 72, MARCH 2005
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0
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. . 1 ESo o x s o % . —B* (K, ,X)Xze+B* (Kg, ,X)X16,=B] (K, ,X)&;
B (Kg, ,X) = w [Cop (N5(Y) +Kg, DL g,(x)n7 (Y)ug(y)]
r

0 +B;(KSU1§()e21

X exp(—iK g, X-y)dl(y), (12) because no effective P and SV waves btexp(Kx;)e; and
5 KeX)e, defined in Eq(7) exist in the effective medium.
and Eqs.(B1)—(B4). wo expiKg )€, effective
Now the statistical averaging procedure is used to obtain eq onsidering Eqs(17), (18) and the composite-inclusion geom-

tions for determining the effective P and SV waves in terms of t ry, the tentative far-field scattering amplitudes have to be
tentative scattered fields from a single composite inclusion. It AZ(KP,R)=O, B*(Kg, ,X)=0, (X#*e). (19)
should be clarified here that the composite-inclusions medium of ) ) )
Fig. 1 represents the infinite concrete matrix containing randomh?us the tentative scattered fields of Et0) are vanished due to
distributed fibers by of Eq. (1), if the composite inclusions fill Az (Ky,X)=0 andBj (K, ,X)=0 in any ofx direction. That is,
the effective medium space of Fig. 1 completely; thatdg, the composite inclusion is equivalent to the effective medium.
=n,mh?=1.0, wherec, is the volume concentration of compos- It should be mentioned that we need to solve Ei8) and(14)
ite inclusions anch,, is the number of composite inclusions peY using the iterative numerical scheme, because these equations
unit area in the effective medium. This corresponds to tH&&n not be solved analytically. In carrying through the calculation
composite-cylinders model {%]. It can be supposed that both theby iteration, K, and Ky, are expressed b)KJp and KJ-S” (j
effective medium of Fig. 2 and the composite-inclusions medium0,1,2 . . .), respectively. Let sequences Kf andK;" be de-
(cpb=1.0) represent the infinite concrete matrix containing rarined by
domly distributed fibers. And the effective P and SV waves propa- . . 2 . . 2
gating through the effective medium of Fig. 2 should be the same KP. )2= 2in,A¥ (KP ,el)} 2inpA7 (KP,el)}
j+1 ’

as those propagating through the composite-inclusions mediun K ij KP KP

(c,=1.0), though we cannot prove that the effective medium of ] ] (20)
Fig. 2 is rigorously equivalent to the composite-inclusions me-

dium (c,=1.0). Thus, the problem, for which we present solu-

tions, is that of obtaining relationships between the effective P and (Kfil)zz
SV waves through those two mediums. To obtain the relation-

ships, the statistical averaging procedure developed by Waterman

and Truell[6] is applied to averaging waves over a random dis-

tribution of identical composite inclusions in the infinite effective

medium of Fig. 1 in terms of the tentative far-field scattering

amplitudes due to a single composite inclusion of Fig. 2. Combimith the tentative initial values dkf andKg’ . Then,
ing Ky, K, of those two mediums in the, direction, with the

sv__
Kj

2in,B3 (K ,el>r
K§
2

2. B* K_SU]_
2B (K7 T8 12, @)

Sv
K]

— lim KP = lim K
statistical averaging procedure, gives the following equations to Kp jlﬂ Kiv Ks jlm Ki™ (22)
be satisfied:
) 5 ) 5 exist and are solutions of Eq&l3) and(14), because the calcula-
. 2inpAT (K, 81) 2in AT (Kp,—€y) tion is to make the effective medium be equivalent to the compos-
Kp=| Kp— Kp n K, » (13) ite inclusion by averaging, i.e.,
. P o
, 2inpB3 (Kg, &) % [2inyB% (K, ,—e))]? lim,_ A1(K],e)=0,
Ks=|Ks— - ,
Kso Ksy lim_ BX(K¥,e)=0,
with lim, _ AT(KP,—e)=0,
1 c lim. B3 (K{,—e)=0,
nb:_2: —- (15) joo 2( j 1)
mb® 7 which satisfy Eq(16).

Equations(13) and (14) are final forms for the determination of

the complex wave numbers, and K, which are reasonable 3 Numerical Results and Discussions

results at high concentrations and frequencies. It can be said that ) . i i

the solutionsK,,, K, found with Eqs.(13) and(14) are equal to To examine the effects of multiple scattering and microstruc-

results of Fig. 2 guessed under the conditions: tures on the physical properties of the fiber-reinforced concrete,
the unknown complex wave numbers of the effective P and SV

Al (Ky,e)=0, B3(Kg, ,e)=0, waves have been computed. The value&pfandKy, , as deter-
mined above, are obviously complex. The phase velocities of the

AT(Kp,—e)=0, B3(Kg, ,—€)=0. (16) effective P and SV waves are Rg(K;) and Reks,/Kg). Their

corresponding attenuations are Ky(k,) and ImK, /k,), respec-
tively. The considered fiber was steel, and concrete matrices were
mortar without aggregate€ase J, mortar with limestone aggre-
0=[072inbA*(Kp,i)]zf[ZinbA*(Kp,fk)]z, (17) ggtes(Case ) and mortar with ingot iron aggregatéSase ).
Limestone and ingot iron aggregates are corresponding to the nor-
0=[0-2in,B* (K, ,X)1?—[2in,B* (K, ,—X)]% (Xx#*e,), malweightand heavy weight aggregates, respectively. The size of
aggregates is assumed to be sufficiently small compared to that of
(18) fibers and the wavelength, so there is no wave scattering by a
distribution of aggregates. The constituent properties are given in
Table 1, Wheré\ mor, mor» Pmor &€ the Lameonstants, the mass
* NG * NS A AKX o * ° density of the mortar, andl,,q, agq: Pagethose of the aggregates.
A™(Kp X0Xa8 A% (Kp X0%08 = A1 (Kp X)&1 A3 (Kp X8, For calculating the elastic pﬁg%ertéilgegs of the concrete matrix, a
and micromechanical model is used consisting of one lumped three-

For any ofX direction but thex, direction, the equations, with the
statistical averaging procedure, are also given by

where
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Table 1 Material properties of steel, mortar, limestone, and in- LN B B B M B B B B B B B B N B
got iron )
Circular fiber
Steel po (Um°) o (GPa) Ao+ 2uq (GPa) 1.00F ¢=03
fiber 7.8 78.13 255.7 Case ] (V,g=0.0) ’
[ ----CaseIl ( 06) A
Mortar Prmor (t/M3) Mmor (GP)  Nort2pmor (GP) —_ L —-— CaseIll (  0.6) 7
1.4 11.08 29.56 Mﬁ-
4
Limestone Pag (/m3) Magg(GPa) Naggt 2agy(GPa) ‘5\
aggregate %6 24.38 65.00 E\xé;“ i
N’ —
Ingot iron Pagq (t/M°) Mage(GPA) Naggt 2 agq (GPA) 0
aggregate agg7,2 ag7.25 e 135!‘193 Qﬁ 4
| — e - .
dimensional aggregate and continuous mortar as shown in Fig. - T |
Changing the volume concentration of aggregates, a number T T T
profiles can be examined with this model. The Lacoaistants\ 0.6
and u of the concrete matrix are considered to vary as 0.0 0.5 1.0 1.5 20 25
£ a / "
A= (23)

(1+v)(1-2v) Fig. 4 Effect of concrete matrix on phase velocity versus fre-
E quency for P wave

e .

whereE andv are the YOUng,S modulus and Poisson’s ratio of thgnd Vagg and Vinor @r€ Poisson’s ratios of the aggregate and mortar.

concrete matrix. The composition dependent maximum Youngie composition dependent minimum Young’s modulus and Pois-
modulus and Poisson’s ratio of the concrete matrix are obtaingmn’s ratio are also given by
in accordance with the rule of mixture liK&], as

EmoEagd?
1 ; ! E=Eno(1-0)+ g, (29)
E=|g—+ > A (25)
mor  Emol1=£%)+ Eagd ol NM(L+ O+ (n+m—1)2(1— ) + vagdn+ m—1)3
U MM (M= 1) (14 O L1 )+ vagdn+m-1)2° 7T nm '
" [n+(m-—D)Zl[m—(m—1)Z] ' (30)
(26) where

where Eagg Eagg

=0t 22(1-0, m=(1-0+ 220 @Y

=+ S, me(1-+ 22, (27)
Emor ' Emor” Values ofE andv calculated with Eq925)—(28) are always larger
| than those calculated with Eq&9)—(31). It may be taken that
Vg™ 3, =—, (28) Eqgs.(25—-(28) give upper, and_ Eq$29)—(31) lower estimates of .
L the Young’s modulus and Poisson’s ratio of the concrete matrix.

andV,g is the volume concentration of aggregates in the mortﬁfter this, we use Eqsi29)—(31) to get the elastic properties of

Eagq@NdE o, are the Young's moduli of the aggregate and mortal! e concrete matrix. The density of the concrete matrix is given by

P=Pmol1— Vagg) + paggvagg- (32)
Figures 4 and 5 show the variations of the phase velocities
Rek,/Kp) and Rek;/Ky,) of the effective P and SV waves
with the frequencyaw/cg™ for Cases | {/ag=0.0), II, 1l (V,gq
=0.6), andc=0.3, wherek;*'= w/c;* andkg’'= w/cg are the
wave numbers of the P and SV waves in the mortar, e{ﬁﬁ
=[(Nmort 2:"'“mor)/Pmor:|1/2 andcgz];orz (#mor! Pmor) Y2 are the P and
(| SV wave speeds in the mortar. Up to approximataly/cg. "
=1.5, the variations of the phase velocities are not so remarkable.
1 L For higher frequencies, the discrepancies of the phase velocities
for Cases |, I, and Il appear as the frequency is increased in the
: \ 4 calculated range.
Figures 6 and 7 show the variations of the attenuations
Im(Ky/K3'™) and ImKg, /k3™) of the effective P and SV waves
y with the frequencyaw/cg™ for Cases | {/aq5=0.0), II, 1l (V,gq
=0.6), andc=0.3. It is found that the attenuations increase with
the frequency and reach the maximum values aroandc]”
’ =1.2—-1.6. The maximum value for Case | is higher than those for
Mortar Cases Il and lll. The abilities of damping are dependent on the
aggregates when the volume concentrations of fibers are equal in
Fig. 3 Micromechanical model of concrete matrix the concretes, because the aggregates change the wave speeds in

A
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Fig. 7 Effect of concrete matrix on attenuation versus fre-

Fig. 5 Effect of concrete matrix on phase velocity versus fre-
quency for SV wave

guency for SV wave

e@@ain the convergence in the effective in-plane shear moduli for

the concrete matrix and the chance of wave scattering by fibel's S
The characteristics of the attenuations that are most sensitivetqs static limit calculated from the present theory and the Eshelby

the microstructures may be the best to be utilized in determiniﬁ'g;;etthd[S] l(lf_:.g' (CZ).) f's go((j)d. Thus, thﬁ dynahmlc e.IaSt'C rr]noduh
the conditions of the fiber-reinforced concretes nondestructivel the steel-fiber-reinforced concretes have the unique characters.

Figures 8 and 9 show the variations of the effective in-planE"€S€ concretes can be used safely under the dynamic conditions
bulk k*=\*+x* and shearx* moduli with the frequency at higher frequencies calcu_lated. But it is desirable to be analyzed
mor _ o - carefully at lower frequencies for the safe use of the concretes.
aw/Cg,” for Cases | Vagg=0.0), Il, Ill (Vagy=0.6), andc=0.3. Figure 10 shows the variation of the phase velocitydR¥(K )

The changes of the elastic moduli are relatively small at lower, the effective P wave with the volume concentration of fiters

frequencies. For Case lll, the elastic moduli do not also tend 5 mor

change extensively at higher frequencies compared with CasdS"12¢/Cs, = 1.0 and Cases Magg=0.0), I, 1l (Vog4=0.6). The

and Il. However, after passing aroumd/cl=1.5, the elastic Ehase velocity decreases with the change in the aggregate at
—Q.O, because the elastic properties of the concrete matrix are

moduli for Cases | and Il are increased and exceed those for Calﬁered by the combination of constituents. The multiple scattering

lll dramatically as the frequency is increased. It should also % ect appeares as the volume concentration of fibers is increased
emphasized that the results of the effective in-plane bulk mwu'%like the previous case af=0.0, the phase velocity indicates

calculated from the present theory converge to those obtain | d with i . | . £ fib
from the Eshelby methofB] (Eq. (C1)) and the composite cylin- complex trend with increasing volume concentration of fibers.

- o . mor
der assemblagéCCA) model [5] (Eq. (C5)) as aw/c™®—0.0, Figure 11 shows the variation of the attenuation Kgrk;™).

U

[T T ] 60'0_""I""I""I""I""_
0.20F - L Ciroular fiber 1
[ ] - ¢=0.3 /f
Y 2 . 5 00 [ — szzl (Vigg=0.0) //
— 0.15 y \\ 7] [ —--— gase glg 82% ]
g o [ ] = [ |
= [ ) A - 1
MQ- 0.10 - '~ g 40.0 r— ]
g | | ] = - :
0.05f cos . 30.0L .
L Case I (Vy=00) i ]
- ----Casell ( 0.6) 4 [ ]

I —-— Case Il 0.6) 1
O'OO L Ll I L Ll L I Ll i L I L L I(I l L L I) I- 0.0 -I Ll1l I Ll_l L I Ll L l Ll Ll I Ll L I-

0.0 05 1.0 15 20 25 00 05 1.0 15 20 25
aw / ¢ aw / ¢

Fig. 6 Effect of concrete matrix on attenuation versus fre-
guency for P wave
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Fig. 8 Effect of concrete matrix on in-plane bulk modulus ver-

sus frequency
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Fig. 11 Effect of concrete matrix on attenuation versus con-
Fig. 9 Effect of concrete matrix on in-plane shear modulus centration for P wave

versus frequency

When c=0.0, no significant effect of the aggregates on attenua-

tion is found compared with the phase velocity. The attenuatiGRyiyidual world formed by one fiber which has relation with the
increases rapidly with the volume concentration of fibers at Ioy e world through the concrete matrix. And, the equivalence of
volume concentrations and then decreases slowly to zero as e two worlds is the essential principle to make the medium

volume concentration of fibers increases to one because of figst Therefore, for the existence of a certain phenomenon, i.e., a
multiple scattering effect. The maximum attenuation of the effegpytain coherent wave propagation, in the whole world, the indi-
tive P wave for Case | is higher than the other Cases. Thus thg 3| world must be equivalent to the whole world. On the con-
damping properties of waves in concretes can be controlled by gy the variety of individual world and the principle of equiva-
volume concentrations of fibers and aggregates. lence can materialize a variety of whole worlds and phenomena.
This method can shed some new light on the creation of the fiber-
4 Conclusions reinforced concretes with the desired complex microstructures on

The development of high performance concretes is importaf¥e one hand, and predict the nanoscopic, microscopic, mesos-
for the safe use of high-cost concrete structures. We have deVélP!C and macroscopic relations of the microstructures on the
oped the method that can analyze the physical properties of fibgfer hand. The effect of multiple scattering caused by the com-
reinforced concretes. In this method, the fiber-reinforced concrefédnation of fiber and small aggregate in the composite inclusion
which is also expressed by the effective medium, can be consf@h: for example, really vary the phase velocities, attenuations of
ered as the whole world formed by identical fibers through a coffie coherent waves in the fiber-reinforced concretes, and the ef-

crete matrix, while the composite inclusion can be regarded as #§&tive elastic moduli, and depend on the frequency. Fiber is the
most important constituent which causes the multiple wave scat-

tering in the fiber-reinforced concretes. It is effective to consider
the small aggregate, in support of the development of nanotech-
L i J nology, for changing the wave speed in the concrete matrix with-
1.20F C”CUI?nrmﬁber out the occurrence of wave scattering from the aggregate. Also,
aw/c"=1.0 the physical properties show relatively constant trends at lower
Case I (Vuge=0.0) frequencies, as similarly found in undamaged composite materials
s--=Casell (- 0.6) [1,2,4), in spite of complex changes of the microstructures. These
= = Caselll( 06 / results provide significant information to design the ideal fiber-
reinforced concretes that yield not only desirable strengths but
also performances that are often not available in nature. Thus the
present study can provide an appropriate methodology for such
analyses to be made.

™
1

Re(k"/K,)

PSRN S N T TR VAT S S T

Appendix A

The fundamental solutions of the effective medium have the
following forms:

A

0.60F "

0.0

C
2
Fig. 10 Effect of concrete matrix on phase velocity versus UZ,B(X&’): i (n* 5aﬁ_K*r of B)v (A1)
concentration for P wave 4p* w? o
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. i[[dy*  k* a whereE* andv* are the Young's modulus and Poisson’s ratio of
TapO= 711 g7~ 7| asgne T Nal the effective medium in the form
K* ar dx* ar N 2(1+vo)(1+v)uop
—2— | NEr =20 of g | =2 —— T o i E*= = ,
r\A @ Bon dr '« #on (1+vo)po(l—c)+(1+v)uc
Kg, |2 [dp* dx* «* *=p(1-c)+yC.
_[2_(Ks) J(Tﬁ‘?‘?)%”z, (A2) Voo
P Using the composite cylinder assembla@CA) model [5], we
where also obtain the effective in-plane bulk modukis in the form
1 K
* _ _ P c(ko—k)(k+
7" =Ho(Kl) ~ {Hl(Ks,,r) Ko H1<Kpr>], (A3) kr — g SRkt p) 5)
, Ko+ p—c(ko— )
K
K* = —Hy(Kg,)+ <_p) Ha(Kr). (A4) The generalized self consistent mof@] yields an expression for
Kso the effective in-plane shear modulus over the entire volume con-

In the aboves,; is the Kronecker delta, = Ix—y|, a/an* de- centration range. Their result is the quadratic equation
notes the directional differentiation along the unit outward normal N .

vectorn* to I', andH,() is thelth order Hankel function of the A('“_) +ZB(#—) 1C=0 (C6)
first kind. It is also necessary to expregs and «* by the static ’

and regular parts for sufficiently smadl,r andKg,r to cancel the

higher order singularities. The fundamental solutidhs; and where
T,z are defined by EqgA1)—(A4), but with thek,, kg, of the

i i t Mo Mo Mo
c?ncrete matrix, gnd the unit oytward norn;lal vet(noltJ B ?pd A=30(1—c)2(——1) 204 o+ =2+ 7o
T,z are also obtained by replacitg, , Kg, , n* by ky,, kg, , n"in H M
Egs.(A1)—(Ad). k,= w/c,, andky, = w/cg, are the wave numbers o , o o
of the P and SV waves in the fiber, aof=[(\o+2u0)/po]*? “\ L me me 7—1 - 777+1 ,
andct,=(uq/po)Y? are the P and SV wave speeds in the fiber,
respectively. 1
B:—sc(l—c)z(@—l) U PRl N R
Appendix B m s 2 ©
*p *pP * S *SU
Cxp, DXP, C: andD%S, in Egs.(11) and(12) are » @_1)(@ 7/0) o[k, 770)03
2 M
CHP(X)= —2—X X (B1)
ap x 27a"B1 c Mo Mo Mo
4p" w + = (p+ )| —=1||—+ o+ | —n—no |3
2 5 (n+1) M mot| M|
|
ChE (0= (Bup=XaRp), (82)
P apre? TP TF czsc(l—c)z(@—l)(@+no)
D*P (%) Lol 2(K")25 2 KP)ZA X B3 . ’
X)= =X —2|— +2| ] XgX,(,
apy 47 Ko/ | A7 “\Kg,) A7 (B3) T L R P %erﬂr %n—no>c3,
.1 - N A aa
D} 3(X) = 7 (PapXyt BuyXg— 2X XX, (B4) =34y,
Appendix C M0=3—4vq.
Using the Eshelby method, we obtain the effective in-plane
bulk modulusk* and shear modulug* as[8] References
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The theoretical foundation of Youngdahl's correlation parameters, which have been used

Norman Jones1 to eliminate pulsg shapt_a eff_ects in the dynamic plas_,tic response of two-dimens_ional struc-
tural members, is studied in the present paper with the aid of bounds obtained for a
rigid-plastic material. It is shown that Youngdahl's empirical estimate for the structural
response time is, in general, a lower bound on the actual response time. A lower bound
expression is obtained for the maximum final displacement of a two-dimensional struc-
tural member when subjected to an axisymmetrically loaded transverse time-dependent
pulse, which depends only on Youngdahl's correlation parameters, and offers a theoretical
foundation for the validity of Youngdahl's correlation parameter method.
[DOI: 10.1115/1.1839183

Impact Research Centre,
Department of Engineering (Mechanical),
University of Liverpool,
Liverpool L69 3GH, UK

1 Introduction Youngdahl's correlation parameters have been widely used as
. . e effective loading parameters to eliminate the pulse shape effects in

in both aboratory and pracical condiions, and. therefore, 1 [1¢ YMIIc plasic response of SIUCt@S. This method vias
necessary to undyerstanz the importance o% Ioad'in sha e’eff rpsoosed originally for the plastic bending response of several
y P 9 P ctural members. Later studies have shown that Youngdahl's

on the response of structures under various pulse loads. Symo . ) h
[1] proposed that the peak load and loading impulse could be us%é elation parameter method is valid when transverse shear force

to represent an impact or blast loading pulse. Abrahamson dpgys an important rolg9—11] and when the interaction between

. v . tructure and the damping medium ex[st8].
Lindberg [2]_used the peak load and loading impulse to deflne%Although Youngdahl's correlation parameter method has been
critical loading curve for structural failure. A similar method

ﬁd successfully for many cases, there is no general theoretical

known as the pressure-impulse diagram, or P-I diagram, has bé? ; d > .
: : . : ' . ' undation to support this empiricall roposed correlation
used in protective construction design to resist blast loafhg ethod. In the prgspent paper bcg)unds )\:villpbep used to provide a

When the applied loading intensity is much larger than the load : - i , :
cause yielding, the peak load and loading impulse could be con-e}giﬁgf:rl :T?gt?]%%t'on for the validity of Youngdaht's correlation

sidered as two representative parameters for a pulse loadiRg'
However, this simplification, otherwise, may introduce a large er-
ror, as shown by Hodggt].

Two correlation parameters have been proposed by Youngdahl
[5,6] to eliminate pulse shape effects on the dynamic plastic r8- Bounds and Basic Principles

sponse of two-dimensional structural members, i.e., An upper bound on the final displacement, a lower bound on
4 t_he str_uctural response time and a lower bound on t_he maximum
|e:f P(t)dt 1) final displacement have been developed for dynamically loaded,
t rigid-plastic continua. These theorems can be used to estimate the
overall response characteristics of dynamically loaded, two-
and dimensional structural members, such as beams, circular plates
and cylindrical shells.
le The bounds are obtained using the principle of virtual veloci-
) ties, d’Alembert’s principle and Drucker’s postulate for material
stability. Martin [13,14] obtained an upper bound on the final
wheret, is the time when the structural plastic response stgrts, displacement and a lower bound on the structural response time
is the time when the structural response ceases, and for impulsively loaded, rigid-plastic continua, which were ex-
tended in15] to the cases when a time-dependent surface traction
1 (4 is considered. Referen¢é6] extended these bounds to cater for
tmean:rf (t—ty)P()dt. (3) large deformation effects.
eIl A lower bound on the maximum final displacement of a rigid-

y

Pe=

_2tmean’

plastic continuum was obtained 7] for the impulsive loading
*To whom correspondence should be addressed. case, and clarified ifi18,19. This lower bound theorem was ex-

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF : : ; _ :
MECHANICAL ENGINEERSfor publication in the ASME OURNAL OF APPLIED ME- tended in[20] to include time dependent surface tractions, and

CHANICS. Manuscript received by the Applied Mechanics Division, February 13Vas inV?Stigated ifi21] to give a more concise and less restrictive
2001; final revision, August 10, 2004. Associate Editor: B. M. Moran. Discussion d@Xpression.
the paper should be addressed to the Editor, Prof. Robert M. McMeeking, Journal ofGood agreements between these upper and lower bounds, the

Applied Mechanics, Department of Mechanical and Environmental Engineerin : ; ; _
University of California—Santa Barbara, Santa Barbara, CA 93106-5070, and will %Ode approximatiofi22] and exact solutions on the central de

accepted until four months after final publication in the paper itself in the AsmEECtion of a simply—supporte_d rigid-plastic beam were obtained in
JOURNAL OF APPLIED MECHANICS. [20]. Referencg23] also reviewed the development of the bound
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methods and discussed their accuracy for estimating the bendimg;ere,QjC is associated witly through Drucker’s postulate of
response of dynamically loaded, rigid, perfectly plastic structurglaterial stabilityu¢ is any postulated time-independent kinemati-

elements. ) _ cally admissible velocity field, and therefore, the corresponding
Bound theorems were used [i] to estimate the maximum | ntitiesq® and Q° are also time-independent

flngl dlsplacements of simply supported beams, circular plates a%qitegratirjmg Eq.(110) from timet=0, when plastic deformations

cylindrical shells when transverse shear effects are importapf '

These provided excellent estimates of the response duration an:(ift’ to the time=t;, when plastic deformations cease, gives

maximum final displacements of rigid, perfectly plastic theoretical ac be 0-c
analyses for impulsively loaded structural members. Similar con- lfuydL+ [ IjuydS+ | prju;dS
clusions were supported by works on fully clamped beams, circu- t=>tr = S S (11)
g =L
lar plates and cylindrical shel[®-11]. ¢ o .
Generalized stresses and strains, which have been defined in D(Qj,uj)— SfJ“J ds

many textbookse.g.,[24]), are used in the following analyses for
two-dimensional structural members, such as beams, plates énevhich

shells.Q; andq; (j=1, ... ) in the present paper represent gen-

eralized stresses and strains, anéndv; (j=1, ... m) are gen- D(QS,u)= f Q%qcds,
eralized displacements and velocities. If a virtual velocity field, el s 3

u]C is defined by a set of kinematically admissible velocities, and
q; are the associated components of the strain rate field, then the |3 ftfc_ dt  and 1P= J'pr_ dt
rate of the total internal energy dissipation for the given virtual ) J ! J
velocity field uf is

0 0

are the total energy dissipation rate of the postulated virtual ve-
) ) locity field, the total external impulse on the bounddryand the
C\ — C
D(Qj '”j)_ J;quj ds, (4) total external impulse in the interior are& of the two-
_ - _ dimensional structural memberespectivelys! is the initial ve-
and the corresponding total external energy dissipation rate is |ocity field of the structural member.
] An alternative way of obtaining a lower bound on the structural
E(uf)= J cjuf dL+ f (Fj—mrpuids, (5) response time is to consider the rate of work done by a set of
L S statically admissible loading4.3,21],° cjs, Fjs: PJ-S+fJ- and their
whereL is the boundary surrounding the argec; are the gener- corresponding generalized stres@?, on the postulated virtual
alized forces at the boundaty which are work conjugate to the velocity field, ujc. Equation(7) may then be written as
generalized displacements. F; are the external pressure loads
acting on the area, which may include the gravitational farge SUC L+ S/\C e S C
whereg is the acceleration of gravityy=pH, H is the structural cjuy dL SFJUJ ds SQJqJ ds (12)
thickness, ang is the material density.

The principle of virtual velocity requires that in which, [ch and qf as well as their associated generalized
D(Q. u?):E(UF) ©) stresses;QjC , are time—indgpendent. Now, consider the s}ress state
[Rh! i/ as the statically admissible loads approach the static collapse
which leads to forces @:j‘ and Fj*) for the postulated virtual deformation mode.
In regions wherg|qf|>0, im(Q})=Qf,c;—c} ,Fj—F] ; here,
fLCjchdLJr L(Fj—#i/j)deSZ LqujcdS (7) || | denotes the natural norm of the tensor, E®) gives
If Eq. (7) is satisfied, the generalized stress figl,, on S, the fcr chdL+ f F}*deSz f qufds (13)
surface tractionsg;, on L, and the external forces and inertia L s s

forces,F;— wv;, onS are in equilibrium. Drucker’s postulate for . . . .
i i
material stability may be expressed in the form of generalizef"ich: when using Eqg9) and(10), leads to the inequality

stresses and straif25]. ) ] ) )
e fcj*ude+fPfude?fcjudeJrijujcdS
(Q;—Qj)4;=0, (8) L s L s
where,QJ* is any state of generalized stresses satisf;dar@@]*) e
<0 with $=0 as the loading surface functiog; is the general- = | myuyds (14)
ized strain rate field corresponding to the generalized stress field, S
Q;, in a stable material defined by Drucker’s postulate. ean* =fj . Integrating Eq(14) from t=0 tot=t; gives

f h
In the following analyses, the external surface pressure load Is
divided into two parts

JI?UdeL-f—jI})UJCdS-f—jMV?UJCdS
F]:P]+fjl (9) L S S
tf2t?:

wheref; is a time-independent field force, such as gravity, Bnd cFiucdL+ | Prucds
is a time-dependent external pressure pulse acting on a structural ] 1
member.

., (19)

which is identical to Eq.(11) because the assumed time-
independent velocity field)®, and the associated static collapse

) ) . ] forces,c}* and FJ* , have the same stress field in the region where
By using Eq.(8), Eg. (7) with Q;=Qj , may be written as, 1§¢11>0 [21], so that Eq(13) becomes

3 Lower Bound on Response Time

f le-.llp dL+ J' (Fj—,bbi/j)l.ljcd5= f Q]* qdeS f Qjch'CdS, 2For short intensive pulse loading, the structural response timeis usually
L S S S longer than the loading time.
(10) SWe treat all problems in the same gravity field, therefdfec,fj .
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or
fCTdeL+jPj*l-.l}:dSZD(Q}:,l-.ljc)*fij}:dS. -
L S s « leTlo
t=ty = , (220)
Usually, the gravitational force can be neglected when com- Py
pared with the impact loading, so that Efj1) or Eq.(15) may be where,l,= v, andu, is a uniformly distributed initial transverse
written as velocity. Equation(22b) with 1,=0, is the same as Eq18),
which is Youngdahl's estimate for the final response time.
f 1207 dL+ f 1PUS d S+ f wrlusds When the distribution of the pressure pulse is dependent on the
N S (16) spatial coordinatex, the I0\_Ner bound on the response time will be
= D(QF,Uf) : influenced by the selectesl® field.

From investigations on the bending response of structural ele-

ments, YoungdaHhl5] suggested that the structural response durd- |ower Bound on Maximum Final Displacement
tion may be approximated by

[e~Py(ti—ty), a7)

Integrating Eq(10) fromt=0 tot=t} leads to
. tr .

in which | is the impulse associated with the pressure loading f ( f fcjujcdt dL+f f ! Pjujcdt)ds

P(t), as defined by Eq(l); t, is the time when the structural L\Jo S\ /0

plastic response staftsind P, is the static plastic bending col- " o
lapse load. It is well known that this approximation, although —f(ffm,jujcdt)d%f ( f fQJ.quCdt)ds (23)
proposed empirically, often predicts response times which agree s\ Jo s\ Jo
with the exact analytical predictions for structural bending e lecting th itational ford d wh * s d
sponses. Analytical results for beams, circular plates and cyIindW— er'1 negiecting the g'rav'l ational forde, E.ir! ) wherefy Is de-
cal shells[9—11] have shown that this approximation is still ap-€'mined by the equality in Eq16). Now, uj is assumed to be
plicable when transverse shear effects are considered. Theref§f8€ dependent with the form
P, may be understood in general as a static plastic collapse load. c_1|c

yNow, Eq.(17) is rewritten as U=V (), (24)

| where, the modejc(xk) is time independent and satisfies the
e

ti~— (18) kinematic boundary conditions; is a coordinate, and(t) is a
Py time-dependent amplitude. For infinitesimal deformations, the
whent, =0, and we shall prove that/P, is also a lower bound generalized strain rate fieldji and dissipation function,
on the response time. D(Qf,uf), are also separable, i.e.,
The response time from E@L5) satisfies e e
a;=T(DE; (259)
b 0y: . .
L“j T uy; )ch ds WhereEjC is associated witﬂujc, and
>t* = . .
=t (19) D(QS, ) =D(UH (1), (250)
PJ- uj ds . )
s in which,
when the virtual velocity fielduf, onL vanishes. ey crc
For the dynamic plastic response of structural members, such as D)= SQJ' Ej ds (26)

beams, circular plates, and cylindrical shells, when subjected to an )
axisymmetrically and uniformly distributed pressure pulse loadirfgirthermore T(t) is assumed to take the form
together with an initial velocity, the two-dimensional integration

in Eq. (19 may be reduced to a one-dimensional integration, i.e., T()=1— t for O<t<t}
T
f
fhl-VCdX and
X
*
t=tf _f " (20) T(t)=0, for t>tF. 27)
Pyw®dx
< Now, Eq.(23) may be expressed as

where,x should be replaced by for circular plates, andl is the ) .

total impulse of the external pressure force together with the ini-J I(tH)HufdL+ J If(t?)ude—J
tial momentum of the structural elemei, is the static collapse -t S L
loading for the assumed virtual transverse velocity figlfl,

Ti(tF)ue
It

f

P (t})US : 1 :
Therefore, _j—l f Jds+jMvQU-°dS——j,uuj(t?)U-CdS
t* S 1= t* S J
| S f f
y sED(Uf)t? (28)

becauseP, andl are independent of spatial coordinate,
Equation (21) may be considered as a theoretical basis f

9h which, v;=0;, vY=v|o, and
Youngdahl's approximation. Furthermore, E@1) suggests that i=Uis 1= Vil=o

Youngdahl’'s approximation may be written as t
g PP y 1%(t) = f ¢(tydt, (2%)

I =1t 1o=Pytf (222) 0

t
“without losing generalityt, is assumed to be zero in this paper, which means |Jb(t) = f P;(t)dt, (2%)

that response time is measured from the start of plastic deformation. 0
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— ‘ where, || 5]l =max{|u; (% t)l.xce S}, [l 8l =max{luj(x.t)ll.xce S,
cj(t)=f tc;(t)dt 2% and J ' e
0
and G(U§ t7 ,t;)=right side of Eq.(31). (33)
o t If the components onC are taken as zero except within a
Pi(t)= f tP;(t)dt. (29d)  particular region, the lower bound on the maximum final displace-
0 ment withinSis obtained from Eq(32).

Equation(28) may be rewritten as
5 Elimination of Pulse Shape Effects on Lower Bound

f,uuj(t?)UjC dSZt?( f 1%( ?)deLJr J I}’(t?)deS For structural elements, such as beams, circular plates, and cy-
S L S lindrical shells when subjected to an axisymmetric transverse dy-
namic loading, the lower bound on the maximum final transverse

" J' ,quU-Cdef c,—(t?)UdeL displacement discussed in Sec. 4 may be simplified as
ST o
— : : [ — fz Ibt*)wcdx—f 1°(t )we dx
_f PV o DD 2fxy,u\)v°dx( ZrH S
* 2 .
s . YR W
Generally speaking, the assumed time-dependent velocity fields + x“/,uVW dx—2 xt—*dx 34)
’ f

in Eq. (16) may differ fromU§(x,) in Eq. (24), which means that L _ _ o _
t* may be determined from another postulated time-independdftere W is the kinematically admissible transverse velocity,
velocity field. It was suggested if21,23 that the same time- Where

independent velocity field is used to determitfe. Therefore, y=b for beams
from Eq. (16), Eq. (30) may be expressed in the form _ (35)
y=2mx for circular plates

1 *\1C artk [ bikyric and

- | U (tHUFAS= | 177 UFdL+ | 17(tF)UTdS

tf Js t S y=2mR for cylindrical shells

1 . ?j(t?)UjC in which b is the width of a beam anB is the mean radius of a
+ 2 M Ujds— L—*dl- thin cylindrical shell.
f

It was shown in Sec. 3 that Youngdahl's suggestiéh t}
Ej(t?)U-C 1 . ~1¢, is based on a lower bound of the structural response time. In
—f—JdS—EJ 1(t)UfdL this case,|’(t¥)~1°(t;) and P(tf)~P(t;), and therefore, Eq.
S (34) reduces to

1 .
_ b c t i .
2 Llj(tf)uj ds, (31) wi=—" jylb(tf)wcdx+jy,uv°w°dx
2  ypwedx |\ Jx x

tf

which is slightly different from the results obtained [ig1,23] YR
which ignore the difference betweeh andt; . _zjmdx), (36)
It is necessary to chooaazjC in Eq. (31) in order to obtain the x

maximum lower bound of the final displacement. This is an ex- b o . . .
treme value problem of functions. It was found[i23] that the Wwherel®, P are given by Eqs(.29b)ban_d(29d), fﬁmdtf Is estimated
accuracy of the bounds depends on the difference between {0 E.(22b). Whent, =0, thenl®, P andt; in Eq.(36) can be
stresses associated with assumed velocity fields and the acfidressed as functions bf and P, defined by YoungdaH5,6],
stress distribution in a continuum. which have the following form

Furthermore, we should determine which quantity is in fact t
being bounded. Referenc¢20,21,23 treated the three compo- Ie=f
nents of Uj separately by using U3,0,0), (0U3,0), and
(0,0U3). From Eq.(31) and the above assumed form@f, we and
can obtain the lower bounds for each maximum component, but |2
they are not the lower bounds for each component of the maxi- - e
mum final displacement in a medium. In fact, the existing method zfgtp(t)dt
limits the application range of the lower bound theorem. An alter- ) .
native procedure is used here to obtain a lower bound for tR&cording to Egs(1)—(3). Therefore, a lower bound for the final
maximum final displacement at a point or small region in a coleflection at a selected location depends only anP., and the
tinuum. If the direction of the maximum final displacement and ildistribution of the initial velocity flelo_l as well as the selected
location are known, the direction @(jc at this point may be cho- kinematically admissible velocity fieldy®, which offers a theo-

sen to be the same as the direction of the maximum final displaégt-icaI f_oundation of Youngdahl's empirical suggestions that_tw_o
ment. Now, by using the mean value theorem for an integral rrelation parameters can represent a general uniformally distrib-

'P()dt (37)
0

(370)

Pe

. uted pulse pressure loading.
(31) predicts I the initil velocity field 18 also uniformly distributed, £636)
t?G(U-C 1) can be further simplified into
IsfI=ll5l1= : , (32) S
f,u“Uﬂ\dS wi= {10t +1 _ 2Pty
s 2p ROy )
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or U,—C = kinematically admissible velocity field

12 12p vy = initial transverse velocity of the structural
f>( etlo) _ ey (38) member
2uPy Pe(lot19)2 v; = generalized velocity
When there is no initial velocity distribution, i.d4=0, then Eq. WVY i ;irr?glst\g:]ssevgzzl?jicseTa?cnetment
(38) can be expressed in the following form B L SP S
X = longitudinal coordinate for beams and cylindri-
wi=12G(P,) (39) cal shells or radial coordinate for circular
. . lates
The equality of Eq.(39) has been observed in many cases = EH
[5,6,8,9-12,24 A recent study based on an elastic-plastic SDOF p = density
model also shows the validity of this general dependence of the
final deflection on the two correlation parametégsand P [26]. Superscript

6 Conclusions

Youngdahl’s correlation parameter method for eliminating the S

¢ = kinematically admissible

statically admissible
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A Second Look at the
Higher-Order Theory for Periodic
Multiphase Materials

In this communication, we present a reformulation, based on the local/global stiffness
matrix approach, of the recently developed higher-order theory for periodic multiphase
materials, Aboudi et al. [“Linear Thermoelastic Higher-Order Theory for Periodic Mul-
tiphase Materials,” J. Appl. Mech68(5), pp. 697707]. This reformulation reveals that

the higher-order theory employs an approximate, and standard, elasticity approach to the

YOQESh Bansal solution of the unit cell problem of periodic multiphase materials based on direct volume-
. 1 averaging of the local field equations and satisfaction of the local continuity conditions in
Mare"'JGrZV Pmdera a surface-averge sense. This contrasts with the original formulation in which different
e-mail: mp3g@Virginia.edu moments of the local equilibrium equations were employed, suggesting that the theory is
S a variant of a micropolar, continuum-based model. The reformulation simplifies the deri-
Civil Enginegring Department, vation of the global system of equations governing the unit cell response, whose size is
University of Virginia, substantially reduced through elimination of redundant continuity equations employed in
Charlottesville, VA 22904-4742 the original formulation, allowing one to test the theory's predictive capability in most

demanding situations. Herein, we do so by estimating the elastic moduli of periodic
composites characterized by repeating unit cells obtained by rotation of an infinite square
fiber array through an angle about the fiber axis. Such unit cells possess no planes of
material symmetry in the rotated coordinate system, and may contain a few or many
fibers, depending on the rotation angle, which the reformulated theory can easily accom-
modate. The excellent agreement with the corresponding results obtained from the stan-
dard transformation equations confirms the new model’s previously untested predictive
capability for a class of periodic composites characterized by nonstandard, multi-
inclusion repeating unit cells lacking planes of material symmetry. Comparison of the
effective moduli and local stress fields with the corresponding results obtained from the
original Generalized Method of Cells, which the higher-order theory supersedes, confirms
the need for this new model, and dramatically highlights the original model’s shortcom-
ings for a certain class of unidirectional composit¢®OI: 10.1115/1.1831294

1 Introduction cally applied normalsheay stresses and the resulting microscopic

shear(norma) stresses. This shear coupling is a natural conse-
ence of the second-order displacement field approximation
ithin the unit cell's subvolumes employed in the construction of

. \ i ; he higher-order theory, and dramatically improves the accuracy

Aboudi et al.[1-3]. The model's analytical framework is base of estimating the local stress fields relative to GMC. In light of the

on the homogenization theory for periodic materialsf. PP : ; : ot : .
. similarities involving unit cell discretization and satisfaction of
Kalamkarov and Kolpakof4]), but the method of solution for the 9
H

The higher-order theory for periodic multiphase materials is
recently developed micromechanics model for the response
multiphase materials with arbitrary periodic microstructure

) . L . .~ the field and continuity equations employed in both models, the
local displacement and stress fields within the repeating unit ¢ y & ploy

o > S I bher-order theory recently has been renamed the High-Fidelity
characterizing the material's periodic microstructure utilizes COsaneralized Method of Cells or HEGMC.

cepts prgviously employed in.constructing the higher-order theoryyrgmc’s capability of accurately capturing local stress and
for functionally graded materials"GMs) [5]. The use of the ad- jnelastic strain fields has been demonstrated for simple periodic

jectivehigher-orderin the model's name refers to the higher-ordepcrostructures characterized by orthogonal planes of material
displacement field representation within the subvolumes of t@?mmetry through exact analytical and numerical solutfdnsg].
unit cell’s discretized microstructure relative to that used in thg addition, limited data has been generated for unidirectional
Generalized Method of Celi&GMC) micromechanics model, Pa- composites with locally irregular microstructuré@indera et al.
ley and Aboudi[6], which the new model supersedes. The linegr]). It is for such composites that the power of this new high-
displacement field approximation employed in the construction gflelity model becomes evident due to the importance of shear
GMC, together with the manner of satisfying the local equilibriungoupling in the presence of locally irregular microstructures as
and continuity conditions, results in the absence of so-called sheinonstrated by the above study, further highlighting the differ-
coupling which provides the required bridge between macroscophces between the two models’ predictive capabilities.
In the original formulation of HFGMC, a two-level discretiza-
*To whom correspondence should be addressed. tion of the repeating unit cell's microstructure was employed, in-
Contributed by the Applied Mechanics Division ofiff AMERICAN SOCIETY OF - yiolying division into generic cells that were further subdivided
MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIEDME- . . I . . .
CHANICS. Manuscript received by the Applied Mechanics Division, March 18, 2003‘,nto four subcells in the case of perIOdIC materials with continuous
final revision, July 26, 2004. Associate Editor: D. Kouris. Discussion on the papgginforcement along a common directi¢fig. 1). This two-level
should be addressed to the Editor, Prof. Robert M. McMeeking, Journal of Appligfiscretization process unnecessar"y comp"cated the satisfaction

Mechanics, Department of Mechanical and Environmental Engineering, Universj ik : ETRENISE T _
of California—Santa Barbara, Santa Barbara, CA 93106-5070, and will be accep@fdthe stress eqUIllbI’Ium equations within individual subcells, ac

until four months after final publication i the paper itself in the ASMEianaL oF  cOMPlished in a circuitous manner by satisfying the different mo-
APPLIED MECHANICS. ments of the local equilibrium equations in a volumetric sense.
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B___z ,Y:2 mulate the theoretical framework of HFGMC using the local/
> global stiffness matrix approach originally proposed by Byfédr

for the elastic analysis of isotropic layered media, and extended

=1 :2 by Pinderg 9] to layered anisotropic composites. The reformula-
B ’ 'Y tion is based on the construction of a local stiffness matrix relating

: the surface-averaged displacements to the corresponding surface-

: : averaged tractions of the subcell, with the surface-averaged dis-
el(r) dz(r) placements becoming the fundamental unknown quantities. This
construction also highlights the often unrecognized difference be-

tween HFGMC and a finite-element approach to the solution of
the corresponding unit cell problem. Subsequent assembly of the

B=2, y=1
B=1, y=1

Fig. 1 Agenericcell (g,r) with four subcells (8,y) employed in
the two-level discretization of the unit cell in the original

higher-order theory for multiphase periodic materials, pres- individual stiffness matrices into the global stiffness matrix, which
ently known as HFGMC. Adapted from Fig. 2 in Aboudi et al. governs the response of the entire unit cell, eliminates redundant
[1]. subcell continuity equations, thereby producing a significant re-

duction in the overall system of equations relative to the original
formulation. The same approach had been employed by Bansal
These manipulations, in turn, suggested that the higher-or SanFlgR/ldserélO] in reformulating the original higher-order theory
theory is a variant of a micropolar, micromechanics-based CON-r, 0" ot rmulation of HEGMC makes it possible to efficiently
tmufum theory, V(\j’ht'Ch t'IS not tthe .;:ase. J.?.e saélstfactlon gf tr]ﬁ\ﬁstigate the response of highly discretized unit cells which
sur ac_e-aV(TIrage ralc lon conl!nutl ydcgn tlhlonts elwetlen a_tjac ic realistic material microstructures. This, in turn, facilitates
g_enentt_: ctg S was also complicated by the two-level uni ce{ sting of the method’s predictive capability in most demanding
Iscretization. Eettings. The second objective, therefore, addresses this issue. In

The objective of the present communication is twofold. Firs articular, given the past experience, it is expected that the intrin-

we demonstrate thqt the underly[ng framework Of.HFGMC I shear-coupling feature of HFGMC will play a key role in
based on an approximate, and quite standard, elasticity approgg

involvina direct vol . f th beell st i ectly capturing the elastic moduli of unidirectional composites
Involving diréct volume-averaging ot the Subcell SWess equilie, ;4 cterized by unit cells that lack orthogonal planes of material
rium equations in conjunction with the imposition of displaceme

. S I ; mmetry. This may occur due to the rotation of a regular array of
and traction continuity condmons in-a surfaqe-average_ SENSGntinuous fibers about the fiber axis, rather than locally irregular
across adjace_nt subcell face_s. Th_|s IS acco_mpllshed by first si Ibeit periodi¢ microstructures that had been previously investi-
plifying the unit cell volume discretization using solely subcells a ated without comparison to a known stand&id Therefore
the fundamental building blocks of a periodic material's micro '

tructure(Eia. 2. This simplificati kes it ible to ref HFGMC is employed herein to determine the effective moduli and
structure(Fig. 2). This simplification makes it possible to re O |ocal stress fields in unidirectional composites characterized by a

repeating unit cell with a square fiber array loaded by average
stresses that do not coincide with the orthogonal planes of mate-
ﬂ rial symmetry due to the above-mentioned rotation. The unit cell
® ﬂ for a particular rotation angle typically may contain a large num-
'\ ‘ﬁ) ber of fibers(in contrast with just one for the square array in the
principal material coordinate systenwhich makes the reformu-
lated HFGMC particularly well suited due to large number
of rectangular subcells required to model realistic geometric
details(such as circular fibers, for instanc&he considered unit
cell discretizations cannot be readily handled using the original
formulation.
’@) The predictions of the reformulated HFGMC model for the
elastic moduli of two types of unidirectional composites as a func-
Q/ tion of the rotation angle are compared with the results obtained
from the transformation equations for an orthotropic material ro-
tated by an angle about the fiber axis. Such rotation produces an
elastic stiffness or compliance matrix that represents a monoclinic
material with just one plane of material symmettiye plane per-
pendicular to the fiber axisn the rotated coordinate system. This
provides a critical test on the self-consistency of the newly devel-
oped HFGMC model previously untested in this manner. To the
authors’ knowledge, such test has not been attempted previously

g T using other micromechanics models. The two types of unidirec-
L"‘” tional composites contain the same fiber volume fraction but radi-
2|y cally different fiber/matrix moduli ratios representative of a glass/

subcell (B.1) l epoxy system and a porous aluminum matrix. Comparison with
the corresponding GMC predictions are also provided to further

~-— hg —= justify the development of the new model by highlighting the
original model’s limitations for certain classes of composites.

Y, 2 Theoretical Framework

The theoretical framework of the original version of HFGMC
Fig. 2 (a) A continuously reinforced multiphase composite has been described in detail by Aboudi et[a}-3], and thus only
with a periodic microstructure in the  x,—x5 plane constructed a brief synthesis will be provided herein in order to make it pos-
with repeating unit cells.  (b) Discretization of the repeating unit sible to follow the efficient reformulation’s derivation. The high-
cell into subcells employed in the reformulation of HFGMC. fidelity model combines concepts from the homogenization theory

(b) a
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and the higher-order theory for functionally graded materials. Thiee unit cell along the locay, andy; axes, identify the(3,y)
homogenization theory is employed to construct the correct forsubcell in they,—y; plane. The subcell dimensions along the
of the displacement field representation in the discretized domaimsdy; axes areng andl,, respectively, such that

of the repeating unit cell which represents the periodic material’s N N

microstructure; to identify the governing field equations for the H= j h. and L*j |

local problem of the repeating unit cell; and to construct appro- _B:1 B _yzl Y

priate boundary conditions. The construction of the displacement

7y

field is based on a two-scale expansion of the form whereH andL are the overall unit cell dimensions along these
axes.
Ui(Y) = Ui (X,y) + Ui (X,Y) + 82Uz (X,y) ++ - @ Following the displacement field representation within the unit

wherex=(x;,X,,X3) are the global or macroscopic coordinatesSell of a periodic material given by E4), the displacement field
y=(Y1.,Y2,y3) are the local or microscopic coordinates defineh €ach(s,y) subcell is written as follows:
with respect to the repeating unit cell, and the different order Y =g x +u! BV )
terms characterized by the powers&drey-periodic. The size of : RN
the unit cell characterized by the paramefas small relative to Given the continuous reinforcement along theaxis, the fluctu-
the overall material dimensions such that=x;/5. Thus a unit ating components; *"?) of the displacement field that arise due
displacement at the local scale corresponds to a displacement®the heterogeneity of the medium are functions of the local
order 6 on the global scale. , _ coordinatesY$? ,y{") attached to the subcell's cenféig. 2(b)].

The above displacement field representation, together with thgage fluctuating components are approximated in &@Gh)
relationy; =x; /8 between the two spatial scales, leads to the f%‘ubcell by the same second-order, Legendre-type polynomial ex-

lowing strain field decomposition for periodic materials given ifhansjon in the local coordinates as that employed in the original
terms of the average and fluctuating straégx) and €/;(x,y),  formulation

respectively:
ui/(ﬁvy) — VVf(%’g)) +y;ﬂ)wfﬁ(%)+y(37)vv§ﬁ),l);)

€ij= €;j(x) + € (X,y)+0(d) (2 5 5
The average and fluctuatingpcal) straiﬂs are derived from the +1 372&2_ %)V\/i(fz'oy)hr 1 39(3«/)2_ ll) W%g)
corresponding displacement componemtsindu; , as 2 4 2 4
— 1(du; du; ) 1(aul ouf ©)
&j(X)=5 3_)(j+ x| €i(xy)=3 (;_ijr E 3 wherei=1, 2, 3 andw((;”) are the unknown microvariables as-

. . . . sociated with each subcell. Using the above fluctuating field rep-
The above strain decomposition makes it possible to express fA€antation in the strain—displacement relations

displacement field in the form
1 ( aui’(ﬁﬁ’) auj’(ﬁv)’))

ui(X,y) = €;X;+u +0(5?) 4 BV g + = +
_ . . . . ! o2l gyt ay’)
wheree;; are the known or applied macroscopic strains. This form i i
is employed in constructing an approximate displacement field ftite strain components in ea¢j,y) subcell are obtained in the

™

the solution of the cell problem. form

For specified values of the average stra&_ns the fluctuating By —
displacements;;, must satisfy: the local stress equilibrium equa- €117 T €n
tions within the individual subvolumes into which the repeatin By _— (B.7) 1 aTUBNA(BY)
unit cell is discretized in a manner that mimics the actuaFI) micrg- €22 = €22t Wain +3Y2" Wac
structure of the periodic multiphase material; the traction and dis- B =egqt \N%%IHSV%”W%Q
placement continuity conditions between the individual subvol- ( ( (8)
umes; and the periodic boundary conditions prescribed at the _ 1
boundaries of thg repeating unit r<):/ell. The squtFi)on methodology ey =€t 5[\’\’(1?'1643?23)\’\/(1’?%))]
for the chosen approximation af , which follows the higher-
order theory for FGMs, is based on volume-averaging of the local By_— 1 W) 4 avIIWEY
stress equilibrium equations in the individual subvolumes, and €13 _613+§[ 160+ 3ys" Wiep ]

surface-averaging of the traction and displacement continuity con-
ditions at the interfaces separating the individual subvolumes, as 4 ,
well as the periodic boundary conditions. Herein, this is carried €23
out efficiently using the local/global stiffness matrix approach de-

1
_ ,Y) { ,Y) ,Y) ,Y)
) ="epat > [Wish) + 3y5 Wikl + Wiy + 3y Wiyt ]

scribed next. The subcell stress components are then expressed in terms of the
unknown microvariablesV{f:?) and the applied macroscopic
3 Efficient Reformulation of the Cell Problem strainse;; using the above relations in the Hooke's law
The local analysis is performed on the repeating unit cell rep- crfjﬁ'Y):Ci(ﬁ*ﬂ)eff'” (9)

resentative of a periodic material’s microstructure in ie-x; . ) . )

plane[Fig. 2(a)], with continuous reinforcement along the axis. For or.thotroplc sqbcells cqns@ered herein, the stlﬁqess ten§or
The periodic microstructure is made up of any number of phas6¥”” is characterized by nine independent elements in the prin-
arbitrarily distributed within the unit cell so as to produce fullycipal material coordinate system formed by the intersections of
anisotropic behavior in the,—x; plane. The unit cell is appropri- three orthogonal planes of material symmetry coincident with the
ately discretized into subcells, designated Byy), so as to mimic subcell faces.

the material’'s periodic microstructure, as shown in Figh) Zor In the original formulation, the unknown microvariabmé(ﬁm”n))

the unit cell highlighted in Fig. @. In this case, 108100 were determined by satisfying different moments of the local
equally dimensioned subcells were used to capture the three reitress equilibrium equations in a volumetric sense, and the dis-
forcement shapes with sufficient fidelity, noting that such refinglacement and traction continuity conditions between subcells and
ment would be computationally prohibitive in the original formu-generic cells, together with the periodic boundary conditions, in a
lation. The indiceg3=1, ... Ngandy=1,... N,, which span surface-averaged sense. In the reformulation, the surface-averaged
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Fig. 3 A view of a subcell illustrating the convention employed in designating the surface-
averaged displacement and traction components employed in the reformulation of HFGMC

fluctuating displacements are the fundamental unknowns that acpations are obtained by satisfying the stress equilibrium equa-
related to the surface-averaged tractions through a local subdilhs in each subcell in a volumetric sense. It is convenient to
matrix constructed in the manner described below. express the local stress equilibrium equations in terms of the
surface integrals of traction components as these yield direct re-

3.1 Local Stiffness Matrix. We begin the construction of |oiong for the various surface-averaged tractions used in the
the local stiffness matrix for §8,y) subcell by defining the re- reformulation

quired two sets of surface-averaged quantities. First, the tractions
at the subcell’s outer faces are expressed in terms of stresses
through Cauchy’s relations B _
(B f th7dS=0, =123 (15)
t; = ogf’y)n}'g'y) (10) S8,

wheren(®?) is the unit normal to a given face of tti8,y) subcell. ) ) o ]

The corresponding surface-averaged traction components are lgés clear that the reformulation eliminates the need to consider

fined in the standard manner the first and second moments of these equations, simplifying the
volume-averaging procedure of the equilibrium equations to the

T?tw,v):i fuyfz tn(ﬁ")( i@ ?”)d?” (11) zeroth momen_ts, there_by revealing HFGMC to be a direct
A 2 Y5 3 volume-averaging technique.
7 / The above three sets of equations form the kernel of the refor-
1 (2 4, | mulated HFGMC's theoretical framework and set the stage for the
T?i(ﬁ"/)=h— " (Vzﬁ) i%) dyy¥, i=123 construction of the local stiffness matrix for the,y) subcell. We
B J—hg2 proceed to do this by first defining the axi@ut-of-plang and

(12) transversdin-plane surface-averaged traction, displacement, and

where the superscript=(j=2,3) denotes the direction of the Microvariable vectors for thes,y) subcell as follows:
normal to the positivé+) or negative(—) face of the(B,y) sub-

cell (Fig. 3). Similarly, the surface-averaged fluctuating displace- T —[(@F 2 B 0 )ENT
ment components are determined from axial L
T72=(By) — 12 1(B.7) +h5 T | g H(B.yY) T2+ T72— T3+ T73—\ (BT
u; o, *|y/2ui +5ys" | dys (13) Uaxia) =L (U™ g™ U™ ug™ )] (16)
Sase_ L [ eolwe rlgue () BT
13=(By = u/ Ay o dy¥?, =123 Waxial =[(Wa(10) s Wi20), W11 : Wa(02) 7]
B J—hg2
(14)
. W[ B 2 8 B 8 8 e
whereu//=#") is the fluctuating surface-averaged displacement vans (127,12 Wt 713 Wt G506 )T
in theith direction evaluated on the face of tf&vy) subcell with
normal ip thexjth dirgction(Fig. .3). . . T T T T T TV T
The displacement field approximation at the subcell level given ~ ~tans A
by Eq. (6) contains a total of 15 unknoww/{;”) microvariables ugd )T (17)

in each subcell. Since a total of 12 surface-averaged displace-

ments must be related to 12 surface-averaged tractions through the

local stiffness matrix for eactg,y) subcell, three additional equa- ~ W&, = [ (Wa10) »Wa(20) » W3 (10) » W3 20) » Wo(01) » Wo(02) »
tions are required in order to express all 15 unknown microvari-

ables in terms of the surface-averaged displacements. These three W01, Wa o) A ]T
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where the superscript T denotes the transpose. We note that the
and thnys contain only the first-

. Then, substituting Eqg8)—
(10) into Egs.(11) and(12), performlng the required integration,

microvariable vectorswa‘j,;ﬁ

and second-order quantiti&%!~;”)

and assembling the resulting equations in matrix form, we obtain
two uncoupled relations for the axial and transverse quantities where

M 3hﬁ
CG6 T CBG 0
- CGG T CGG 0
cB.y) =
axial 3]
0 0 Css -
3l
0 0 Css TV
.-
C,, TC22 0 0
- C22 TCZZ 0 0
3h
0 0 Cus 7;
3h
0 0 —Cuy 7;
Cilad =
0 0 Cu 0
0 0 - C44 0
Cys 0 0 0
Cys 0 0 0
]
[ Ci Cx Cos 0 %Y
—Cyp Cx Cos 0
0 0 0 2C 44
0 0 0 -2C
ngn? 0 0 0 2C "
44
0 0 0 —2Cy4
Cis Cos Cas 0
L —Ciz —Cyp —Cg 0

and €= [ €12, €13]" aNd €jans=[ €11, €22, €33, €2] -
The first-order, W{f;3), W52, and second-ordew!f3),
W|(02)

ments u’ ¥ and the zeroth-order mlcrovarlablesl((oo)) by

Journal of Applied Mechanics

microvariables in Egs(18) and (19) are subsequently
expressed in terms of the fluctuating surface-averaged displace-

T(a-gla)i) C£,;)Wg€,§)+ca€,a| €axial (18)
e = CEL WL + ClE €vvans (19)
1 (B.y)
2Cq o 1B
cBy—| 2Css 0
axial 0 2055
% 0  —2Cg]
55
- "
(B.y)
0 0 Cys 0
0 0 - C23 0
24 Cua 0 0 0
m Cu 0 0 0
3l y
Cu —"Cy 0 0
2
3l
- C44 _’}/ C44 0 O
2
3l y
0 0 Css — Cas
3l y
0 0 —Css - Cas
|

employing Eqs(6) in Egs.(13) and(14), performing the averag-
ing procedure, and some additional algebraic manipulations,

— —— 0 0
B B
. 2 72+ 7 (B.y)
Wl(lO) (B.y) d . 0 0 2}27
Wi (20 _ hB hB U
W1(01) 0 0 i _i ii?
Wiz I, I |Lu™
2 2
0 0 7o
L Y y d
0
4
hg
-1 o | W (20)
4
12
5
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= 1 0 0- cBy (B)h/23(,8) cB) (B)h%(ﬂ)
hs  hg Cii"=Cgg "'+ I_zcss'y . CRV=CHRT+ S CLY,
Y Y
Wz(lo) (B.y) 2 32 0 0 EéZ+ (B,) )
Wo(20) hy  hy uy?” C(B PM=cfr+ Lcp
W - 1 up?t h2 =%
3(10) 0 0 L _3,27 B
W20 hg g|LUs The above relations allow one to express the surface-averaged
tractions given by Eq918) and (19) exclusively in terms of the
0 0 = = fluctuating surface-averaged displacements and the applied mac-
L hz  hg | roscopic strains. The axial and transverse surface-averaged trac-
"0 0] tions t1=#" (j=2,3) andt/*#?) (i,j=2,3) are related to the
corresponding  fluctuating  surface-averaged displacements
iz 0 ugl =B (j=2,3) andu/! =AY (i,j=2,3) through the local stiff-
his [Wz(oo)}(ﬁ » 2y " matricet (#") andK(#?) as shown below:
i Z WB(OO) _(_ﬁ 7)_ L(B Y)_(B y)+ Caxnal eaxlal (26)
0 hz T'((_rgn);) K(B Y)_(rﬁ; 4 + Ctrans €trans (27)
r 1 1 - where the elements of the local stiffness matrices are given ex-
— —— 0 0 plicitly in terms of the mechanical properties and subcell dimen-
Ly Ly sions in the Appendix.
W (By) 2 2 T3+ B The above construction clarifies the differences between the
2(01) AT 0 0 2, present approach and a finite-element-based solution of the unit
Wa(o2) _| Y uz cell problem. In particular, surface-averaged rather than nodal
Wa(01) - 1 1] ug* quantities are employed in the construction of th#*? and
Ws(02) [ uyd” K (87 |ocal stiffness matrices, and subcell equilibrium in the large
5 5 is enforced directly instead of a variational principle.
0 0 7 7 3.2 Global Stiffness Matrix. The local stiffness matrices
- 4 v are used to construct the global stiffness matrix by first applying
o 0] interfacial traction and displacement continuity conditions, and
then periodic boundary conditions, all imposed in a surface-
i 0 averaged sense across adjacent subcell interfaces and boundary
Ii Wa(00) (B,7) subcells. At thegth interface separating3,y) and (8+1,y) sub-
“lo o [Ws(ooj (22)  cells, _the three _fluctuating surface-averaged displacements on ei-
ther side of the interface must be equal. The same holds true at the
4 vth interface separatin@3,y) and(B,y+1) subcells. These conti-
0 ri nuity conditions are enforced by setting the corresponding dis-

placement components to common unknown quantities as shown
The zeroth-order microvariables are then expressed in terms of betow:
fluctuating surface-averaged displacements by employing Egs.

(18) and (19) in conjunction with Egs.(20—(22) in the three 2B =2 BTy =y 28 L) (28)
equilibrium equations expressed in terms of surface-averaged _ o - .
tractions that are obtained from E¢$5). Performing the required U St EN =By = st =123 (29)
integration and simplifying yields The above equations hold true #&=1,... Ng—1 and y
clB.y) =1,... N,—1 subcell interfaces, respectively. This gives rise to
B~7):L( r2++ur2 )(BY) 3(Ng—1)N,+3(N,—1)N unknown interfacial surface-
1(00) B.7) B Y. Y B . e
2CH7 averaged displacements within the unit cell. The remaining
5 6(Ng+N,) surface-averaged displacements at the external
hZC&” T3 4T3 6 boundaries of the unit cell
~rmpy (U1 )Y (23)
212 SCi1 U{Z(l’w, Uin(Nﬂ-%—l,y), Ui,3(/3,1)’ U;S(B,N,ﬁl)‘ =123
clB (30)
WBY = 222 (u 12++ur2 )B» .
2(00) Zag,w are related to the corresponding surface-averaged boundary trac-
22 tions. These surface-averaged boundary quantities are related
hZC“’ ) through the periodic boundary conditions which will be incorpo-
(U3 +uy )y (24) rated into the global stiffness matrix in the last step.
2| C(ﬁ 212cB Proceeding in a similar manner, the traction continuity condi-
tions (or the interfacial equilibrium conditionst the Bth andyth
CE e interfaces are ensured by
300 = 5~(p.y (Us~ TUs ) By
2CH7 A 2B (31)
26(B,7)
B :: <; (U3 gz e (25) NP0, =123 (32)
2h5Cya”

where
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mon interfacial surface-averaged displacements ), u;3"),
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upC) udee) k2te) a3t ysing Eqs.(26) and (27) and

the displacement continuity conditions given by E¢&8) and
(29). Fori=1 we have

LB 4 (LB 1 L 1) 28+ 1) 4| (B 11 2(8+2.9)

+LEIGRED L L NGBy D | Lyt L)

+LETUPEA D=2 - CE Ve, (33)
L(Sgyv)if(ﬂﬂ) + Lgﬁiﬂmﬂﬁ* 1) + LE@W l)Uf(ﬁ,ﬁ 1)
FLEYHIGIAB LY L B8 4 (LB
+ Lﬁlﬁ’w 1))U13(/3,7+ 1) + ngvﬁ 1)U13(/3,7+ 2)
=2(CE7-CEL " Ve 34

while fori=2, 3, Egs.(31) and(32) become

K(lg'”iéz(ﬂ'” +( Kﬁ‘i’” + K(2/§+ 1:7))@2([3*- Ly K(2/i+ 1,7)@2(&-2,*/)
+ K(lléﬂ/)ﬁéii(ﬁﬂ/) + K(lg'w@s(ﬂ'“ Dy K(Zlé+ 1,7)@3(B+ 1)
+ K(2€+ 117)@3#“ Lytd) 4 K&%”Ugwﬂw K(ﬁﬂ)ﬁé’e‘(ﬁﬂ*— 1
+ K(2g+ 1,7)@3({34— 1) 4 K(2€+ 1,7)@3({34— 1,y+1)
_ (0(1’2'7) _ C(1/§+ ln/))?ll_i_ (C(Zgﬂ) C(B+1 7)) €20

+(CHV-CH ) ess (35)

KEPTL2E) 4 (KL + K EH LA GL 28+ 1) 4 (B Ly 2B+2)
+KEVGLED L K13 E L) 4 3B+ D
K I3 Ly 1 (BT3B 1 (B L 3(8+ 1)
+KEGLIBrD 4 (B L3+ Ly 1)

=2(C"-Cifi e, (36)

KE 2B L KB 1 By 2B+ D)
+KE 7 I2E Ly D) L BB 4 K B2+ L)
+ K%lj,y+ 1)@2([3,74— 1) + Kg/g,y-%— l)UéZ(,B+ 1y+1)
+KEIGLIED (KL 4 KL+ D38+

TR P E=2(CEY - CE T es (BT)

KUBYGL287) 4 KB 208+ 17) 4 K (By+ 1208 y+1)
KB YIIG2BTLY D L K BT84 K (B 28T LY)
4 K(s,ljnw 1)@2(B,y+ 1) + Kgg,«ﬁr 1)@2(B+ 1y+1)
+ K%%Y)U?(B,V) + (K%‘w-F Kgg,"y*' l))Ué3(B,7+ 1
+KETHIRBED
=(Cf7 -
T(CHT—CET Ment (CHY=CET Vess (38)

N,

e
C(l%w— ))611

Equations (33)—(38) provide us with a total of 3{z—
+3(N,—

in the first and second set of these equations, respectively. Hence,
they are assembled into two global stiffness matrices in the man-
ner described next.

Assembly and Structure of the Global Stiffness Matricé§e
initially assemble the global stiffness matrices by assuming that
the unit cell's boundary is subjected to prescribed surface-
averaged tractions. The assembly thus includes the boundary cells
(1,7, (Ng,y) and(8,1), (8,N,), which provide the additional
6(Nsz+N,) equations involving the boundary surface-averaged
tractions and displacements, in addition to the interfacial continu-
ity conditions described above. The final systems of equations
relating the axial and transverse quantities are symbolically writ-

ten as
bu L [Uf:er Acu 0 e, (39)
L21 L22 ui3 E 0 Asz_ €13
Kiu 0 Kz Ky Ué? T%'
0 Kypn Ky Kyl uj? B 13
Kai Kgp Kaz O || W] |8
uy® t©
Kag Kgz 0 Kggf*™3 3-
ACM Aclz AC13 0 '?11
o 0 0 ACul|| e )
0 0 0 ACyl||es
AC41 AC42 AC43 0 L €23
where
— _[ur2(l) _’U;Z(Ny)]
with U(2<V>=[U(2<1~7>, u PN (1=1,2,3)
[u/3(1) ) ’Ui'?’(N/;)]
with U;3<5)=[U(3<Bv1), L BENTDL (=123

and the structure of the surface-averaged traction veti@nsdt®

is similar to the above surface-averaged interfacial displacement
vectors. In this case, however, the only nonzero surface-averaged
traction components are those associated with the boundary sub-
cell external surfaces as shown below. This follows from the in-
terfacial traction continuity conditions given by Eq®1) and

(32.

Tz:[?izu) . ?(Ny)]

with 27=[2" "0 . o "N (i=123
B, )

with £F=[ BV, . o PN (=123

The size of the global stiffness matrix in the first system of
equations, which consists of four submatrices| 28l;N,+ (Ng
+N,)IX[2NgN,+(Ng+N,)]. The global stiffness matrix in the
second system of equations, whose size[4NgN,+2(Ng
+N,)IX[4NgN,+2(Ng+N,)], consists of twelve nonzero sub-
matrices. The diagonal submatrides andK;; , whose structures
are similar, relate the surface-averaged tractions to displacements
in their respective directions and have entries concentrated along
the diagonal. The off-diagonal submatriceg and K;; , whose
structures are also similar, represent coupling of the surface-
averaged quantities in thg, andy; directions and have entries

1)N; equations in terms of the common interfaciabcattered throughout. The structure of the diagonal and off-

surface-averaged displacements and the surface-averaged diegonal submatrices in both systems of equations is the same as
placements at the external boundaries of the unit cell. The axibht in the reformulated higher-order theory for FGMs and has
and transverse surface-averaged displacements appear separagaly described in detail by Bansal and Pinda@.
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Finally, the column submatricesAc;;, AcCy, and FBY =CBYEBY) (44)
ACyy, ... ,ACy3, which are multiplied by the macroscopic. | ) . .
strains on the right-hand side of Eq89) and (40), represent the In view of the fact that the material occupying a givef,y)
differences in the elastic stiffness eleme@¥” between adja- Subcell is homogeneous. Using E¢3) to express®?) in terms
cent subcells in thg, andys directions, as shown on the right©f the macroscopic strains, we obtain
hand side of the traction continuity equations given by Eg3) BV =CBYNBYE (45)
and(34) and Eqgs.(35—(38). ) _ _ s

Averaging the subcell stresses over the entire repeating unit cell,

Reduction of the Global Stiffness MatricesThe global stiff- e then obtain the macroscopic stress in terms of the macroscopic
ness matrices given in Eq@9) and(40) are further reduced using strains for the composite in the form

periodicity conditions on the surface-averaged displacements and
tractions imposed on the external surfaces of the boundary sub- B e L _

cells around the repeating unit cell. The periodicity conditions for LTy >, 2 hgl ,CBIABYe (46)
the surface-averaged boundary displacements are y=158=1

N

which can be written in the form of a macroscopic constitutive

U;2(1,y>:mz(Nﬂ+l~7>’ U{3(/311):Ui'3<ﬁ'”y+1>, (i=1,2,3 equation for the unit cell response as follows
(41) o=C*e (47)
Similarly, the periodicity conditions for the surface-averagewhereC* represents the effective elastic stiffness matrix for the
boundary tractions are repeating unit cell and is given by
1 N, Ng
TiZ(l,y)+t7i(NB+1,7):0’ T?(B,1>+?;»(B,Ny+l):0, (i=1,2,3 Ct=— 2 hl yC(B,y)A\(B,y) (48)
(42) HL 3=1 5=

The imposed periodicity condition&1) and (42) eliminate the 4 Numerical Results
traction vectors on the right-hand sides of E@9) and(40), and  \we test the high-fidelity model's predictive capability by deter-
provide us with the necessaryNGN,, relations for the 8lsN,  mining the effective moduli of a unidirectional composite, with a
unknown subcell surface-averaged displacements, i.eNg3(square array of fibers in the,—x, plane, as a function of the
—1)N,+3(N,—1)N, unknown common interfacial surface-rotation angles about the fiber axig; . The moduli in the rotated
averaged displacements along witi\g(t N,) unknown surface- coordinate system are then compared with the standard transfor-
averaged displacements at the external boundaries of the repeagiigion equations which provide the correct answer. We also gen-
unit cell. These relations are obtained from E@8) and(40) by ~ erate the local stress fields within a repeating unit cell for a rep-
combining and deleting appropriate rows and columns of thgsentative rotation angle. To highlight the advantages and need
original stiffness matrices appearing in these equations. for HFGMC, the moduli as well as the local stress fields predicted
The resulting reduced equations relate the unknown surfagg this model are compared with the corresponding GMC results.
averaged interfacial and boundary displacements to the applifis comparison illustrates the importance of including the effects
macroscopic strains through the reduced stiffness matrices. Td&near coupling in heterogeneous materials.
final reduction of these singular matrices involves constraining theFigure 4 shows the investigated square array of fibers with a
corner subcell faces to eliminate rigid body motion. In view of th@per volume fraction of 0.35, extending to infinity in thg—x,
imposed periodicity conditions on the surface-averaged boundgjine. Both the fiber and the matrix phases are isotropic. To am-
displacements, constraining the external surfaces of one COrBffy the influence of shear coupling, we consider two cases with
subcell and just one appropriate external surface of two corngfjically different contrasts between the fiber and matrix proper-
subcells at opposite ends of the diagonal is sufficient. ties. In the first case, the matrix is an epoxy resin and the fibers are

3.3 Homogenized Constitutive Equations. The average glass with typical elastic moduli that produce the Young’s moduli

strains in each subcell are related to the average macroscd'réf@o_Ef/Em: 20. In the second case, we consider an aluminum
strains through Hill's strain concentration ten§ot], as matrix weakeneq by holes which are swpulated by very compliant
inclusions that yield the Young’s moduli ratt; /E,,=0.01. The

BN = ABYE (43) actual constituent moduli values are given in Table 1.
As shown in Fig. 4, five different repeating unit cells are ana-
. . . lyzed that produce homogenized properties of the same fiber array
01 g SHbCel S e SHANED ), S9N e o e coordinte syt generated by ctsing e o
) gt ' . ; ablea/é:?) _pal m_atenal coordinate system through an an@labout the
roscopic strainse;; and the first-order microvariable®/i.) . fiper axis. These are arranged in two rows such that the number of
These microvariables are then expressed in terms of the interfa¢jgérs in each repeating unit cell increases in each row from left to
surface-averaged displacements using EB6)—(25). The solu- right. As observed, the rotation angle does not increase monotoni-
tion of the reduced systems of equations yields the interfacial apg|ly with increasing number of fibers. The first repeating unit cell
boundary surface-averaged displacements as a function of hehe first row of Fig. 4 with the circular fiber in the center, for
macroscopic strains. This allows us to obtain the average strgjfiich 9=0 deg, represents the infinite square fiber array in the
components in each subcell in terms of the macroscopic strains plihcipal material coordinate system in light of the fact that the
practice, we determine the elements of the strain concentratigfihogonal planes of material symmetry passing through the fiber
tensorA(#?) for each subcell numerically by applying one comcenter coincide with the globak,—x,—x; coordinate system.
ponent of the macroscopic straénat a time. For instance, apply- Clearly, this is the simplest unit cell. The remaining unit cells
ing €,;=1 and all others zero, and then solving the reduced s¥#ere constructed by connecting the center of a reference fiber to
tems of equations to obtaiet??) for each subcell, we obtain the the center of the fiber a certain number of fibers to the right of the
first column of the strain concentration tensor using @8). The reference fiber and up. This specified both the rotation angle and
remaining elements of the strain concentration tensér” are the length of the lower inclined edge of the unit cell. Completing
obtained by successively applying the remaining macroscoglite square in the same manner produced the entire unit cell for the
strain components one nonzero component at a time. particular rotation angle. Thus the four rotation angles were ob-
The average stress in each subcell is given by tained from the relationg=tan {1/4,1/2,3/4,3, where the de-
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Fig. 4 A representation of an infinite array of inclusions in
square packing, showing five repeating unit cells which repre-
sent the same array in different coordinate systems rotated by
the indicated angles about the fiber axis

repeating unit cells rotated by 26.57 deg and 45.0 deg about the
axis, while 150<150 subcells were employed for the unit cells
rotated by 14.04 deg and 36.87 deg.
The unit cell in the principal material coordinate system with a
single fiber in the centd®=0 deg, Fig. 4 produces homogenized
elastic stiffness matrix* of the form

1 Cp, Cs 0 0 O
C, C5 C3 0 0 0
ATIEL Y -
44
0 0 0 0 C&4 O
(0 0 0 0 0 Ck

C*(0

)=T,C*T,*

whereC},=C};, C3,=C}%;, C&;=Cg; due to the cubic symmetry,
but C%,# 3(C3,— C3) due to the absence of isotropy in the-x;
plane. This stiffness matrix is used in the transformation equations

(50)

to generate the corresponding homogenized stiffness matrix in the

rotated coordinate system independently of the micromechanics-
nominator represents the number of fiber distances to the righttEsed solution for the homogenized stiffness matrix of a unit cell
the reference fiber, and the numerator the number of fibers up. Tiheghe same rotated coordinate system. The transformation matri-

fiber distance is the horizontal or vertical distance between adj@esT, andT, for the rotation angle about thex, axis are

cent fiber centers. It is evident that the generated unit cells are the
basic building blocks of the same fiber array in the five considered
coordinate systems, which include the principal material system.
It is also clear that three out of the five do not possess planes of
material symmetry. This results in anisotropic behavior in the
X,—X3 plane, necessitating the use of periodic boundary condi-
tions which is an intrinsic feature of the high-fidelity model’s
framework.

The actual unit cells in the four rotated coordinate systems used
in the calculations are shown in Fig. 5 in discretized form. Table 2
provides information on the actual microstructural discretization
used for each unit cell, the number of fibers and the volume frac-
tion of the fiber phase. We note that the fiber volume fraction
within each unit cell varied slightly from the nominal fraction of
0.35 due to the use of square subcells to approximate the fiber
shape. The actual number of subcells in each unit cell was dictated
by the need to capture the circular fiber shape with sufficient
detail given the required number of fibers and the targeted fiber
volume fraction. In the case of the unit cell in the principal mate-
rial coordinate system with a single fiber in the centaot
shown), the repeating unit cell was discretized into ¥QM0 sub-
cells in thex,—x5 plane. The same number was used for the

Table 1 Material properties of the fiber and matrix

(1 o0 0 0 0 0]
0 m n? 2mn 0 O
0 n m -2mn 0 O
T=lo —mn mn M-n2 0 o0
0 0 0 0 m -n
| 0 0 0 nom|
1 0 0 0 0 0]
0 m? n2 mn 0 O
0 n2 m> -mn 0 O
2210 _omn 2mn n-n2 0 o0
0 0 0 m -—n
0 0 0 n mj|

wherem=cosf# andn=sin 4. They relate stress and engineering
strain quantities in the principal coordinate systermande, to the
corresponding quantities in the rotatqatimed coordinate sys-

constituents
Material Young’s modulugMPa) Poisson’s ratio
Glass fiber 70,000 0.25
Epoxy matrix 3,500 0.35
Compliant fiber 700 0.33
Aluminum matrix 70,000 0.33

Journal of Applied Mechanics

tem, ¢’ and € (i.e.,, 0'=T,0 and € =T,€) and are used to
derive Eq.(50) from Hooke's law in the principal material coor-
dinate system. Under the above transformation, the homogenized
stiffness matrixC* (6) acquires the following form in the rotated
coordinate system
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Fig. 5 Detailed volume discretizations of the four repeating unit cells in the rotated coor-
dinate systems employed to accurately capture the geometric details within each unit cell

X CH CH 0 0 0 The knowledge of the effective stiffness matrix in the rotated
- _ coordinate system makes it possible to generate the corresponding
5, C3, C33 C3, O 0 transformed compliance matrix from the inverse relationship
_ Cc*t, C& Ci C%f, O O S o) =[C*()]-1
13 C23 Laz Lag S (0)=[C* (0 52
24 s Cuy The elements of the transformed compliance m&tig9) are then
0 0 0 0 C*t cC* used to determine the effective engineering properties in the ro-
% T tated coordinate system as follows:
0 0 0 0 %% Cgs
. - _ _ = 1 1 = 1
whereC*,=C%,, C},=C3,, Cis=Cl;, andC},= —C%,. ET(0)= s E5f0)= s 3 0)= s,
- S S Sk
. . . o i) =—=", vidO=—=", vE0=—="
Table 2 Geometric and microstructural details of the investi- Si Sh S
gated repeating unit cells (53)
RUC rotation No. of Subcell Fiber volume G* (6)= _i G* (0)= _i _*2( 0)= _i
angle fibers discretization fraction 28 ., 13 Sgs ' 1 536
o=tan 1(1) 0 deg 1 100x100 0.3468 534 5’3‘ 5&
f=tan 1(4)71404 deg 17 150x150 0.3476 77;23(0):?1 77323( ):g_* 7}232(0 :T
G:tan’l(%):26.56 deg 5 100100 0.3440 24 24 522
o= tar (3 =36.87 deg 25 150150 0.3511 s,
g=tan (})=45 deg 2 100<100 0-3504 T34 0)= g
3
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whereE}; (6) are the three Young's moduli; (6) (i#]) are the ™ R ! =~
major Poisson’s ratiosGi’](e) (i#]) are the three shear moduli, o GMc 0.85 h -
and 77,3, 735 are Lekhnitskii's coefficients of mutual influence g8 Trenetomaten 08 AN
of the first and second kind, respectively, Lekhnit$ki?]. These . o o 2"\\
coefficients provide a measure of the extent of anisotropy in th '] 5 088 <
X,—X3 plane introduced by the rotation angfeabout the fiber 08 o
axis. The coefficients of the first kind represent ratios of transvers 9 o o g
normal to transverse shear strains due to transverse shear load 078
only. Similarly, the coefficients of the second kind represent ratio: os 07
of transverse shear to transverse normal strains due to transve ° (.,29 (,.)S,OE- oo ¢ (,,,%.;(,.,305;2 oo
normal loading only. e
In the following two sections, micromechanical analyses of the 1.1 14
five repeating unit cells shown in Figs. 4 and 5 are conducted t 1.0s s o
generate the homogenized stiffness matrix elements of the tw o ° o ' A
unidirectional composites in the rotated coordinate systems, whic g5 12 P
are then used to determine the corresponding compliance matr . S
elements from Eqs(52), and ultimately the engineering moduli o5 rd
from Egs.(53). The transformation equations, E¢S0), serve as Lanl
the gold standard for comparison purposes. These require tl *® @ o a 08 a o © @
knowledge of the stiffness matrix elements in the principal mate ®7
rial coordinate system, which are obtained from the microme %726 35 0 50 08 ™0 20 80 a0 50
chanical analysis of the simple unit cell with the single fiber in the © 8, 0/6), () Gy )1 Qg
center.
0.32 055
4.1 GlasgEpoxy Unidirectional Composite. Figure 6 il-
lustrates the dependence of the engineering moduli on the rotatie 4,5 o o g 05 o 0 oo
angle 0 for the glass/epoxy system with the Young’s moduli ratio o //"’ e
E;/E,,=20. The predictions generated by HFGMC for the os1 N oS //Q’
Young's and shear moduli have been normalized by the corre ™~ @ o ’ ,
sponding values in the principal material coordinate syd®ith ,/5
6#=0 deg, while the Poisson’s ratios and the mutual influence®3% o4
coeffcients are presented unnormalized. The predictions of tt
original GMC model, which have also been normalized by the o3 ——-——F—————"p 08 e
corresponding engineering moduli in the principal material coor @759 O
dinate system obtained from HFGMC, are included in the figure
The transformation equation predictions for the engineering %%’ P 001
moduli follow the predictions for the stiffness matrix elements 0 e \°\ R e N
(not shown, see Bansal and Pind¢fz8] for detailg. That is, 0.05 4 \ -0.01 \\ /
while C3;, C},, andC%, are insensitive to the rotation angle ~ o0sf  / b\ 00\ //
the element<C3,, C3;, and Cj, exhibit substantial dependence. °% / o aweC N\ -0.03 \ !
The dependence of the coupling eleme@fs, and C3, on the 0% / ~ — Traneformed Rt SR /
rotation angle is also substantial, albeit the actual magnitudes a %! / \ 0.05 \Q\ /
much smaller. op o O -0.08 o
As observed in Fig. 6, the correlation between the HFGMC ant-o.01 -0.07
. . . . 10 20 30 40 50 0 10 20 30 40 50
transformation equation predictions is remarkable for the twc @750 M2 09
Young'’s and shear moduli, and the two major Poisson’s ratios. |
particular, the axial Young's modulus],(6) remains nearly con-  °2 — 008
stant for the differently oriented unit cells, as does the major Pois / \\ . 0.
son's ratiovi,(#) and the out-of-plane shear modul@3,( ), as 019 / \\ ai /P
suggested by the absence of variation of the corresponding stil ,,/ / AN 005 \ /
ness matrix elements. The in-plane moduli, on the other han / N\ \ /
exhibit substantiald dependence. While the transverse modulus o.s / \ 0.1 \ ,5
E3,(6) decreases with increasing rotation angle, the transvers \ \ /
Poisson’s ratioviy(#) and the transverse shear modufsigy( 6) o °= ° =0 o8 N
increase. For the rotation ange=45 deg, the decrease in the —~

transverse Young’s modulus is more than 15% of the principg © 10 20 8 40 50 e m o w0 s
material coordinate system value. For the same rotation angle, tl.. 002 D953 &

increase in the transverse shear modulus and Poisson’s rati%.is ) . ) . .
more dramatic, with increases of approximately 30% and 25“{?'9' 6 Normalized engineering moduli of the glass  /epoxy uni-

. ; . itectional composite as a function of the rotation angle 0
respectively. Equally remarkable is the correlation for the coeffly i+ the fiber axis. Comparison of GMC and HFGMC predic-

cients of mutual influencey; ,3, 73,3, 7532, and 7533, which tions with the transformation equations.

couple the normal and shear responses. These coefficients give a

measure of the extent of anisotropy in the-x; plane caused by

the absence of material planes of symmetry. the transformation and high-fidelity model predictions by over
In contrast, the GMC predictions are markedly inferior, with thegos. The differences in the out-of-plane shear mod @i 6)

exception of the Young’s modulusy,(6). In particular, the trans- are also on the order of 20% in the entire off-axis range excluding

verse modulug€3,(6) in the low off-axis angle range differs from =0 deg. An even greater difference is obtained for the transverse
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Fig. 7 (Color) Comparison of o,,, 033, and o,; stress fields (MPa) within the unit cell of the glass  /epoxy unidi-
rectional composite rotated by 26.57 deg about the fiber axis and subjected to the average normal strain €5
=0.1%: HFGMC (left column ) and GMC (right column ) predictions
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shear modulu§34( ) for rotation angles greater than 30 deg dustresses, thereby producing a higher average shear stress that the
to GMC’s failure to predict any variation for all rotation anglesrepeating unit cell can support for the same applied average shear
The differences between the HFGMC and GMC models afdrain. This results in the higher effective transverse shear modu-
rooted in the absence of shear coupling caused by the use df@seen in Fig. 6. The second-order displacement field approxi-
linear displacement field in the latter model, which results in cofdation also couples the normal and shear stress fields at the local
stant strain and stress fields in the individual subcells. The apgfVvel. resulting in the observed, stress distribution that is
cation of traction continuity conditions in an average sense b@éarly uniform in the individual fibers and highly nonuniform in
tween individual subcells within each row and column of subcell§€ matrix phase. The matrix,, stress nonuniformity is charac-
renders the corresponding traction components constant wighized by sybstanﬂa} stress concentrations at opposite chatlons
magnitudes dictated by the most compliant subcell. In the case@pund the fiber/matrix interface that are aligned with the diamet-
the transverse shear stress, this effect is further enhanced anddkfiber planes coincident with the rotated fiber rows.

sults in a uniform shear stress throughout the entire repeating unify > Ajuminum Weakened by Axially Oriented Cylindrical
_ceII. The comparison of microscale stress fields discussed belpyosities. Figures 9 through 11 present the corresponding re-
illustrates this point more clearly. _ _ sults for the aluminum matrix with substantially softer cylindrical
To illustrate the influence of shear coupling, microscale stregg:|ysions. In this case, the Young's moduli ratio & /E,,
distributions predicted by HFGMC and GMC are compared foLg,01. For such a low ratio, the compliant cylindrical inclusions
the unit cell rotated byp=26.57 deg about the fiber axis andaffectively behave as porosities.
subjected to transverse normal and transverse shear loading. Simgigyre 9 jllustrates the dependence of the engineering moduli
lar results have been observed for other rotation angmnsal on the rotation angle. The transformation equation predictions
and Pinderg13]). Figure 7 compares the microscalg,, o33,  follow the trends presented in Fig. 6 for the glass/epoxy compos-
and o stress fields for loading by the average transverse normg@l, byt the variations are now greater. As before, the transforma-
strain e,,=0.1%, with the remaining faces of the repeating unifon equations predict variations only for the transverse moduli
cell traction-free in the average sense. Thg stress distribution and the mutual influence coefficients. In particular, the transverse

predicted by HFGMC exhibits small departures from uniform dis\'(oung’s modulusggz( 0) decreases by nearly 40% at the rotation

tribution within the individual fibers, with magnitudes substang gle of 45 deg relative to its value in the principal material co-

tially greater than in the surrounding matrix due to the large fibe rdinate system, compared to just a little more than 15% for the

matrix mod'ull mismatch. ngh'stress concentrations are evide tass/epoxy system. The increase in the transverse modulus
along certain segments of the fiber/matrix interfaces which may ar, o) is al t 100%. The i in the t Poi \
may not be due to the stepwise discretization of the circular inte 24 l IS almos o. The Increase in the transverse FoIssons

face. This aspect requires further investigation which is beyofi@lio ¥3{(#) is even more dramatic, being around 150%. These
the scope of the present stutsee Bednarcyk et aJ14] for re- large variations with the rotation angle are captured very well by
lated discussion about the mesh sensitivity of HFGMThe o35 HFGMC. In contrast, the original GMC mlodel resullts are com-
stress distributions within the individual fibers, which are substaRletely erroneous for almost all engineering moduli at nonzero
tially smaller than ther,, distributions, also exhibit small depar-rotation angles. The exceptions are the axial Young's modulus
tures from uniform distributions. In the matrix phase, howeveE1;(#) and the related Poisson’s ratig,, which are predicted
this stress component is not insignificant relativestg. Signifi- very accurately for all rotation angles. In the case of pure axial
cant o4 stress concentrations are present in the matrix phaseleading in the porosity direction, the matrix phase is continuous
the fiber/matrix interfaces at points along the fiber diametralong this direction, and is thus effective in supporting the entire
planes lined up with the load axis. Significan; stress magni- axial load without the need for stress transfer through the shear-
tudes are also evident in oval regions surrounded by four fibgrermal coupling mechanism, while the transverse contraction
aligned with the rotated fiber rows. In contrast, the normgland  which affectsy, occurs unconstrained due to porosity’s presence.
o33 Stress distributions generated by GMC exhibit parallel strip The above results are explained by microscale stress distribu-
patterns along thg, andy; directions, respectively. Little varia- tions predicted by the two models presented in Figs. 10 and 11. As
tion in the respective stress magnitudes is observed in the adjadarthe case of the glass/epoxy composite, these distributions have
strips and the low magnitudes relative to the high-fidelity resultseen generated for the repeating unit cell rotated$26.57 deg
produce a low value of the average normal stress, thereby and subjected to transverse normal and transverse shear loading.
resulting in a low value of the transverse Young’s modulus for thisigure 10 compares the microscatg,, o33 and o3 stress fields
rotation angle observed in Fig. 6. Further, the transverse sharhis repeating unit cell for loading by the average transverse
stresso,g is identically zero due to the absence of shear couplingormal straine,,=0.1%. The detrimental effect of the shear cou-
Figure 8 compares the microscatg; and o, stress fields for pling’s absence in GMC on these stress components is clearly
loading by the average transverse shear swgjn 0.1%, with the observed, with theo,, stress field characterized by essentially
average stresses other thap set to zero. This loading case high-uniform and very low magnitudes, and thus a low transverse
lights the differences in the two stress distributions predicted bpbung’s modulusE;,(6) seen in Fig. 9. The same holds true for
GMC and HFGMC models. The uniformry; stress distribution the o4, stress field, while the transverse shear stressvanishes
throughout the entire unit cell irrespective of locatigne., completely. In contrast, the shear coupling effects necessary to
whether the particular point lies within the hard fiber or mucinternally support the applied transverse load are clearly evident
softer matrix phasepredicted by GMC is a direct consequence ofn the HFGMC predictions for the three stress fields. Highly non-
the imposition of shear traction continuity in the surface-averaggiform distributions are observed for the three stress components
sense across subcell interfaces in ygeandy; directions, given in the matrix phase, characterized by significant concentrations at
the linear displacement field approximation within each subcethe porosity/matrix interfaces at specific locations as in the pre-
The low magnitude of this stress component relative to the HEeding case.
GMC prediction produces a substantially lower value of the trans- Similar trends in the stress distributions predicted by the two
verse shear modulus observed in Fig. 6. The linear displacememddels are observed for loading by the average transverse shear
field approximation also uncouples the shear and normal stresgin e,3=0.1%. This is seen in Fig. 11, which compares the
fields at the local level, thereby producing vanishing stresses microscaleo,; and o, stress fields within the considered unit
in the individual subcells. In contrast, the second-order displaceell. As expected from the solution of the Kirsch problem for a
ment field approximation employed in HFGMC is sufficient taingle cylindrical cavity, large concentrations of the normal stress
correctly capture the stress transfer mechanism between the g are observed at the porosity/matrix interface due to the trans-
phases, enabling the fibers to carry substantially higher shearse shear loading in the HFGMC predictions. These are actually

Journal of Applied Mechanics MARCH 2005, Vol. 72 / 189



(b) Tagq (GMC)
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Fig. 8 (Color) Comparison of o3 and o, stress fields (MPa) within the unit cell of the glass  /epoxy unidirectional
composite rotated by 26.57 deg about the fiber axis and subjected to the average shear strain €,3=0.1%: HFGMC
(left column ) and GMC (right column ) predictions

higher than the corresponding transverse shear stress concemue- to the absence of overlapping fibers aligned with the load
tions. The GMC model is incapable of capturing these nonuniforaxis. In contrast, the shear stress; distributions are uniform
stress fields, and the presence of porosities results in uniform agighin the rotated unit cells as well as within unit cells in the
very low magnitudes of the transverse shear stress, producingrincipal material coordinate system. As discussed herein, and
very low value of the transverse shear moduli(¢) seen in elsewhere, these patterns are a direct result of the absence of shear
Fig. 9. Furthermore, the normal strass, completely vanishes in coupling and lead to inaccurate microscale stress fields, with the

contrast to the HFGMC result. exception of the second invariant of the stress deviator, which is
predicted sufficiently well to enable accurate modeling of the
5 Discussion macroscopic response of unidirectional metal matrix composites

As illustrated in the foregoing, for a unit cell without planes o cf. Amold et aI._[lS,lG and lyer et al[17]). As_ also ShOV_V“ for .
material symmetry parallel to the fiber axis, the microscale stre porous aluminum case, these characteristic stress distributions

fields predicted by the original GMC model exhibit two characpmduce highly inaccurate engineering moduli in the rotated coor-

teristic patterns in the plane normal to the fiber axis. The normdinate system.

5, and o, stress distributions are characterized by parallel strips !N order to mitigate the negative impact of the shear coupling
whose magnitude and sign depend on the applied stress orief3sence, an alternative manner of determining the unit cell re-
tion and the fiber/matrix Young's modulus ratio. For large ratio§Ponse, and thus the engineering moduli, in the rotated coordinate
the patterns are visibly distinct, while for very low ratios thagystem based on the GMC model can be chosen. First, the applied
mimic porosities the patterns are obscured by the very low nornf@@rmal or shear strain in the rotated coordinate system is trans-
stress magnitudes. Similar strip patterns are observed for unit céfigmed to the principal coordinate system in order to determine
with a single fiber in the center, which possess two orthogontile response in this reference frame. The resulting strains and
planes of material symmetrgPindera et al[7] and Bednarcyk stresses are then transformed back to the rotated coordinate sys-
et al.[14]). In such cases, the strip patterns are wider and fewem in order to determine the elastic moduli. In fact, this is the
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Fig. 9 Normalized engineering moduli of the aluminum matrix
weakened by cylindrical porosities as a function of the rotation

angle @ about the fiber axis. Comparison of HFGMC and GMC

predictions with the transformation equations.

basis for the transformation equations given by Es0), and

50

the applied macroscopic strain to the principal material coordinate
system will not negate the fact that the transverse shear response,
and thus the transverse shear modulus, will be incorrectly pre-
dicted in the presence of porosities. Specifically, the transverse
shear modulus will be zero, rendering the resulting macroscopic
shear stress zero. Therefore, this contribution will be absent when
transforming the stresses to the rotated coordinate system, thereby
producing a result that will differ from the transformation equa-
tions by an amount that depends on the rotation angle or the
magnitude of the absent transverse shear stress in the principal
material coordinate system. However, the dramatic differences be-
tween GMC predictions and transformation equations observed in
Fig. 9 for the porous aluminum case will be reduced because the
contribution of the normal stresses in the principal material coor-
dinate system will not be completely eliminated even in the pres-
ence of porosities. This method of calculating the engineering
moduli in the rotated coordinate system is in fact equivalent to the
use of transformation equations based on the moduli calculated by
the GMC model in the principal material coordinate system. The
different results obtained from the GMC-based calculations,
which depend on whether the calculations are made in the rotated
or unrotated coordinate system, point to a fundamental problem
that limits this model’s range of applicability. This limitation has
been overcome by the high-fidelity version, which can be used to
accurately model the response of a wide range of periodic mate-
rials with or without planes of material symmetry in arbitrary
coordinate systems.

For example, the reformulated HFGMC can now be applied
with confidence to the important and rapidly growing area of mi-
cromechanics of random heterogeneous media with detailed mi-
crostructures. This can be carried out by assigning random distri-
bution of phases within the repeating unit cell to produce a locally
random but macroscopically periodic material mo¢l Baxter
et al. [18], Graham-Brady et al[19]). Alternatively, a broader
class of random materials can be considered by relaxing the peri-
odicity conditions in favor of homogeneous traction and displace-
ment boundary conditions applied to a representative volume el-
ement, as discussed by Ostoja-StarzeW28].

We close this section by briefly discussing the differences and
similarities between the reformulated HFGMC and the finite-
element approach that is often employed in analyzing the response
of composite materials from micromechanics considerations under
specific loadings. First, as mentioned in Sec. 3.1, the construction
of the local stiffness matrix based on the employed local/global
stiffness matrix reformulation clearly highlights the differences in
the theoretical framework of the two methods given the fact that
both are based on similar volume discretizations of a material
microstructure. However, the discretization capability of the refor-
mulated HFGMC is more limited at present since it is based
strictly on rectangular subcells in contrast to the finite-element
approach. Consequently, a greater number of subcells is required
to model the type of microstructures investigated herein for a
comparable level of geometric fidelity and local stress field accu-
racy. This limitation will be mitigated in the future by the devel-
opment of a local stiffness matrix for trapezoidal subcells. We
mention, however, that for the same volume discretization of a
highly heterogeneous microstructure based on rectangular sub-
cells, together with the same order of displacement field approxi-
mation within individual subcells or elements, the traction conti-
nuity between subcells/elements with large material property
contrast is better satisfied by HFGMC relative to the
displacement-based finite element formulation. This has been
demonstrated by Bansal and Pind¢t&] in the context of the

should yield the same result as direct application of strains in thégher-order theory for functionally graded materials which forms
rotated coordinate system if the micromechanics model is seffie basis for HFGMC. We also mention that the extent of discreti-
consistent. This is clearly the case for the HFGMC model. In thmation can be relaxed if the macroscopic response is the only
case of GMC, however, the observed characteristic stress pattesagput of interest, as demonstrated recently by Bednarcyk et al.
indicate that this is going to be only partially successful in thEl4] in the context of simulating the inelastic response of
presence of very compliant inclusions. In particular, transformirtgianium-based composites with local damage in the form of fiber/
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Fig. 10 (Color) Comparison of o,, 033, and o3 stress fields (MPa) within the unit cell of aluminum matrix with
cylindrical porosities rotated by 26.57 deg about the porosity axis and subjected to the average normal strain €5,
=0.1%: HFGMC (left column ) and GMC (right column ) predictions
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Fig. 11 (Color ) Comparison of 0,3 and o, stress fields (MPa) within the unit cell of aluminum matrix with cylindrical
porosities rotated by 26.57 deg about the porosity axis and subjected to the average shear strain €,3=0.1%: HFGMC
(left column ) and GMC (right column ) predictions

matrix debonding using the original formulation of HFGMC. Th&6 Summary and Conclusions

price for this, of course, is the loss of local stress field accuracy. The reformulation of the High-Fidelity Generalized Method of

Further, the closed-form expression for the macroscopic constj- L : T ;
tutive equation of a homogenized material obtained from HFGM ells, based on a simplified volume discretization |n\_/olvmg only
subcells as the fundamental subvolumes together with the use of

in the form of Hooke’s lawWEqs.(47) and(48)], given in terms of . > - .
the repeating unit cell microgtructural details gnd phase propertid€ local/global stiffness matrix approach, facilitates the analysis
holds for any arbitrary loading. It can thus be employed in 9 umt' ceII_s with complex mlcrog.tructural deta}lls char.ac.terlstlc': of
stand-alone manner in the development and optimization of nd@@listic microstructures of multiphase materials. This is a direct
material systems which typically involves the application of confesult of the elimination of redundant continuity conditions
bined external loading in arbitrary proportions, or as a subroutifé€sent in the_ orlglnal f0_rmulat|0n, which in turn produces su_b-
in a larger structural mechanics program in the context of mulgtantial reduction in the size of the system of equations governing
scale analysis not easily implementable using standard commi&e unit cell response. The reformulation also reveals the high-
cial finite-element codes. The reformulation of HFGMC presentdtfielity micromechanical analysis to be an approximate elasticity
herein simplifies the construction of the final system of equatiofgchnique based on the direct enforcement of subcell equilibrium
through the closed-form expressions for the elements of the lo€guationsin the large and the imposition of displacement and
stiffness matrix for an arbitrary subcell and a straightforward a$-action continuity conditions in a surface-averaged sense across
sembly procedure of the global stiffness matrix, facilitating thiterfaces between adjacent subcells. This, in turn, simplifies the
model’s implementation and accessibility that were previouserivation of the volume-averaged equilibrium equations govern-
lacking. In closing, HFGMC occupies a middle ground betweeing the individual subcell response as well as the derivation of the
the highly accurate, but less robust and typically load-history spgaction continuity conditions.

cific, commercial finite-element codes and the robust and efficient,In the present investigation, the reformulation was employed to
but substantially less accurate, micromechanics analytical mode&termine the elastic moduli of a square array of stiff fibers em-
such as the widely used GMC. bedded in a substantially more compliant matrix, representative of
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a unidirectional glass/epoxy composite, under rotation about the
fiber axis. A stiff matrix weakened by cylindrical porosities was
also considered. The rotation about the fiber axis necessitates the
analysis of unit cells in the rotated coordinate system, representa-
tive of the same square array, which may contain many fibers, in
contrast with the single fiber within the unit cell in the principal
material coordinate system. Such unit cells typically do not pos-
sess planes of material symmetry, rendering them anisotropic in
the rotated coordinate system. The elastic moduli of such unit
cells can also be obtained from the standard transformation equa-
tions once the effective composite properties have been calculated
in the principal material coordinate system. These transformation
equations can therefore be employed to validate the predictive
capability of a micromechanics model that admits periodic bound-
ary conditions required in the absence of material planes of sym-
metry. The effective moduli predicted by the HFGMC based on
the unit cells in the rotated coordinates systems have been shown
herein to correlate extremely well with the transformation equa-
tions for both material systems considered. In contrast, the predic-
tions of the original GMC exhibited substantial departures from
the transformation equations for the glass/epoxy system, which
became unacceptably large for the porous aluminum. This is a
direct result of the absence of shear coupling in the original
method which produces erroneous results when normal/shear in-
teraction dominates in the presence of porosities or inclusion
phases that are substantially more compliant than the matrix
phase. The high-fidelity version circumvents this problem, albeit
at an increased computational cost which, however, is mitigated to
a certain extent by the implemented reformulation. The microscale
stress distributions generated by both models for different uniaxial
loading situations provided additional insight supporting the pre-
dicted moduli results.
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Appendix: Local Stiffness Matrices

Explicit expressions for the nonzero elements of the local stiff-
ness matrix for thég,y) subcell, given in terms of the subcell's
geometric and mechanical properties, are listed below for loading
by normal and shear tractions in thige—y; plane
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The elements of the local stiffness matrix for loading by shear
tractions in they,—y, andy,—y; planes are given below
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An Investigaton of Minimum-

Weight Dual-Material

Symmetrically Loaded Wheels
reter bewtust - and Torsion Arms

Sriruk Srithongchai'

A cylindrically symmetric layout of two opposite families of logarithmic spirals is shown
to define the layout of minimum-weight, symmetrically loaded wheel structures, where
different materials are used for the tension and compression members, respectively; re-
ferred to here as dual-material structures. Analytical solutions are obtained for both
structure weight and deflection. The symmetric solutions are shown to form the basis for
torsion arm structures, which when designed to accept the same total load, have identical
weight and are subjected to identical deflections. The theoretical predictions of structure
weight, deflection, and support reactions are shown to be in close agreement to the values
obtained with truss designs, whose nodes are spaced along the theoretical spiral layout
lines. The original Michell solution based on 45 deg equiangular spirals is shown to be in
very close agreement with layout solutions designed to be kinematically compatible with
the strain field required for an optimal dual-material desigOl: 10.1115/1.1831295

Department of Industrial and Manufacturing
Engineering,

University of Rhode Island,

Kingston, RI 02881

1 Introduction amination of the optimality criteria by Rozvang]. It should be

The layout of a minimum-volume spoked wheel subjected entioned that much of the progress in Michell structure design
pure torsional loading, uniformally distributed around its perim-as resulted from the demonstrations independently by Heihp

eter, is well established in the literature. Michill showed that a_nd Pr_ager[?]_, that the structu_ra_l Iay_out problem for_twq-
the layout lines for the spokes must follow 45 deg equiangulgtlmenSIonaI Michell framgwork_s IS |dentlce}l to the determlnqtlon
spirals with the opposite families of spirals crossing orthogonal the layout of the S.l'p lines in plain-strain “.“e“ﬂ" deformation.
and carrying equal uniaxial strain at any point in tension a emp 3] a_Iso established a com_ple_te @“a'yt'ca' framework for
compression. Following a half-century of neglect, Hefipand e evaluation of volume, force distributions, and displacements
his colleagues, Chdi8], and Charj4], at the Cranfield College of Of\?v'%'etlg opt|mur? Stru?tges' 7 all of th K d ibed
Aeronautics in the U.K., laid down a formal mathematical basisb Ith the excep |8n c"th t;‘agg[r ]’. a c; " € ;NOI’ fescr[ €

for the investigation of Michell structures. In particular Hefgh ~2PCVe IS concerned with the design Of Structures for minimum
showed how the requirement of a cylindrically symmetric Iayouyo.lume' Ifa structure s manufac_tl_Jred from_a smgle_ material then
where at any radial position compression and tension spokes fliS IS Of course equivalent to minimum-weight design. However,
low lines with the same curvature, defines the 45 deg equiangufiain® Structure tensile members are made from a different material
or logarithmic-spiral solution, for a material with equal strength iff1n the compression members then the solutions for minimum
tension and compression. When the spiral layout lines are traff@lUme and minimum weight are in general different. The estab-

lated into a wheel design the result has an undeniable elegancd¥ynent by Pragef7] of an optimality criterion for this dual-
illustrated in Fig. 1. material structure design problem appears to have been com-

Michell's work would have been remarkable had it been corR/€tely overlooked in the literature on Michell structures. Prager’s
fined only to materials which have the same strength in tensidprk was.applled specifically to reinforced concrete structures,
and compression. However, Michell developed his criterion f@nd for this reason the general nature of the work may not have
minimum volume in the general context of a material having dif?€en recognized. Srithongchai and Dewh{@$thave shown, that
ferent limiting stress values in tension and compresgieferred for @ class of statically indeterminate cantilevers, Prager’s opti-
to here as bi-yield materiglsRozvany[6], in a paper which rec- Mality criterion leads to minimum weight predictions which are
ognizes Michell's role as the creator of all of the essential elglightly less than those obtained from Michell's original work.
ments of modern optimum structural design, has shown that Mich-Two of the proposed minimum-volume solutions in Michell's
ell's optimality conditions for bi-yield materials are only valid forPaper[1] are not statically determinate; namely the plane torsion
a very restricted class of structures; namely those which are stitheel and the spherical torsion frame. These examples are there-
cally determinate. fore optimal only for a single material structure with equal

Hemp[5] described a set of modified the conditions for ministrength in tension and compression. The main goal of the present
mum volume of bi-yield material structures, which he nameWork is to investigate the solution for minimum-weight symmetri-
“Michell’s sufficient conditions” to maintain the attribution to cally loaded wheels for dual-material designs. The general condi-
Michell for his pioneering work in the field. “Michell’s sufficient tions for optimality of dual material structures are reviewed in
conditions” were not recognized in the literature as being fund®ec. 2. In Sec. 3, the general layout for a dual-material wheel
mentally different than Michell’'s original conditions until the ex-structure is established. It is shown that, for a specific combination

of radial and tangential loading, the force diagram is the precise
isiting Scholar from the Department of Industrial Engineering, Chulalongkoriniverse of the structure layout. The geometry of the force diagram
University, Bangkok 10330, Thailand. is the mirror image of the structure layout, and the outer circle of

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF  the force diagram corresponds to the inner circle of the structure.
MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- ;. . .
CHANICS. Manuscript received by the Applied Mechanics Division, May 14, a003Under these conditions the combination of structure and force
final revision, July 21, 2004. Associate Editor: K. M. Lietchi. diagrams allows an analytical weight solution to be obtained,
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Fig. 1 Prototype pure torsion wheel manufactured by free-
form laser sintering

b

which has remarkable similarity to Michell's original analytical Fig. 2 Elemental truss members adjacent to boundary

solution. For completeness in Sec. 3, an analytical expression for

wheel deflection is also obtained. In Sec. 4 discrete truss wheels

and torsion arms are analyzed for the dual-material condition S=Are(l+tarf y), (3)

(orlpt)(oclpc)=3. It is shown that in all cases the Prager

solution has a smaller weight than the corresponding Michell so- T

lution, in agreement with the optimality criterion. However, the 7’:(27_ E)' 4

differences in all cases are remarkably small. ] ) ) o
where 6 is the deflection magnitude, anglthe angle in Fig. 2.

2 General Conditions for Optimality of Dual-Material ~ nterestingly, this angle value appears as a key to the determina-

Structures tion of the analytical dual-material wheel solution in the next
section.

Prager's conditions for a dual-material structural laygul, Hemp[5] showed that, even with his more general conditions
comprising both compression and tension members, to be optingdfined above, an optimum network must still satisfy the equian-
can be restated in a similar manner to that used by Hg&hfor  gular property that the angle turned through by all compression
bi-yield materials as follows: members between any pair of tension members is constant and

i. Avirtual deformation of the space in which the structure liegice versa. This is exactly the property of the lines of maximum
must give strains of¢s/p)/(o/p7) in all the tension members shear in plain-strain slip-line field theorfHill [9]). Hemp[2]
and (oe/p)/(oclpc) in all the compression members, and naddentified this mathematical coincidence, and Johnsdl took
direct strain in any region of the space must have a value outsitie analogy further by demonstrating that the force diagram for

of these limits. minimum-weight structures can be drawn in such a way as to be
ii. The virtual deformation must satisfy the kinematic condiidentical to the velocity diagraniGreen[11]) in slip-line field
tions imposed on the structure. theory. This allowed the tools which had been developed for slip-

The proof then follows that no other structure, with limitingline field theory to be applied to the two-dimensional optimal
stress magnitudest, oc, and densitiepr, pc in tension and structure layout problem; see for example Johnson eftldl],
compression, respectively, can support the same loads wittDewhurst[13], and Srithongchai et aJ14].
smaller weight of material. Praggr] presented the result as just As a consequence of the equiangular property, and utilized ex-
a “straightforward extension of the general theory of plastic deensively in the construction of slip-line fieldslill [9]), a Michell
sign.” Srithongchai and Dewhur$8] laid down a direct proof of structure layout must satisfy the geometrical property that the ra-
Prager’s criterion using the elegant approach established by Hediipof curvature of crossing tension lines change by the distance
[5]. traveled along compression lines and vice versa. At any point in a

To simplify the equations which followy/p andot/pr will be  network of layout lines, this property can be represented as
assumed equal, and the virtual strain magnitudes in tension and
compression members respectively will be given doynd \e, ﬁ: s ‘7_5
where\=(or/p7)/(oc/pc). B " da

Figure 2 illustrates the intersection of tension meméeeand
compression membdic with a small sectiorab of a rigid bound-
ary. If these are subjected to principal strainand\e, then since
the angle at the displaced node positnmust remain a right
angle, it can readily be verified that

= R! (5)

whereR and S are the radii of curvature of tension and compres-
sion layout lines respectively. The negative sign in §&j.occurs
because the radius of curvature is counted negative for a clock-
wise turning layout line. Coordinates and B8 define the angles
turned by the tension and compression members respectively from

y=tan 1\ ), (1) any base point. For convenience the layout lines for tension and
compression members will be referred tosasand 8-lines respec-
w=—gtany), (2) tively. Coordinatesa and 8 are both counted positive from the

where the negative sign in E42) denotes clockwise rotation. 2@S€ point.

These boundary conditions were defined by Help for the - . .
general case of intersection of curved structure members witt3a General Layout of Minimum-Weight Torsion Wheel

curved rigid boundary. It can also be verified that the deflection of For the layout of a bi-yield material torsion wheel it is clear, as
ctoc’ is given by pointed out by Rozvany6], that the spokes must form constant
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right angles as required sincek cot(m/2— vy,,) = cot(yg), where
vg is the constant intersection angle gfspirals with the radial
direction; see Fig. 3.

If coordinate pointd«,0) and(0,8), in Fig. 3, are on the same
polar radiusy, then from Eqs(8):

B=Ka, (10)

also the polar anglé, in Fig. 3, can readily be seen to be the sum
of @ and g,

d=a+p. (11)

At any point in the network (8¢)?= (Réa)?+ (S68)2, and to-
gether with Eqs(9) and(10) this gives

A=ro(1+1/Kk?)Y2 (12)
Finally the radii of curvature of the individual tension and com-
R(o,B)=-kS(a,) pression members starting from point 0 in Fig. 3 are given by

R(a)=—ro(1+k*)Y%e ; S(B)=rq(1+1/k?) M2k (13)
and from Eqgs(1) and(9), for a specific bi-yield material

k=+(oc/pc)l(arlpr). (14)
anglesy and m/2—y with the circular boundary and with any ¢ yhece layout lines are used to define a full wheel structure

e e e e ot o rters ot v anfen 1 can be estabished tha the cortespondig force cagram
omprises the same two families of logarithmic spirals. The layout

compression spokes are in constant ratio throughout the structuje. : : . -
Assume the constant ratio has valué; see Fig. 3. Equatio(b) lg%grez(n;) zrr'% Z‘S corresponding force diagram are illustrated in

then becomes Consider spirahb, in Fig. 4a), which will be assumed to be an

Fig. 3 Field of orthogonal logarithmic spirals

JR 1 9S a-line defining the layout of a tension spoke. Curmvk is the
—=-R, —=k§ (6)  p-line which converges to the same positiat the outer perim-
Bk da ; . . .
eter. The force diagram is drawn in such a way that its curves are
with general solution everywhere orthogonal to the corresponding structure layout lines.
R(a )= — Akdeefk: S(q, )= Ackaehlk, ) Referring to Fig. 4b) it can be seen that the force diagram is the

geometrical inverse of the structure diagram. The inner and outer
These can be recognized as the radii of curvature of logarithnd@ameters of the force diagram correspond to the outer and inner
spirals, with polar equations diameters of the wheel respectively. Also the direction of rotation
of both families of spirals has reversed. Cur/é’ in the force
diagram defines the distribution of force carried by the compres-
where sion members at right angles to the tension menalterSimilarly
k=cot(y,) ©) c'b’ defines the distribution of force carried by the tension mem-
al bers normal tcch.
and vy, is the constant intersection angle afspirals with the Assume the polar angle between poiat&ind ¢ has valued,
radial direction. Thex spirals andB-spirals cross everywhere atandab, cb turn through angle® and ¢, respectively. Arbitrary

r=roek; r=rqef, (8)

Fig. 4 (a) Selected layout curves for a general logarithmic spiral wheel structure, (b) asso-
ciated force diagram
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point, p, at angular positionr on ab corresponds to poinp’ in  Which integrates to the simple expression
the force diagram at angular positigka on curveb’a’. _ 2mpctor® (1

The difference between the polar angle of corresponding points We=——In| —|.
in the two diagrams can readily be shown to be

- o (25)
—2y. —(ml2) (15) The weight of tension members, using radii of curvature func-
N=4Ya ’ tions S* andR can be obtained in identical fashion, and leads to
This defines the angle between the circumferential and radthe same weight solution withc /o replaced bypr/ot. It is
components of loading at any point in the structure. The closseful to define loading parameter
geometrical similarity of layout and force diagrams for Michell G=2 x_o . 26
structures is well documented in the literature. It seems from the —emialg=2mloly - (26)
present case that this similarity extends to dual-material struche total wheel weight is then
tures, using Prager’s optimality conditions.
Let the magnitude of the distributed load per unit length around _ _[Pc PT M
the inner wheel circumference be given by. From the force W=We+Wr C+ o Gln ro/’ @7)
diagram it can be seen that total force magnitude 2, around
the outer circumference of the force diagram, will be distribut
uniformally around the inner circumference of the wheel, o From Pragers condition () in Sec. 2, the virtual

length 2mr,. The value off, is thus given by work per unit weight of the structure is of/py)er

fo=r*/ro. (16) :(O'T/pT)[(O'S/p)/((TT/pT)]' in all the tension members and
(oclpc)(oelp)l(aclpc)] in all the compression members;

Similarly the magnitude of the distributed force per unit lengtequal tooe/p throughout the structure. Hence, if the inner radius

around the wheel outer circumference is given by is assumed fixed, and the outer perimeter has defleétion the
I a7 direction of the applied loading, then equating virtual strain en-

1ol 1 ergy gives

Since the angle of this loading, to the circumferential direction, is

the constant value given in E¢L5), moment equilibrium about 27§ Si=0e

the wheel center gives

2mr3fo cod2y,— wl2)=2mrif, cog2y,—w/2), (18)
substituting forf, andf,, gives
rifrg=rqlrg. (19)

This result is satisfyingly identical in form to the result obtained
Michell for the case wher& represents pure torsional loading.

1 1 ry
—+—|GIn|—=]|. (28)
Oc oT ro

Substituting for ¢+ /p1)/(oc/pc) from Egs.(9) and(14), andG
from Eq. (26), Eq. (28) reduces to

S;=e7(1+tar? ya)rlln(:—l), (29)
0

Since the angular sweeps of the spirals, and the ratio of tbethe equivalent expression withy, and y.
radii, are the same for both diagrams, the spirals in the forceThe deflection of a Michell structure depends only on the
diagram must be identical but opposite logarithmic spirals to thobeundary conditions, the magnitude of the straips 1, and the
in the structure itself; a result which is not defined by just thgeometry of the layout lines. Within limits, it is independent of the
orthogonal relationship of the two diagrams. magnitude of the applied force or its direction, or the number or
Returning now to arbitrary poirg in Fig. 4(a), the force acting distribution of forces along the structure boundary. When the ap-
on a narrow bundle of compression elements adjacent to layqlied forces, for a given structural layout, are changed, the force
line de in the neighborhood op is diagram will change and the cross-sectional area at every region
- of the structure will be different for minimum weight. The cross
6f=R*(6—a)da, (20)  sections will be chosen to give the limiting stress values, and so

whereR* defines the radius of curvature of spifala’ in the the deflections will be unchanged.

force diagram. A short length of the bundle can be defined as I the next section we will compare the above results, and
Michell’s original wheel solution, with truss designs of wheel and

ol=3(B) B, (21) torsion arm structures.

whereS defines the radius of compression spoke layout cdeze . .
If the maximum allowable stress in the structure compressicﬁ‘n Truss Structure Approximations

members is given by, then the weight of this short bundle of Michell structural forms are robust in the sense that discrete

compression elements can be given by truss structures, whose nodes lie on the Michell layout lines, have

strength and stiffness to weight ratios near the theoretical opti-

mum values even when the node spacing is relatively large. For

example, Srithongchai et dl14] designed and manufactured an

. . . L aluminum alloy test beam, with nodes positioned at 22.5 deg in-
To integrate this expression throughout the structure it is usefu_'é?ements along the network of Michell layout curves. Experimen-

substitute one of the spiral angles for the polar angle. Referring loading of the beam provided stiffness values and yield load in
back to Eqs(10) and(11), 55 can be represented as almost perfect agreement with the optimal values determined from
8B=SI(1+1K?). (23) the layout equations. The converse is also true. Using Prager’s

method[15], for optimizing trusses with a finite number of mem-
Substituting forR*, S and 8B, the total weight of compression bers, truss forms emerge in close agreement to Michell layouts.

5wc=§—(°: R*(0— a)S(B) 5adp. 22)

elements is given by Figure 15, in the review paper by Rozvany et[dl6], shows an

* rom o excellent example of this in the design of a 24-member cantilever
:pcl’ol’o 2\1/2.K(0—a) truss. In this section approximate truss designs will be evaluated

c {(1+k*)"%e H(1 . :
oc o Jo for a symmetrically loaded wheel structure, and for alternative

layouts of a torsion arm structure.

+ 1/k2)l/2e<k2a>/k}dad—¢, (24) 4.1 Wheel Truss Structure. Figure 5 illustrates one quarter

(1+1/K3) of a wheel structure whose nodes lie on 60 deg and 30 deg equi-
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For comparison, the theoretical weight from E27) is, substitut-
ing 1000 for 2mr§ ,

1 1
Wpin= ( ﬁ + (3)(—104)) (1000(1.9742In(1.9742

=0.0448+0.1343=0.1791.

The radial and tangential deflectionsandv, respectively, of the
wheel perimeter were then determined. Deflection calculations
were carried out, using of the structural analysis program
MASTAN2™ (2000, which operates as a toolbox in the matrix
analysis programmatLAB ™ (vers 5.3. Elastic modulus values for
the tension and compression members were assumed & be
=3x%x10° andE=(1/3)x 10°; giving strain valueg+=0.01 and
ec=0.03 corresponding to Prager test strains. The truss deflec-
tions calculated byAsTAN2 were

u=-0.01463; v=—-0.05392.

These correspond to a resultant deflection of 0.055 87 at an angle
of 15.18 deg to the wheel perimeter. The truss deflection in the
direction of the applied load is thus

S wuss—=[(0.014 632+ (0.053 922]"2cog 14.829)

angula_r spirals. The direction_s of the forces indicate that the 60 =0.05401.

deg spiral spokes are the tension members, and so froifiEf)e  For comparison, applying Eq29) gives theoretical deflection,
structure corresponds to the optimal solution witk#/3 and

(o 1p7)l(oclpc) =3. The design comprises 16 pairs of spokes at ~ 0¢=0.01 1+tarf(60°)]1.9742{1.9743=0.053 71,

angular spacingr/8. The inner wheel radius,, is taken to be \ hich is in remarkable agreement with the approximate truss
1.0, and the outer wheel radius has been selected so that one Palhe.

of opposite spokes span one quarter of the wheel; see_spmkes In the truss analysis, the 16 nodes on the inner circumference
andbc in Fig. 5. Using Eqs(10), (1), and(14), k= y173, =m/2 "\ ere constrained not to translate. The reaction forces on these

and the total angle turned through along the tension layout spir . R i
ac, is thus 37/8. The outer wheel radius,, is given by a;’lf:ggstblztéeled magnitudg at anglez, in Fig. 5, where calcu

r,=exg V1/3(37/8)]=1.9742. 4 —123.54: 7= 0.5257.

A force of 1000/16 units, labeleff in Fig. 5, was applied to each For comparison with the continuum model in Sec. 3, the discrete
of the 16 nodes around the external perimeter. In each case the

inclination of the force to the wheel circumferenog, in Fig. 5. truss forcesf§ and f] are related to the continuous force distri-
was set equal to 30 deg corresponding to the value defined by EHF’OnSfO andf, by

(15). The ratio of limiting stress to density values were assumed to T T

be o1/pt=30,000,0¢/pc=10,000 units. The method of joints f0=(§ro)fo; f1‘=(§r1)f1. (30)
was first applied to determine the force valu@ each structural
member. The unit weight of each tension member was then setBquations(15) and (19) thus give
the value off/(3%x 10%) and each compression memberf{a0*. N N

The truss weight was calculated, by summing the product of fo=(ry/ro)fy =1.9742¢1000/16-123.39,
length and unit weight for each member, to give and

Fig. 5 Quadrant of truss wheel structure

no=2(mI3)— (7/2) = 0.5236.

Wyuss= 2 Iefl(arlpr)+ 2 1ct (oc]pe).
Note, that the values off and 7, are not dictated by external

Calculations are given in Table 1 for one tension spoke and ogguilibrium and so provide further validation of the theoretical
compression spoke. Using these calculated values, the total wheglel.

truss weight is, ) ]
4.2 Torsion Arm Truss Structures. The term “torsion

Wiruss= (16)(84.63/30 000+ (16)(84.32/10 000 arm” is used here for brevity to describe structures which are
—0.045% 0.1349= 0.1800 more correctly defined as cantilevers with circular supports. Fig-
' ' ' ' ure 6 shows a torsion arm structure corresponding to a portion of
the wheel structure in the last section. The force valfjesarried
by each structural member for the indicated applied tip load are
given on the figure. It should be noted in passing that while the
wheel structures can expand outwards without bound, a limitation
Tension members Compression members  exists on the design of spiral network torsion arms since the sum
of the angles turned through by the outer flanges 8 in Fig. 3

Table 1 Truss wheel weight calculations

tength. force,f " length,! force, f " cannot be greater thanm2 Beyond this range, the optimal layout
8.22?3 %.gg %ﬁg 85%22 gg% %i.ggmay be a combination of a tie bar and spiral net of the type
05190 4077 5116 05008 7011 21:Ogdescrlbed by Pr_aggr ar_1d Rozvafty7]. Such comblnatlons may
06152 34.42 2118 0.3563 5910 21062150 be used to in situations where the angle of the applied tip load
total: 84.63 total: 84.32 would be such as to put both outer flanges in tension or compres-

sion[17].
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Fig. 6 Truss approximation of Prager torsion arm

Fig. 7 Truss approximation of Michell torsion arm

The lengths of the elements in Fig. 6 can be obtained from

Table 1 and so as before the truss weight can readily be shown tq; can be seen in Table 2 that for all five loading cases the
be Prager solution is less than the Michell one in accordance with the
optimality criterion. However, the differences are surprisingly
Wyse 2 If/(arlpr)+ D) Icfl(oclpe)=0.045+0.135  small.
One final comparison was felt to be worthwhile; namely the
=0.180 weight allocation to tension and compression members for the
’ theoretical and truss approximation cases. These are given in
exactly the same as the complete wheel weight. This is of courBable 3 below. Note that columns 2 and 3 represent different
expected since the total loading is the same and the node defleading cases, and that EQ7) becomes Michell's equation when
tions must be the same; see the discussion following ). For  %=0. The intention of Table 3 is thus to compare separately the
the comparisons which follow, dimensionless weight measureédichell and Prager trusses with the theoretical minimum weight
W*, will be used, where values.

vv*:w/ [FL(E+ p—c>
g7 Oc

The applied load in Fig. 6 corresponds to angte30 deg. The

5 Discussion and Conclusions

A general theoretical model has been presented for the layout of
a spoked wheel or moment arm structure, which is kinematically

weight of the structure was recalculated for the load of 1000 unff@mpatible with the Prager test strains for different materials in

at 7 values of—15, 0, 15, and 45 deg. The dimensionless weigﬁ?nSion and compression. Analytical predictions based on the
values are given in column 2 of Table 2. model have been shown to be in remarkable agreement with the

For comparison, column 3 gives the dimensionless weight vé&glculated weights, deflections, and reaction forces of approxi-
ues for the corresponding Michell torsion arm. This structure, ate truss structures, whose nodes are placed on the theoretical
shown in Fig. 7, is laid out along 45 deg spirals according t§Yout lines. . L o
Michell's solution. To provide the same cantilever length Lof An analytical solut!qn Obta'ned n Sec. Sfor structure weight, Is
=1.9742, the angular sweep of the outer spirals is 38.9711 d plicable to a specific combination of radial and circumferential

and polar angle between successive spokes equal to 19.4855 %ging, and has identical mathematical form to Michell’s original
e

provides four elements with equiangular spacing as shown, TR&Jton.

lengths of successive members moving radially outwards }{ﬁComparisons of dual-material truss structures based on Mich-

0.2617, 0.3104, 0.3679, and 0.4360. The truss member forces ¢grs ©riginal layout, and on the more general layouts satisfying
responding toy=0 are included in Fig. 7; only tensile forces ard '29e’s optimality criterion, indicate only small differences be-

given since the compression values are identical by symmetry.tw"een the Welght§ of the two structure types. Howevgr, In every
case analyzed, with different tension and compression material

properties, Prager’s structure has lower weight than the corre-
sponding Michell structure in accordance with Prager’s optimality

Table 2 Truss comparison of Prager and Michell dimension- criterion.
less weights for o;/o-=3
Load angle,n Prager torsion arm Michell torsion arm  Table 3 Comparison of theoretical and truss weight allocation
*16‘3 82&%? ggél%g Dimensionless weight Michell truss Prager truss Theoretical values
- - orlpt)l(oclpc)=3 =0 =30° from Eq. (2
15 0.7078 0.7083 (or/p7)l(ocipc) (7=0) (7 ) q.(27)
30 0.6840 0.6849 Tension members 0.1709 0.1715 0.1700
45 0.6138 0.6148 Compression members 0.5126 0.5125 0.5101
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The small difference in weight of the alternative Michell and L
Prager solutions allows selection to be made on the basis of other
requirements. For example, the Michell truss in Fig. 7 was reana- I
lyzed with the same 30 deg inclined loading as in the Prager truss N
(Fig. 6), to determine that for this case the Michell truss is just b
0.13% heavier than the Prager one. However, the compression p
member carrying the smallest load of 163 units in the Pragerpt, pc
design, in the same position in the Michell design carries the
lightest compression load with a value of only 59 units. With 7
similar cross-sectional shapes, the Michell design thus contains r
compression members having a slenderness ratio approximately — r*
three times the most slender members in the Prager design. In R, S
both trusses, in-plane global instability is initiated by buckling of
those particular members with rotation of their inner joint involv- o
ing the collapse of connected members. Thus the Prager layout is;, o
much more robust than the Michell one for this loading condition,
and cross-sectional shape optimization to suppress buckling is u, v
more likely to be successful for the former case. For other incli- w
nations of the applied load, the Michell layout may of course ben;, W,

length between lower support point and tip point
for cantilever

length of structural members

ratio of stress divided density values

polar angle

arbitrary weight per unit volume

weight per unit volume of tension and compres-
sion members

angle of applied load

arbitrary radial position on wheel structure
arbitrary radial position on force diagram

radii of curvature of tensile members and com-
pression members

arbitrary stress value

maximum allowable tensile and compressive
stresses in a structure

radial and tangential displacements

total weight of structure

weights of tensile and compressive members

preferable for the execution of a stable design. In other situations  \w*
the selection between alternative layouts may be made on the ¢, 4
basis of material cost. It is tempting to conclude that any pair of
complimentary spiral angles can be used to obtain a whole family
of structures with approximately equal efficiency. Surprisingly
this is not the case. For the condition(/p1)/(oc/pc) =3 spiral
nets other than 45/4%Michell) or 30/60 (Pragey can lead to References
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The Mechanical Response of

Freestanding Circular Elastic

Films Under Point and Pressure
U. Komaragiri Loads

M. R. Beal 1 This paper provides a comprehensive description of the mechanical response of freestand-
. h. begley . ! S ; ) . )

ing circular elastic films subjected to point and pressure loads. Regimes of behavior, such
as plate, linear membrane, and nonlinear membrane, are identified in terms of two di-
J. G. Simmonds mensionless variables the_tt allow the _creation of a single map that indica_tes appro_priate
closed-form solutions. This map provides a theoretical framework to design experiments
and interpret film behavior for all orders of magnitude of: film thickness-to-span ratio,
deflection, loads, prestretch, and elastic properties. The normalization approach provides
the means to quickly identify appropriate simplifications to the nonlinear governing equa-
tions, and identify applicable analytical solutions. Numerical results are used to illustrate
behavior in transition regions, e.g., the transition for a given plate thickness from small to
large deflections under increasing load. Critical loads, thickness and prestretch are iden-
tified which indicate when asymptotic plate or membrane solutions are accurate.
Asymptotic and numerical results are presented which illustrate finite-sized regions of
bending-influenced deformation near point loads and clamped edges. Theoretical predic-
tions for the width of these regions enable us to estimate the validity of analytical strain
distributions, and in turn the maximum strains in the film. These results help avoiding
brittle fracture or ductile yielding of the film by identifying physical parameters that limit
strains to an acceptable level[DOI: 10.1115/1.1827246

e-mail: begley@virginia.edu

Structural and Solid Mechanics Program,
Department of Civil Engineering,
University of Virginia, Charlottesville, VA 22904

1 Introduction whether linear plate or membrane behavior is anticipated, whether

The testing of freestanding films via transverse loading is béa_nrge dgﬁfggrﬂér::tg”tllf;ttztrlgn;x;;itggcgtscsary‘ the range of forces

coming increasingly common, for many reasons, notafijymi- There is a wide range of literature on the mechanics of thin

crofabrl_catlon techm_q_ues, such as reactive ion etching and ftﬂ s subjected to point and pressure loads; works focusing on the
cused lon beam m|||_|ng, have greatly eXpaﬁd?‘d the range 13 d-displacement relationships are summarized in Table 1. By
freestanding geometries that can be created,(@hdhstrumenta- 5. |arge these efforts focus on obtaining asymptotic limits of
tion such as nanoindenters and atomic force microscopes h%\é%avior(e.g., bending dominated plate responaed provide
decreased the lower limits of force and displacement resolutiqyasively little guidance for identifying ranges of plate thickness,
enabling the characterization of nanoscale filffis2]. Further- |54 and prestrain that allow the application of these simplifying
more, mdenta_tlon of cla_mp_ed films provides unique advamag%:%sumptions. The work of Sheplak and Dugufidjiis a notable
such as probing of a biaxial stress state and greater controlfeption that explicitly studies the transition between plate and
material creep and ratchetif@]. The relatively simple state of membrane behavior for pressure loads.
deformation(in contrast to indentation of bonded filingnplies Solutions for point-loading that include both bending and
that experiments can be interpreted relatively quickly in terms @fretching (i.e., membrane behaviprare particularly sparse
simple mechanics solutions, that is, closed-form solutions fps—7]—and do not exist if one includes prestrain. An important
plates or membranes. contribution of this paper is to identify the size of the bending-
Despite the long history of plate and membrane theory devéhfluenced region near point loads. For very thin films, the mem-
opment, there is no single source that can be used to identifipeane limit wherein displacements are proportional to the cube
priori which theory(e.g., plate versus membrarie appropriate root of load(i.e., s« P is readily observed experimentallg.g.,
for a given film characterized by: thickness, span, prestrain apgessure loads[8], point-loads [9]). However, while load-
elastic properties. Since such physical characteristics are ofgigplacement relationships may be accurately captured by mem-
dictated by the application of interest rather than chosen directhyane theory, the predicted strain under point loélg., an in-
it is often not possible to conduct a test in a regime where |ftate denter tip is singular. This creates significant problems when
membrang behavior is ensured. Thus, the primary motivation ofrying to estimate if the film will fracture or experience significant
this paper is to provide maps that enable one to determine a priplastic deformation. The boundary layer analysis in this paper
allows one to estimate the reasonableness of the analytical strain
To whom correspondence should be addressed. expressions, thereby giving a closer estimate to the maximum
Contributed by the Applied Mechanics Division oHEE AMERICAN SOCIETY OF  strain in the film.

MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- . . . .
CHANICS. Manuscript received by the Applied Mechanics Division, May 23, 2003; The focus here is on results for pomt loads app“ed to C|rcular,

final revision, June 17, 2004. Associate Editor: Z. Suo. Discussion on the pagdamped thin films. Clamped is the most easily realized boundary
should be addressed to the Editor, Prof. Robert M. McMeeking, Journal of Appligsondition in experiments, while axisymmetry reduces the number
Mechanics, Department of Mechanical and Environmental Engineering, Universj ; ; i ;
of California—Santa Barbara, Santa Barbara, CA 93106-5070, and will be accep?afdvanqblels needed.gcl)r a cohmpre_henswedparametnc StUdy fand 1S
until four months after final publication in the paper itself in the ASMEX@NAL oF  INCreasingly accessible at the micro- an nanosg@ag;, Ref.
APPLIED MECHANICS. [1]). The work presented here makes three significant and new
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Table 1 Summary of literature addressing point and pressure loading of thin films

Linear (pure Nonlinear(bending and stretching
bending or pretensioned . .
membrang Small rotations Large rotations
Theory
Point load 7(0/I0) 6 (O)
11, 12(0)
4,12(0) 5,7, 12, 13(0) None
Pressure load [(@][m)} 4,12, 14, 15, 17,
7, 9 (O/0O) 19(0)
8, 16, 18, 28J)
Experiments
Point load 11, 230)
21, 22(0) 9 (O/O) None
20 (O)
Pressure load 21, 227) 8, 16, 18, 25, 26, None
14, 24(0) 28(0J)
9 (O/0O)
O—circular film, O—rectangular/square film.
contributions to thin film mechanics. First, we outline a normal- d2 d
ization procedure that clearly indicates the connection between Lr=r2—2+r ——1 (3)
physical variablegload, thickness, prestretch, and spand neg- dr dr

ligible (or non-negligiblg terms of the nonlinear governing equaig 4 homogenous linear differential operatér,is the bending

tions. This enables us to succinctly state appropriate simplifiefltness and is the stretching compliance of the film defined as
forms of the governing equations for all possible scenarios, which

all originate from a single set of governing equations. Second, we End 1
present maps that partition the space of physical variables into = >~ and A= Enh (4)
regimes where analytical solutions are accurate, and identify the 121-v%)

ranges of physical variables for which numerical solutions argere,E is the elastic modulus of the filnh is the film thickness
needed. Finally, we present a boundary layer analysis that enali@gy is the film’'s Poisson ratio. Detailed derivations of E¢B.
one to estimate the physical size of bending-influenced deformgnd (2) can be found in Ref.10].

tion near point-loads and clamped edges. These estimates allow u$ we ignore, as in(1), small extensional load terms, then the
to calculate when the strain distributions in the film can be reaxtensional strains are given by

sonably computed using asymptotic analytical expressions. These

contributions should greatly facilitate the design and interpretation e=A(r"'F cosp+qsinB—uvF')—gg (5)
of experiments on thin films. and

To provide a comprehensive set of results for circular films, we ]
summarize equivalent asymptotic results for pressure lodimg ey=A[F’'—uv(r 'F cosp+qsinB)]—&g (6)

bulge testing in the appendix; further details of the transition§yhere prime denotes differentiation with respect.te, is a small
between the asymptotic limits for pressure loading are provided fsitive prestrain that could be caused by several factors, includ-
Ref.[4]. One may reasonably expect that the regimes of plate ajg thermal expansion mismatch or residual stresses that occur
membrane behavior identified for the circular plate may be usggring the manufacturing and processing of the film. The vertical

fully extended to square plates with dimensions approximatefisfiection of the film(positive downwarllis given by
equal to the circle radius.

2 Governing Equations | a

We consider an isotropic elastic circular film subjected to a :
transverse point/pressure load. Figure 1 shows relevant dimen- Modulus, E
sions and variables used to describe the film behavior. We assume 1 Poisson's Ratio, v
small strains, such that the deformation of the film can be de-
scribed adequately by tha&mplified Reissner theorfe.g., Ref.
[10]). The compatibility and equilibrium equations obtained from

A
Y

this theory are w
AL,F+2r sir?(B/2)=0 (1)
r
D(L,B8+ B—sinB)—rF sinB+r2qcosp=0 ) é __
whereg is the angle of rotation anBl is a stress variable, defined BO)=0 Ne=Fir q
asF=rN,, whereN, is the conventional stress resultant in the : _ P
radial direction. Hence; has units of force. The variabtgis the | 9= 2nr

vertical shear stress resultant. For a downward point load of mag- M. =D (qﬁ 4 Vsinp
nitudeP at the center of the filng= P/27r; for a uniform down- r dr r
ward pressure denoted lpy the vertical shear stress resultant is

q=pr/2. These relationships, as well as the relationship relatifgy 1 Schematic illustration of the dimensions and variables
bending moment to rotation, are shown schematically in Fig. 1. lized in the analysis of a thin circular film subjected to a point
Egs.(1) and(2) load
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where the deflection of the plate at the circular edge d) is
assumed to vanish. The boundary conditions associated(®jith
and(2), for a clamped plate, are

{B,u}—0 asr—0 and B(a)=u(a)=0 (8)

whereu=re, is the radial, in-plane displacement. For a simply
supported plate, it is the radial moment that vanishes at the edge
rather than the slope; everything else remains the same. Depend-
ing on the magnitude of the external loads, the relative thickness
h/a and the magnitude of the prestraig, the solutions of the
governing Eqgs(1) and (2) will exhibit different asymptotic be-
haviors ash/a—0, as discussed in detail in subsequent sections.

Log
a
7/
7

N
7/

Load parameter, y

0 1 2 3

3 Regimes of Behavor and Asymptotic Solutions Pre-strain parameter, o = 9 &

The governing equations can be rewritten to highlight the rela- Log
tive importance of bending and stretching contributions. The pur- ad12(1-v2)
pose of the following normalization is to cast the governing equa- -
tions in terms of two dimensionless parametersa function of g > parameter space delineating between regions of plate
pre-stretch and film thickness, angda function of load and film pehavior (1), linear (or pre-stretched ) membrane behavior (2),
thickness. Using physical parameters, the relevant red(8ied  and nonlinear membrane behavior  (3). Note that increasing pre-
plified) governing equations can be quickly identified in terms dftretch and load (&, and P) corresponds to decreasing aand 7,
a and vy, along with an error estimate for dropping bending ofespectively.
stretching terms. Thus, one may estimate the type of response for
a given set of properties/loads without recourse to full numerical
solutions. sing 92

Let N={P/2m,pa?/2}; the understanding here and henceforth sincf=——=1- E+O(6’4), sinco|<1 13)
is that the first term in the braces is for point loading and the
second term is for pressure loading. We use the following dimeand
sionless variables and parameters

_ 1—sincé 62 . _
B AD h2 dinc=6| ——— =1—§)+O(6), |dincg|<1
r=ar, o=ANla, g?’=—=———<1, 0
a?  12(1-v?a? (14)
(99) .
k=(1-v)"L, r2q=aN{r,r3} The boundary conditions are

In addition, we introduce a dimensionless paraméte normal- {g,rf'—vf}—0 asr—0 (153)

ize the rotation and stress function, by setting and
B=e’g, 0<5, (9b) 9(1)=f'(1)—vf(1)=0. (1%)
F=aEh(keor +&2°f) (90) The free parametef used to normalize the rotation angleis

| chosen so that as—0, one or more terms on the left §12)
balance theD(1) term on the right. This choice will depend on
given values ofr and v, i.e., given values of, o, andh/a. We
note that if the exponenty and & are such that?>" % ?—0 as
e£—0 then, in general, there must be bound@sy., at the clamped
edge, near =a) or pole layers(i.e., underneath the point load,
go=¢® where O<a (10a) nearr=0).
These layers represent small regions where the tegrcan no

longer be neglected; otherwise the boundary conditions of zero
o=¢” where 0<y. (100)  slope cannot be enforced. Neglect of the term corresponds to
_ _ the asymptotic limit of membrane behavior wherein the load-
Put another wayg =log, &, and y=log, o It should be empha- displacement response does not depend on the bending stiffness

sized that since:<1, the logarithm function implies thaixy) —5"\ypie the displacements are finiteven under the point load—
will de(_:rease aso,0) increase. Thus any comblnathn of thel.e. the polg the rotations(and, hence, straipst the pole are
prestralnsoz, e,"},‘ima' loader and thlckness_-to_-span _rat{ne., ° ot. Inclusion of bending terms, even for extremely thin films or
=[12(1-v")] h’f?} corresponds to a point in the first quadranEery large deflections—i.e., regardless of how small termlLtfge
of_}_k;}e @y plant(_el,)_f_lts |Iluztrated '? FIg']'ﬁ" £ d@ term is in Eq.(12—creates small regions of finite rotation and
tak tehcofmpal llity and normal equilibrium Eqel) and (2) now finite strains. The extent of these boundary or pole regions is of
axe the form critical interest when interpreting or designing experiments, since

where§ is set such tha, g=0(1). Notethat § is a nonphysical
parameter that is chosen to highlight particular terms of Efs.
and(2), as will be discussed in detail. To account for the relativ:
influence of the prestraire, and the dimensionless load
(whether due to a point load or a uniform pres$uvee set

and

L+ +(1/2)rg? siné(e%g/2)=0 (11) they represent regions of strafand stressconcentration that ul-
- timately lead to film rupture. This is discussed in detail in Secs. 5
—e2T97 M Lrg+ (1/6)e3°g® dina(£°g) ] + 1 (ke ®r and 6.

- . Before describing the quantitative details of possible simplified
25\ . 0—y, Sn) — fv 3 5

+e™f)e” 7gsinde°g) ={r.r}cod="g) (12) governing equations and their analytical solutions, it is worth dis-

where cussing the qualitative implications of the earlier normalization
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procedure. Knowing thickness/span ratio, prestretch, and applied [ 3 . .
load, one can calculate and y, subsequently calculate the coef-  f(r)= (5—12)[*8("1 NZ+12Inr)—7]+
ficients of the terms in Eqg1l) and(12), and immediately esti-

- A o . (18b)
mate their relative importance. From this, simplified governing
equations can be identified that have closed-form analyticalln terms of the angle of rotation of a radial fiber, this is easily
solutions. recognized as the plate solution that appears in various (exis

The utility of this approach lies in the comprehensive coveradeef. [7])

afforded by the normalization. Competition between two physical )
parametergto create either the same or different eff¢atan be B=— 3(1-v9) ( Pa)_ — (19)

9—"7v
5121-0)"

readily assessed, since all relevant physical efféestsept com- T
pressive prestretg¢hare incorporated inter and y. For example, ) ] ] ]
when testing nanoscale films with atomic force microscopy dptegration of Eq(19) yields the load-deflection relation

nanoindentation, the dominant factor governing film response— 0) 3(1-0v2) /[ P
prestretch(which result in linear plate behavioor decreasing MZ (—v) a (20)
film thickness(which results in non-linear membrane behayder a 4 Eh®

can be estimated immediately. . . . .
The three regions in Fig. 2 correspond to classical plate or Thus, region 1 corresponds to classical plate theory; physically,

membrane solutions. Again, sine&1, decrease in prestretch ancPtretching in the plane of the film is negligible compared to bend-
load correspond to increase i and y respectively, and vice- "9 deformation. Nonlinear kinematics are also negligible: that is,
versa. In the extreme that and y are much greater than unity, loads are small enoudlr thickness is large enougto allow the

stretching and prestretch effects are negligible and the film Wﬂ,ssumption of small deflections. The strain distribution in the film

respond according to classical plate solutions, such as thoseSifliScussed in Sec. 6.
Timoshenko and Woinosky-Krieg€¥] for small deflections. This
is labeled region 1 in Fig. 2. Region 2 corresponds to large value 2 Region 2: Linear (Prestretched Membrane Theory
of prestretch, where membrane stretching dominates bending R h Pole and Bbundary Layers. This regime is defined by
ong obtainshclaszics;]l linear membrgne results. Indthis Iregienil, the inequalitiese<2, and y>3a/2 "as shown in Fig. 2. The pa-
and y>3. Thus, both regions 1 and 2 correspond to linear oagp : ! - . : -
deflection relationshipsalbeit for different reasonsRegion 3 is ameterd is chosen to bey—a. The governing equations a(e6)
bounded byr>2 andy<3; prestretch is negligible and membrane
stretching dominates bending. This results in Schwerin-type solu- — g2 %Lg+krig={r,ri}+0(g?7 3% (21)
tions wherewo P2, It should be noted that closed form solutions —
are tractable only for a limited range in regions 2 and
(membrane-like behavigr the limit »—0 corresponds to ex-
tremely large loads, and thus large rotations and highly nonlin
governing equations.

The boundaries between the regions reflect scenarios where
two or more of the terms in Eq§l1) and(12) are equally impor-

he underlined term in Eq21) indicates a boundary- or pole-
ayer term. “Boundary-layer” refers to a narrow annulus near the
ge of the film, while a “pole-layer” is a small disk at the center
of the film. For point loads, singularities occur at the pole in the
brane solution when the bending telrng is neglected. Al-
though boundary layers exist for both point and pressure loads,

tant; hence, they reflect transitions between two types of resporB%:.e Ilayers exist only for pI(_)int Ioa(:]s. Inhgenferal, the anal;llsis of
For example, consider the case with zero prestrain and a fixed fifl€ layers is more complicated than that for boundary layers.

thickness. This corresponds to=. The response to increasing ' NiS iS discussed in detail in Sec. S. .
load corresponds to decreasing i.e., moving down the right- Neglecting the underlined term in E1), the solution to Egs.

hand side of Fig. 2. This scenario involves the transition frorft® @nd(21), subjected to the boundary conditions(irb), is

plate-like behavior at very small loads to nonlinear membrane eo 1[14(KT) 1 1
(Schwerin) behavior at larger loads. As will be illustrated in sub- g(n= oot Ky(k)— _} _[Kl(Kr_)_ _4} (22a)
sections below, boundaries between regions 1 and 3 and 2 and 3 g2 k| 11(x) K KT
correspond to governing equations that are not amenable to
lytical solutions. If one computes values f@andy from physical
parameters in a given test that lie near one of the boundaries in a\?
Fig. 2, this indicates that two effects are equally important and K?=12e0(1+v) H) (220)
numerical solutions are required. By contrast, a single solution
exists for regions 1 and 2 for large valuesyofi.e., small loads andl, andK; are, respectively, the modified Bessel's function of
and across the=2 boundary. This solution clearly illustrates thathe first and second kind. Note that Eg2a) reduces to Eq(18a)
increasing prestretch has the same stiffening effect as increasimghe limit that the prestrain goes to zero, i.e=»0. Thus, Eq.
thickness. (22a) represent a general solution for both regions 1 and 2. In
terms of physical parameters this yields the following solution for
a prestretch membrane

6Pa(l—v2)) 1[|1(Kr)

ANRerex is given by

3.1 Region 1: Linear Plate Theory With No Prestrain
This region is defined by the inequalities>2, and y>3. We _
chooses=y—2, such that the normalized angle of rotation of the B(r)=
film is g=B/°= Ble* 2. The governing Eqg11) and(12) with

1
? |1(Kr)_;

7Eh? [1(x)

error terms take the form _ 1
_ — | Ky(kr)——1¢. (23)

LA+ (1/2rg?=0(£?7"%) (16) KT
CLg={T T+ O(e% 2,6275) 17 The midpoint deflection of the film must be found using E2B)

in a numerical evaluation of Eq7) with sin g3 replaced byg (an

Note that fora>>2 andy>3, the error terms are of order much lesg@Pproximation consistent with the small rotations in the plate
than unity. The solution to the earlier equations with error tern{#nit). This solution is identical to that presented by Hong et al.

neglected and subject to the boundary conditids is [11] and Wan et al[12]; the prestress in the filifN) in their work
. o is related to the prestraireg) used here byN=Ehey/(1—-v).
g(r)y=— %r Inr (18a) Similar solutions for pressure loads are given in the Appendix.
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Physically, region 2 corresponds to scenarios whéiethe i i "
stiffness generated by prestrain is compardbtegreater thanto 3 /a =0.001
the bending stiffness, ar(d) loads are still small enough to avoid 105 v=1s
large deflections. It is important to note that one obtains a linear
load-deflection relationship. In the region to the right of the kink

106

in the boundary, bending stiffness dominates; to the left, prestretch o

is the underlying source of linear behavior. Thus, in region 2, both w

film thickness and prestretch must be known accurately to deter- & o107 ]

mine if response is bending or stretch dominated. Note that in the -

limit that k—0, Eq.(23) asymptotes to Eq.19). o 104 i
3.3 Region 3: Nonlinear Fppl (Small Rotation) Mem- .‘g

brane Theory With Pole and Boundary Layers. This region 109
appears on the lower right of Fig. 2, and is defined by the in-
equalities 3/3<a, andy<3. The parametef is chosen to be/3,

so that the normalized angle g&=B/s". The governing equa-
tions are(16) and

Numerical soluion
— — - Plate solution
------- Membrane solution

— &2 2 Beg+rig={r,rf}+0(e* 53,2%)  (24) 10+ 103 102 107
Center deflection, w/a

A single term particular solution to Eq$l6) and (24) is ob-
tained Wherp(sz_zyls) terms are neglected. This is Schwerin'ssig. 3 Load-deflection relationships for a thin film with several
classic solutiorf13—2§ values of pre-stretch; the inset depicts where these cases fall
_ /16\18 in the behavior map given as Fig. 2

=

o= 5 (259)

and
s This represents a specific case of E2fl), where the prestrain and
f(r_)=(9—j (250) thickness/span ratio are related bys=e?=h?/(12(1-v?)a?).
16/ Thus, along(or neaj this boundary the individual roles of pre-
strain and thickness are difficult to determine, as one obtains lin-

In terms of physical parameters, this yields ear response due to eithdr) bending dominated deformation,

v3 i.e., classic plate behavior where prestrain does not play a signifi-
B =\ (26a) cant role, or(ii) stretching dominated deformation, i.e., linear
97Ehr ; ) L
membrane behavior where bending does not play a significant
= 3 P2Ehr\Y° role. This rather straightforward result clearly illustrates that the
F(r)= > =7 > (26b)  structural stiffness of the film will be a nonunique combination of
mB(r) 3 prestrain and thickness effectsince the same solution is obt-

and ained for multiple combinations of prestrain and thickne3se
ability to identify these combinations without a comprehensive
parameter study clears up considerable ambiguity in interpreting
experiments.
) ) ) . L The other two boundariegbetween regions 2 and 3, and re-
It should be emphasized that this particular solution satisfies tBE)ns 1 and Byield governing equations that cannot be solved
boundary conditions only for a single value of prestretfir a  najytically, and must be integrated numerically subject to the
given Poisson’s ratip determined by substitution into EQLS).  poyndary conditions outlined earlier. While one may always
When Poisson’s ratio is =1/3, the particular solution meets thecpogse to integrate the full equations given as Ef®. and(12),
boundary conditions fog,=0. This fact is very often overlooked {he simplified governing equations may prove useful for develop-
when a particular solution is obtained by combining HG$) and jng approximate or series solutions near these boundaries.
(24). For Poisson’s ratios other than one-third aedo prestrain "5 the boundary between regions 2 and 3, i.e., that separating
we numerically integrated the EqEL6) and (24) to obtain the 5 atensioned linear membrane response from nonlinear membrane
following approximate membrane solution for point loads behavior, B<a<2 and y=3a/2. We chooses=a/2 to normalize
w(0) p \13 the rotation. The governing equations are tlig and

a2 "Wlgan (28) —e2 Lig+r(kr+f)g={r,r’}+0(e% (30)

where f(v)~1.049}-0.1462 —0.15827% . Similar membrane The transition behavior that occurs across the boundary separating

solutions for pressure loading of a circular film with zero prestraifygions 2-3 is considered in the next sectidook ahead to

are given in the appendix. Fig. 3.
Physically, region 3 corresponds to scenarios where bendingrpe boundary between regions 1 and 3 represents the axisym-

stiffness is neglible in comparison to the stiffness generated Ryatric von Kaman equations without prestrain. On this boundary,

stretching arising from large deflections. In this region, loads ajg.» y=3, andd is simply taken as unity. The governing equa-
large enougttor thickness small enouglthat membrane behavior tions, are(iG) and

dominates even prestretch. For smaller loads or very large values o
of prestretch, deflections will be small and one returns to region 2. —Lyg+rfg={r,ri}+0(s* 2,&?) (31)

W(O) 1/3

a

3P
wEah

27)

3.4 Boundaries Between the Regions and Limiting Cases Alternatively, the von Kaman equations with pre-strain are ap-
On the boundary between regions 1 and 2 in Figa22 and Ppropriate at the common boundary point of regions 1, 2, and 3,
v>3. The parametes is chosen to beS=y—2. For these cases, Wherea=2, y=3, andé=1. In this case, the governing equations

the governing equations af&6) and are(16) and
—Lrg+krig={r,r}}+0(e*""°) (29) —Lg+T(kr+f)g={r,r3}+0(e?) (32)
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Fig. 5 [lllustration of combinations of load and pre-stretch for
Fig. 4 Boundaries in the behavioral map determined by com- which asymptotic solutions are accurate: the shaded region
paring numerical and asymptotic solutions: the shaded regions represents the plate-to-membrane transition regime where no
correspond to load /pre-stretch combinations for which analyti- accurate analytical solution exists

cal solutions have less than 10% error

i boundaries represent the combination of loads, film thickness and
The von-Kaman plate equations are thus a subset of the simprestrain for which there is 10% disagreement between numerical
plified Reissner equation&gs. (1) and(2)). Note that both sim- and analytical load-displacement relationships.
plified Reissner theory and von-Kaan plate theory assume small  Thus, the load-deflection relationship for points above the tran-
strain behavior. But Reissner theory allows for moderate to larggion region will be within 10% of the linear plate or prestretched
rotations, whereas von-Kaan plate theory is only for small ro- membrane solutiongNote that both of these are obtainable from
tations(i.e., wheng2<1). This is the subtle distinction betweenthe single rotation solution given as E@3).) Points below the
the two theories. Again, Eq$31) and(32) cannot be solved ana- transition region will be within 10% of the nonlinear membrane
lytically; the coupling betweery and f is such that there is no responsei.e., Schwerin solution in Eq27)). The line marking
simple closed-form solution. Numerical results illustrating the sahe bottom boundary of this nonlinear membrane regioe.,
lutions for these points are shown in the next section. y~0.7) is the critical load after which the rotations are no longer
negligible. For larger loads, the analytical membrane solution
4 Transitions Between Regimes: Numerical Solutions (which is derived assuming small rotatiomoes not remain valid.

Since experiments involve a range of applied loafsd possi- More about this boundary is described later in this section.
bly film thickness or pre-strajnit is possible that a given experi- YSiNg Fig. 4, one can identify the limits of test parameters to

ment spans multiple regions in Fig. 2. In this case, numeric§['Sure that a closed-form solution will be applicable. Naturally,
simulations are required to solve Eq4) and (2) for the load- 9N can plot similar lines representing boundaries for different
deflection relationshiplor strains in the filmy, subject to the [iIM thickness, Poisson's ratio or percentage error. It is important
boundary conditions implied by Eq&)—(8). In this section, we (O note that the regime where nonlinear analytical solutides,
compare numerical solutions for load-displacement relationshig hwerin-type approximationgre applicable does not exist for
with closed-form solutions valid in the asymptotic limit of large o2/l values th/%‘s The hatched area in Fig. 4 labeled “nonlinear
small loads(and/or film thickness A relaxation method was used '€Sponsew~P~*" becomes narrower ab/a increases; foh/a

to solve the coupled nonlinear ordinary differential equations agd?-075, it disappears altogether. This means that as the load is
is briefly described in Sec. B of the Appendix. increased, the response moves directly from the plate regime into

the large deflection regime. This is further explained in Sec. 4.2.
4.1 General Cases With Finite Prestrain. We first con-

sider the casewith prestrain—i.e., the entire range of behaviors 4.2 Critical Loads, Prestretch, and Thickness That Indi-
illustrated in Fig. 2. Examples of transition behavior for severalate Asymptotic Behavior. Figures 3 and 4 represent a sam-
values of prestretch and a single film thickness are shown in Fjgling of results for several film thickness and prestretch. A more
3. The load-displacement behavior goes from lingéate behav- comprehensive tabulation of the transition region for different film
ior at small loads to nonlinedgmembrangbehavior at large loads. thickness and prestrain is shown in Figs. 5 and 6, which again
The behavior shown in Fig. 3 appears as a vertical line in the megpresent the combinations of load, prestretch, and thickness
given in Fig. 2 since prestretch and film thickness are held cowhere the numerical solutions deviate from analytical solutions.
stant. This is illustrated in the inset of Fig. 3. Note again thathe hatched regions in Figs. 5 and 6 correspond to the transition
increasing load corresponds to decreasjndience, the loading from linear plate behavior to nonlinear membrane behavior. Be-
direction of the line in the inset goes from top to bottom. Similow this transition region is the linear response region, where Eq.
larly, decreasing prestrain corresponds to increasirglich that (23) can be accurately applied. Above the transition region is the
zero prestrain corresponds &G=o. nonlinear membrane region, where E&7) (Schwerin’s mem-
Results such as those shown in Fig. 3 can be used to constiueine solutionbecomes valid.
numerical boundaries that correspond to the analytical boundarie§he numerical results presented so far assume that the rotations
given in Fig. 2, as shown in Fig. 4. The transition region betweeare small compared to unity. For films that are especially thin or
the linear and nonlinear response was determined by comparthgt are under especially large loads, it is natural to ask if the
numerical load-deflection curves with asymptotic solutions. Tremplified axisymmetriovon Kaman Egs. (16) and (32) that ne-
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Fig. 6 lllustration of combinations of load and film thickness WP
for which asymptotic solutions are accurate: the shaded region
represents the plate-to-membrane transition regime where no Fig. 8 Universal results for cases with several pre-stretch il-
accurate analytical solution exists lustrating transition from plate to membrane behavior

glect large rotations daot predict the same behavior as the _fuIIKérmén equations(Egs. (16) and (32)). Hence, in Fig. 7, the
Reissner'sEgs. (1) and(2) that allow large rotations. To establishhatched region represents the region of validity for Schwerin's
a guideline for loads and film thickness combinations that diffegnalytical solution. Foh/a=0.01, this transition from small to

entiate these two results, a comparison of load-displacemeage rotations is illustrated in Fig. 4 as the lower boundary at
curves was made between numerical solution&lpind(2) (i.e., y~0.7. g y

large rotationy and numerical solutions of Eq§l6) and (32),

(i.e., small rotations N _ ) 4.3 Zero Prestretch. With zero prestretchp— and the
Figure 7 illustrates the critical load for which the full numericalgyndary condition6) is homogeneous. In this case, the only

solution deviates~10% from the simplified small rotation solu- yossible” transition in Fig. 2 is the transition from linear plate

tion. The critical transitions between asymptotic plate and mergahavior(region 1 to nonlinear membrane behavitegion 3.

brane solutions are shown as well. Zero prestretch is assumggy small rotations, a single parameter

since moderate prestretch has little influence on behavior at these

high loads. It can be seen that above a thickness/span ratio of 2\?

about 0.075, the transition curve from small to large rotations falls N=4m2e? " 0=[12A1-v*)]® En (33)

below the transition curve to the analytical membrane solution. E

Since the analytical membrane solution is derived assuming smadin be used to account for all values of film thickness, load, and

rotations, this means that beyond this point, the analytical memastic properties. For large rotations, the nonlinear trigonometric

brane solutior(Eq. (27)) no longer is valid. The true load deflec-terms in Eqs(11) and(12) do not allow one to remove the pa-

tion behavior can only be obtained by integrating the full Reissametere via normalization. Figure 8 plots the center-span deflec-

ner’s equationsEgs. (1) and (2)) and not the simplified von tion versus\ for both clamped and simply supported films. The

deflection is normalized by the classical nonlinear membrane re-

sult (save a constant prefacioAs such, the results asymptote to

a constant value for large loads corresponding to the membrane

limit. The results for very thin filmgi.e., large values ok) are

independent of the boundary conditions at the outer edge, since

bending resistance becomes negligible. We again emphasize that

Schwerin’s one-term particular solutiggq. (27)) is strictly only

valid for zero prestretch ang=1/3. A similar form for zero pre-

stretch and other Poisson’s ratios, determined by fitting numerical

simulations, is given by Eq28).

Critical load producing large rotations
3

Ea?

5 Asymptotic Behavior Near Point-Loads and Edges

As noted earlier, whenever the coefficient of the differential
. s . operatorLtg is small, then boundary and pole layers will exist. To
determine the width of the boundary layer at the edge of the

. clamped film, we set=1—¢#¢, assumeé=0(1), anddeter-
€°= 1/3? mine the exponengk so thatto lowest ordeythe resulting form of
107 (12) is free of the small parameter The width of the resulting
0.01 01 boundary layer(in the dimensionless coordinatd is O(e*).
Film thickness, h/a Thus, the solutions of21), (24), and (30) will exhibit boundary

layers whose respective widths a@({e'~*?,¢177%) and

Load, 12P(1- 2)

Fig. 7 lllustration of combinations of load and film thickness

for which small rotation assumptions are accurate: the shaded O(e' ). . i

region represents combinations where small rotation mem- To determine the width of a pole layer, we set up and then
brane analytical solutions are accurate. For ~ h/a~0.075, there ~ determineu so that the resulting forms ¢11) and(12), to lowest
is no accurate small rotation analytical membrane result. order, are free ofe. Note that, in determining pole layers, it is
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essential we consider the limiting form 612), which, sinceg

=0(1), is alwaysL ,f=0. Since bending, represented by the firdpehavior that is accurately matched by membrane solutions

group ofg terms in(12), is important near the center of the film,(which neglect bending Localized bending deformation influ-

the extensional strains remain finite there. This, in turn, impliegces the results near the pole and close to the clamped outer

that edge; however, the majority of the span is dominated by stretching

deformation. This is clearly illustrated by the agreement between

f=Ap+0(e"), p=0(1) (34)  schwerin's analytical solution and the total and extensional strains

whereA is an unknown constant. Thus, {24) and(30) the widths determined via numerical solution. Hence, for large values,of

of the p0|e |ayers are, respective@y(a\l*?/ﬂ) and O(Sl’lﬂz)’ i.e., the membrane I|m|t, the Str-ain away from the_p0|e and.bound'

whereas in(21), where the width of the pole layer does not dedry layers can be estimated using the solutions give@@s with

pend on the form of, its width is O(s1~*?). These boundary the result

layers are illustrated by numerical results discussed in the next ) 3

section. . :E( P ) o (36)

" 3| 3E2h2a2n? '
6 Maximum Stresses and Strains

An important issue that arises when testing freestanding t
films is the deformation of the film beneath the load. For very thi

gmz gil;blﬁlcatre dettoiniet r?QtS)I\:ae:cs)teatFi)c?;\nst tlk?:tdlégdegbaﬁi?ﬁtéh;gr){ap ?_')\), extensional strains are negligible and the strain distribution
9 y 9 placy accurately given by the classical plate solution. Equati@8s

ment at the center. The result is completely reasonable load- . - P
displacement behavior, yet infinite rotatiofand strains under 6}smd(lg) yield the following for strain distribution in a plate under

the load point. Of course, in plate theory, there are finite-siz&?mt loading
regions near the load poirfpole layej and the clamped edge 120102
(boundary layer where bending is important, as described in e =¢ _a-7v)
Sec. 5. e 8
The extent of these bending influenced regions is illustrated in
Fig. 9, which shows normalized rotation distributions given as  Note that both asymptotic limitdinear plate theory and non-
linear membrane theoyyproduce strain distributions that are sin-
B gular under the point load. Deformation inside the pole and
(z—yl/sz boundary layers is highly localized and requires complex three-
me?) . . . . ) X
dimensional analysis to determine the strains and rotation.
Results are shown for zero prestretch and different values of The transition between bending and stretching regimes is illus-
The Schwerin membrane solutidne., the asymptotic limit in trated in Fig. 11 by plotting the strain ata=0.5 as a function of
which A—o or y—0+) is also shown. Near the point load and\. The two asymptotic limits are given by Eq86) (large\) and
outer boundary, bending influences the response and the anglg37 (small)\). In both limits, the total strain is slightly larger than
rotation goes to zero because of symmetry and clamped boundghy asymptotic predictions as it represents the sum of both bend-
conditions, respectively. This is more clearly observed in the ins@tg and extensional terms. For nonzero prestrain, a reasonable
which depicts the same information using a log-scale to highligbstimate for the maximum strain in the film is either the pre-strain
the behavior near the load point. From the pole- and boundaigself or the strain calculated using E@7), whichever is greater.
layer analysis in Sec. 5, the width of these asymptotic regions areAs long as the characteristic length of the indenter is larger than
of the orderO(e*™ ") =0((4m%/\)Y%). These theoretical esti- the width of the pole layefgiven in Sec. 5 of the papgrthe
mates agree well with the numerical solution shown in Fig. 9. earlier expressions can be used to estimate strain in the film. How-
Figure 10 shows the distribution of total radial strain in the filmever, if the size of the indenter is of the order of the width of the
calculated by adding bending strain in the outer fiber of the filnlbending dominated pole layer, the strains surrounding the contact
(h/2)(dp/dr), to the extensional strain given as Ef). Results must be determined by considering a finite contact region and then
are shown for a large value &f, which leads to load-deflection solving for the strains at the edge of the contact.

T@e corresponding circumferential strain to this analytical solu-
I'ﬂ n is zero.

Conversely, for smaller loads or thicker filise., small values

£ (1+1In(r)) (37)

Eah 1/3

P

(35)
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7 Concluding Remarks

The solutions presented in this paper, both numerical and ana-
lytical, represent a comprehensive framework that describes the
effects of prestretch, film thickness, span elastic properties,
loads on the mechanical response of freestanding circular fil
These effects are captured by a single two-variable map that i
cates when the nonlinear governing equations can be simplifi
The map should be useful in the development and interpretatio

This is the classic plate solution for uniform pressure load. The
expression for maximum bending strain in the film, as a function
of the physical parameters and load, is given as follows

max__ _ max.
=&

3(1-v?) [ Pa?
e (AS)

—|@r=1.
Ehz)

A.2 (Region 2) Linear Prestretched Membrane Theory With
Pole and Boundary Layers.Solution to the governing equations
in this region((16) and(21)), for pressure loading, yields

J— €p 1 — |1(KI’_)
N=——|=|lr—-—— A6
o(r) SZ(KZ) l1(x) (A8)
where
a 2
k?=12e4(1+v) H) (A7)
In physical terms, it can be written as
_ 6(1—v?) [pa®\[_ 1.(kr)
N=————\—||r— A8
ALr) K? Eh® I1(k) (A8)

The midpoint deflection of the film is then obtained by usiAg§)
in a numerical evaluation of Eq7) as

0
W(O):af B(r)-dr (A9)
1

alggr zero prestraifi.e., k—0), the earlier integration will yield the
%?gssic result given in EqA4). Equation(A8) is identical to the

)

n'o

lution presented by Wan et 4ll2], except that their result is
Fsented in terms of the prestress instead of prestrain.

mechanical tests that scan multiple length scales, since appropriA.3 (Region 3) Nonlinear Hipl (Small Rotation) Membrane
ate solutions can be identified a priori. Using a combination dfeory With Pole and Boundary Layers (Without Prestrairffor
these maps and numerical solutions, specific combinations gressure loading, there is no analytical closed form solution like
load, prestrain, and thickness have been identified for which arsehwerin’s solution(which is a special case in point loading

lytical solutions are applicable.
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Appendix

A Analytical Solutions for Uniform Pressure Loading

where Poisson’s ratio is one-thjrdHence the governing mem-
brane equations in this regidiEgs. (16) and (24)) for pressure
loading have been numerically integrated and an approximate so-
lution for midpoint deflection is obtained and given as follows

w(0) B pa

— —9W)| &,
whereg(v)~0.7179-0.170& — 0.149%2. Vlassak and NiX8]
discuss a similar result for pressure loading of a membgimeno
prestrain case where the geometry of the film considered was a
rectangle. In their derivation, the authors preassumed a form of

1/3
(A10)

A.l1 (Region 1) Linear Plate Theory With No Prestrairdisplacement in the membrane, which they used to find strain
Solving the governing Eq$16) and(17) for pressure loading, one energy and later used energy minimization techniques to find the

obtains

— 1_
gN=—5r(1-) (A1)

and

5-3v
61441-v)
In terms of the rotation variablB, the solution is given as

_ 3(1-v? ( pad

ro (A2

—
f(r_):(ﬁl)[—j+4?2—6]+

(A3)

(nN=- 2 ﬁ)[r_(l—?)]

unknowns in their displacement field.

A.4 (Boundary £2) Linear Plate With Prestrain. Solution is
same as in region AA6)—(A9)), except that prestrain and thick-
ness are related as follows

2
pmete— (A11)
0 12(1-v?)a?

B A Note on Numerical Integration. The governing equa-
tions in Sec. 3 of the paper constitute a two-point boundary value
problem, with four variables namelly f, g, andg. Based on a

physical interpretation of the problem, one can assume that the
solution variables are smooth functions of the radial distanee,

The midpoint deflection of the plate is then obtained by integrayymerical experiments with a shooting method revealed conver-

ing the earlier equation as

_ .2 4
1u)(pa) )

0)—af0 d_—s(
wo=a ] Bdr=—g | g

Journal of Applied Mechanics

gence problems, due to the high sensitivity of the results at the far
edge(i.e., outer boundary conditions to be matchealthe initial
guesses at large loads. Far greater success was achieved with a
relaxation method, which involves discretizing the domain into a
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finite-difference grid. The solution was guessed at each point in _ miger Membranen,” Z. Tech. Phyéleipzig), 12, pp. 651-659. )
the mesh and successively iterated to convérglax) to the true [14] Tsakalakos, T., 1981, “Bulge Test: A Comparison of Theory and Experiment

uti h vtical pi uti . h for Isotropic and Anisotropic Films,” Thin Solid Films[5, pp. 293—-305.
solution. The analytical plate solution was used to provide t €15] Voorthuyzen, J. A., and Bergveld, P., 1984, “The Influence of Tensile Forces

initial guess for loads low enough to be in the plate limit to start  on the Deflection of Circular Diaphragms in Pressure Sensors,” Sens. Actua-
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Stochastic Stability of Mechanical
Systems Under Renewal Jump
a wankewicz | F10C€SS Parametric Excitation

Private Bag 3, WITS 2050, A dynamic system under parametric excitation in the form of a non-Erlang renewal jump
Johannesburg, South Africa process is considered. The excitation is a random train of nonoverlapping rectangular
pulses with equal, deterministic heights. The time intervals between two consecutive
jumps up (or down), are the sum of two independent, negative exponential distributed

S. R. K. Nielsen variables; hence, the arrival process may be termed as a generalized Erlang renewal
process. The excitation process is governed by the stochastic equation driven by two
J. W. Larsen independent Poisson processes, with different parameters. If the response in a single mode
is investigated, the problem is governed in the state space by two stochastic equations,
Department of Civil Engineering, because the stochastic equation for the excitation process is autonomic. However, due to
Aalborg University, the parametric nature of the excitation, the nonlinear term appears at the right-hand sides
Sohngaardsholmsvej 57, of the equations. The equations become linear if the state space is augmented by the
9000 Aalborg, Denmark products of the original state variables and the excitation variable. Asymptotic mean and

mean-square stability as well as asymptotic sample (Lyapunov) stability with probability

1 are investigated. The Lyapunov exponents have been evaluated both by the direct simu-
lation of the stochastic equation governing the natural logarithm of the hyperspherical
amplitude process and using the modification of the method wherein the time averaging of
the pertinent expressions is replaced by ensemble averaging. It is found that the direct
simulation is more suitable and that the asymptotic mean-square stability condition is not
overly conservative[DOI: 10.1115/1.1839591

1 Introduction under a stochastic jump process excitation in the form of the ran-

=(—1)N® i i
Dynamic stability of elastic systems under parametric stocha%gm t.elegraph process(t) ( D™, whereN(t)“ IS a PO.ISSOH .
unting process. They derived the so-called “correlation split-

tic excitation has been a subject of research for a few decadf¥ Y . . . ; . )
Most of the papers on stochastic stability that have appeared d 9 _formulas, Wh'Ch are just the dl_fferentlal equathllg?s governing
with the systems under Gaussian white-noise or wide-band p € time evolution of t_he expectatlorE{Yj(t)(— 1™, w_here .
metric excitations. Ariaratnarfil] was one of the first authors to ' i(t) are the state variables of the original system. Obviously, in

deal with the problem of dynamic stability of a beam-columiiat formulation the time instants of the jumps (@p down) make

under a Gaussian white-noise parametric stochastic loading. ThePe? usual E_rlang renevyal process with paramb_teﬂ.
exist a number of definitions of stochastic stability, e.g. stochastic parametric excitation considered in the present pa-

Refs.[2,3]. Of special interest in connection with the problerrper Is a rando_m_ t_rain (.)f nonoverlapp_ing_ rectangular p_ulses ‘.Nith
undertaken in the present paper are pap&#, and[6], wherein equql, d_etermlnlstlc he!ghts. The excitation, or dynam_lc loading,
the problems concerning more than two state variables are ta Ifgltlhr']s k(;r;d.n;ay qffﬁé 'rllfgrgletcﬁn;mlas)asfgﬁ_hwgzrs'ndt.r]lfeeCeor;'
led. Ariaratnam et all4] investigated the stochastic stability of aroning device swi S utch on an . reby, ditteren

two-degrees-of-freedom system resulting from the erxuraIEartS of the system are coupled or decoupled, thus giving rise to

torsional stability of a narrow elastic beam subjected to station T ddﬁn gfytnhei?;(cing)aﬁ;ngagtr ::sngﬁ?;?érrgtl)\g??lyér;hmee?r@iT(liC-
stochastic end couples. They used the stochastic averaging me 1 9 Y P

. . . NN 10n. The durations of pulses are assumed to be negative expo-
and investigated the stochastic stability via Lyapunov exponents, .. .~ . .
Griesbaum[5] and Simon and Wedid6] considered a similar ential distributed random variables and the time gaps between

roblem governed by two counled. white-noise-driven. e uationtwo consecutive pulses are also negative exponential distributed
P 9 Y pied, €9 Fandom variables, but the parameters of both distributions are dif-

For four state variables, they used a hyperspherical transformatligpent' Consequently, the pulse arrival times constitute a renewal

and under the ergod!0|ty assumption they |nvest|gated t Yocess that may be termed as a generalized Erlang process. The
Lyapunov exponents with the aid of ensemble averaging rat

than time averaain citation process is shown to be governed by the stochastic equa-
Much | ttgnt'g.n has been given t non-G ian stoch tion driven by two independent Poisson processes, with different
uch less attention has been given o non-taussian stocha té‘l:ameters, which allows one to convert the original non-Markov

parametric excitations, for example, to random pulse trains. Sa|

. ; . oblem into a Markov one.
uels[7] was certainly one of the first authors to deal with par oble 0 a Viarkov one

metric excitation in the form of a random train of impulses Kot_ The objective of the present paper is to investigate the
; ; . : asymptotic moment stability and Lyapunov asymptgsempl
ulski and Sobczyk8] dealt with the moment stability of a system ymp y yap ymptd ple

stability with probability 1. The response in a single mode is in-
Cormibuted by the Abolied Mechanics Division offE A © vestigated; hence, the original problem is governed in the state
ontributed by the Applied Mechanics Division o MERICAN SOCIETY OF : : ; ;
MECHANICAL ENGINEERSfor publication in the ASME OURNAL OF APPLIED ME- space by t\.NO .StOChaStIC equatlons’ bgcause the stochastic equation
CHANICS. Manuscript received by the Applied Mechanics Division, June 27, 200f0r the excitation process is aUt0n0m|C-_ HOWEVGI’, due _tO the para-
final revision, September 13, 2004. Editor: R. M. McMeeking. Discussion on th@etric nature of the excitation, two additional state variables have
paper should be addressed to the Editor, Prof. Robert M. McMeeking, Journaltef he introduced in order to obtain the standard form of linear
Applied Mechanics, Department of Mechanical and Environmental Engineerin ; f :
University of California-Santa Barbara, Santa Barbara, CA 393106-5070, and will g?quatlons. I.t IS Sho""r? .that equatlo.ns for mean values Only form a
accepted until four months after final publication in the paper itself in the ASME osed set if tWO. add_'t|0na| equathns for second-order moments
JOURNAL OF APPLIED MECHANICS. are appended. Likewise, the equations for second-order moments

Journal of Applied Mechanics Copyright © 2005 by ASME MARCH 2005, Vol. 72 / 213



Z(t) condition for theZ(t) variable isZ(0)=0. According to Eq(4),
at the firstN,(t)-driven point the variabl&(t) jumps from O to 1,
1 at the first subsequem ,(t)-driven point it jumps back to 0, at

l L the first subsequem, (t)-driven point it jumps again to 1, and so

forth. Due to memorylessness property of the negative exponen-
T T oy T ¢ tial dist(ibution, t_his situation_is tgntgmount to the sequence of
R oy 4 alternating negative exponential distributed duratidgsnd time
gapsT, [10].

Every sample function ofZ(t) as governed by Eq4) is a
discontinuous function of time. Consequently, the sample func-
tions of Y(t) are only piecewise smooth but continuous, and the
sample functions ofy(t) are smooth. However, every sample

form a closed set if three additional third-order moments are tak#ﬂm'on ofZ(t) is of bounded variation over a finite time interval;

into account. Asymptotic stability of first- and second-order ord hnc% tt)he e><|ste(r;ce and uniqueness of solutions of the1q.
nary moments is investigated numerically, by evaluating the Iara- ould be ensured. =
Equations of motion in a state-space form are

est of the real parts of all the eigenvalues. In order to investigate
the asymptotic sample stability via Lyapunov exponents, the —

transformation of the four state variables to hyperspherical coor- dY(O)=c(Y()dt+b,(Y(D)AN, (1) + b (Y(D)AN, (L), (5)
dinates is made and two methods are used. One is the direct sinbere
lation of the stochastic equation governing the natural logarithm

of the hyperspherical amplitude process and of the stochastic Y v
equations governing the angular processes. The other one is based . .

on the ergodicity assumption, in which the time averaging of the ~ Y(D)=| Y|, ¢(Y(1))=| —0?Y—2{wY+Bw’YZ
pertinent expressions is replaced by ensemble averaging. A modi- z 0

fication of the approach used in Ref§] and[6] has been devel- ©)
oped. The numerical results show good qualitative agreement be-

Fig. 1 A sample path of the stochastic process Z(t).
X:N,-driven points, O: N,-driven points.

tween two methods of evaluating the Lyapunov exponents. Direct 0 0
simulation is, however, found to be more robust and less time b,(Y()=| O |, buY()=| O
consuming and therefore is more suitable for the problem. The 1-z —Z

asymptotic mean-square stability condition is, of course, morg ose equations are nonlinear due to the presend&Zofout if

conservative than Lyapunov asymptotisample stability with . _ -
probability 1. It is, however, not overly conservative and mag]e equations folY,5=YZ and Y23=YZ are appended, Eq$5)
ecome linear and then

provide a good estimate of the asymptotic stochastic stability.

2 Statement of the Problem Y Y,
Consider a beam-column under an axial compressive force, or a _ Y Y _
plate under in-plane compressive forces. Using a single-mode ap- Y(t)= YZ| | Y|’ (Y () =AY(1)
proximation, we obtain the differential equation Y7 Yos
Y(t)+2LwY(t) + 0?Y(t)— Bw?Z(t)Y(t) =0, (1)
where Z(t) is the dynamic compressive force, or a parametric 0 1 0 0
excitation. The valueg=1 andZ(t)=const=1 correspond to —0? 2w Bw? 0
the classical, Euler critical force for the static buckling problem. A= 0 0 0 1| (7
Let us consider the stochastic excitatioft) as a jump process,
in the form of a random train of step forces of equal deterministic 0 0 0X(B—1) —-2{w
magnitude, with random force duratiomg and random time gaps
T, between two consecutive forces. A sample of the excitation is 0 0
shown in Fig. 1. 0
Assume that all durations are identically, negative exponential b,(Y(t)= . by(Y(1)=
distributed random variableéB; with the probability density g Y1— Y3 K’ —Yi3
Yo—Y -Y
gr,()=pexp—ut), t>0. ) 2z 0= 2

_ It is worthwhile to note thaty,;;=YZ and Y,;=YZ are also

Likewise, all time gaps are assumed to be identical, negati rocesses; they are equal to zero in the time intervals where
exponential distributed random variabl€s with the probability ]gr?)p:po. - they q

density Stochastic equations fof,;=Y Z and Y 3= YZ have been ob-

gr(=vexp—wt), t>0. (3) tained from the generalized Isodifferential rule pertinent to the

) ) problem governed by Ed5), which has the fornicf. Refs.[11—
The arrival times of the force pulses make up a renewal procegs))

with interarrival timesT,=Ty4+T, .

The excitationZ(t) is governed by the stochastic equati@i V(LY (1)) n V(LY (1))
Refs.[9,10) dV(t,Y(t))=Tdt+El —yG(LY()dt
i= i
dZ(t)=(1—2Z)dN,(t) —ZdN,(t), 4)
whereN,(t) andN,,(t) are mutually independent homogeneous + D) V(LY (1) +by(t,P(1),Y (1))
Poisson processes with parameteend w, respectively. The dif- ATy
ferentials in Eq.(4) aredZ(t)=Z(t+dt)—Z(t), dN,(t)=N_,(t —V(t,X(1)]dN(t) @8)

+dt)—N,(t), a@=pu,v. At the time axis there are points driven
by N,(t) and N,(t) Poisson processes. Assume that the initiatheren=3.
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3 Moment Stability

Performing the averaging of the stochastic E&8.together with Eq(6) does not result in a closed set of equations for the mean
values due to the presence of the terid. However, the averaging of the stochastic E&$.together with Eqs(7) yields the closed
set of linear equations

m, 0 1 0 0 m,
d| m, 3 —w? —2w Bw? 0 m, 9
dt| ms| | v 0 —(v+u) 1 My3 ©
Ma3 0 v 0’ (B—1) —(2fw+v+p) Ma3

Wherem1= E[Yl], m2= E[Yz], m13= E[Y13]’ and m23= E[Y23]
Likewise the set for second-order momemtg = E[Yi], my,=E[Y1Y,], andm,,= E[Yg] is not closed. Appending the equations for
My13= E[Y1Y13], Mia=E[Y1Y23], andm,os=E[Y,Y 3] allows one to close the set, and the result is

0 2 0 0 0 0
m m
mll —w? —2w 1 Bw? 0 0 mll
12 12
df my| 0 -20° -4iw 0 2Bw? 0 my, (10)
dt| My v 0 0 —(v+pup) 2 0 Mi13
Mi23 0 v 0  wiB-1) —(2lw+v+u) 1 Mi23
m m
223 0 0 v 0 20%(B-1)  —(4lotvip) |

First- and second-order moments are asymptotically stable if allThe hyperspherical coordinates are expressed by the inverse
the eigenvalues of coefficient matrices in E(®. and (10) have transformations as
negative real parts. To investigate that, the well known Routh—
Hurwitz criterion is usually used. Here the eigenvalues are evalu-  A(t)= X2(t) +X3(t) + X3(t) + X3(t), O0<A(t)<os,
ated numerically and the regions are determined where all the

eigenvalues have negative real parts or(ooquivalently, where Xo(t)
the largest of the real parts of all the eigenvalues is negative arcta76X (t))’ Xq(1)=0,
1
T 37
. . . v(t)= —5<¥(t) <=,
4 Transformation to Hyperspherical Coordinates X,(t) 2 2
Let us first perform the following change of variables: arcta76 X4(1) +m, Xy(H<0,
14
Xl:Yl! X2:Y2/(U, X3:Yl3, X4=Y23/w. (11) ( )
The stochastic equations are then written as ®,(t)=arctal X?’—(t) — Z<¢l(t)<:
0 0 0 VX +X3(0) 2 2
X1 @ X1
X5 —w —2{w Bw 0 X5 Xa(t) ™ T
d = dt ®,(t)=arctal , —=<Dy(t)<=.
X3l | 00 0 o || %s 8 WG+ X3(0) +X5(1) 2= P03
Xa 0 0 wp-1) -2¢w|t% _ _ o .
With the aid of the generalized I differential rule (8) the
0 0 stochastic equations for the transformed variables are obtained as
0 0
+ dN,(H) (12) d(In A1) =hy(W(1),®4(1), (1))t
Xi=Xs =X | LANAD + 01, (W (1), D4(1),Dy(1))dN
Xo— Xy —Xu d1v P4(1), P v

In Lyapunov exponents approach to stochastic stability prob- F91,(V (1), P21, D2(1)AN,,,

lems it is convenient to transform the original coordinates to hy-

perspherical onels,6], which are the amplitude procesgt) and AW (1) =ha(W (1), P4(1), o(1))dt

the angular processas(t), ®4(t), andd,(t). The advantage of + 0o, (P (1), (1),P,(1))dN,
such a transformation is that the equations are easier to handle, as
the introduced angular processes are always bounded and the T 02, (W (1), P4(1),Dy(1))dN,,, (15)
equation for the logarithm of the amplitude process may be di-
rectly integrated with respect to time. d(®4(t)) =hg(W(t),P(1),P,(1))dt
The hyperspherical coordinates are introduced through the
ransformations g +9a,(W(1), (1), D5(1))dN,
X1 (1) =A(t)cosW (t)cosd,(t)cosd,(t), 193, (V (1), P1(1), Po(1))dN,,
Xa(t) =A(t)sinW (t)cos®, (t)cosd,(t) (13) d(P(t)) =ha(W(t),P(1),Py(t))dt
X3(t)=A(t)sin®,(t)cosP(t), T 094,(W(1),Py(1),Py(1))dN,
Xa(t)=A(t)sind (t). 94, (P (1), (1),D5(1)dN,,
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where the drift terms are given by where|[ X (t)|| = VX2(t) + XZ(t) + X2(t) + X2(t). This could be in-

h-=cos®-(t)(—2¢w sir W (1)co2 @ (t)cosd(t vestigated numerically, by simulating the stochastic Ed<2).
! 2(D(~ 24w ® 1t 2 However, when the sample curve is unstable, the values of the
+ Bw sinP(t)sin®,(t)cosd,(t)cosd,(t) state variables become very large, which causes some numerical

problems. It is more convenient to make use of the fact that
VXE(t) + X5(t) + X3(t) + X5(t) =A(t), and we find the Lyapunov

+ Bw sin® (t)sin®,(t)) — 2L w sir? d,(1),

hy=—w—2fwsinW(t)cos¥(t)+ Bw cosW¥(t)tand(t), exponent is
(16) 1A
hs=2¢w sir? ¥ (t)cos®(t)sin® ,(t) — Bew sinW(t)sir? & (1) )‘:t"";T'“ A(0) 0, (19)
+w cos®y(t)tan®,(t), simulating directly the stochastic equation forAft), as given by
h,=2 iR W(t)col ®.(t O (1)sin®(t Eq. (15). The advantage of this kind of simulation is that the only
4s2tws (Dicos Py (t)cos®,(B)sine() functions involved at the right-hand sides of E@$5), are the
—Bw sinV(t)cosd,(t)sind,(t)cosP,(t)sind,(t) angular processe¥ (t), ®4(t), and ®,(t), which are bounded

[see Eq(14)].

—wsin®4(t) + B sin®,(t)cos’ P(1) As the amplitude procesi(t) is not involved at the right-hand

—2¢w cosd,(t)sind,(t) side of Eq.(16) for In A(t) (cf. Refs.[5], [6]), this equation can be
e 2 20 directly integrated with respect to time and substituted into Eq.
and the “diffusion terms” are expressed as (19), which results in a time-average integral
1 1 (T
91,=3In2+In(cos®,(t)cosP,(1)), \=lim — f (hy(W (1), @4(1),D,(1))dt+g; (D4(1),D,(1)dN,
T—o 0
=1 D4 (t D,(1)),

03, = In(cos®y(t)cos®,(1)) F1,(P4(1),B5(0)dAN,) (20)
92,=0, Assuming ergodicity of  hy(W(t),P(t),P,(1)),
0,,=0, 91,(P1(1),P5(1)), andg,,(P4(t),P,(t)), we can make the fol-

. (17)  lowing replacement:
gz, =arctaricosW(t))—d(t), 10T
O3, = —P4(1), N:T”LYL? J'o (E[h1(W(1),®4(1), Py(1))]dt
g4yzarcta,< L“’“)) o), +FE[G1,(@1(1), @(0)dN, ]+ E[G1,,(®1(1), o(0)dN, D),
1+cos W(t) 1)
94 =~ Pa(D). whereE[gy,(®1(t),®o(t))dN,]=E[gy,(1(t), D(t)) ]»dt and

It can be seen from the form of the drift coefficiehtsgiven by  E[91,(P1(1),P2(1))dN,1=E[g1, (P (1), P2()) | ndt.
Eq. (16) and “diffusion” coefficientsg; , ,g;, given by Eq.(17) Further, it is assumed that the procesdegt), ®(t), and
that the time evolution of IA(t) and of the angular processes¥ (t) are stationary; hence, there exist time-invariant marginal
®,(t) andd,(t) is due to drift and jumps. They are driven by theProbability densitiesp(¢, ¢1,¢2) and p(¢1,¢,). The expecta-
not a jump process driven by the Poisson processes, as is seen ifi_
Egs. (15) and (17) (g,,=0 andg,,=0) this process develops R=E[Ny(W (1), @y(1) @2(t) 1+ vELGy,(®1(1) P(1)]
only due to drift. However, it is a discontinuous, or a jump, pro- + 1E[Q1,(P1(1),D,(1))]
cess of another kind. As it follows from its definitiqd4) at the 32 Ful2 al2
time instants when the displacement respoXig@) changes the _ f J hy(4, by, )P, by, o) dipdbid b
sign, the proces¥ (t) reveals jumps of magnituden? Between T B B A =
these jumps, the time evolution df(t) is due to drift only. The
angular processe®(t) and ®,(t) are exactly equal to zero in . 2 (2
the time intervals wherg(t) =0. This can be observed directly in Ch 777/2( v91.(¢1.42)
Eq. (14), but it also follows from the form of the coefficients,
h, as given by(16) and fromgs, , s, , Us,, Ja,, as given by T 191,(d1,62))Pp( b1, ¢h2)dp1d . (22)
Eq. (17). If the processe®,(t) and ®,(t) start, in some time
interval, from zero values, them=0 andh,=0; hence there is
no drift development and these processes continue to be zero

It should be commented here that the time averaging may be
rg&laced by the ensemble averaging; i.e., the time average

the firstN,-driven point there are jump changes in bdth(t) and 1 (T

®,(t) and at the first subsequeNt,-driven point there is a jump lim ?j Y(t)dt (23)

back to zero. The drift development is only present wizgn) T—e  JO

=1; hence®,(t)#0 and®d,(t)#0. converges td&[ Y(t)] with probability 1 if the proces¥(t) satis-
fies the following condition$14]:

5 Lyapunov Exponents and Stability 1. it is stationary in the strict sense,

with Probability 1 2. E[|Y(1)]]<0e,

3. almost all sample curves df(t) are Riemann integrable on

A trivial solution X(t)=0 of Egs.(12), which are equivalent to every finite interval.

Eq. (5) with Eq. (7), is almost surely asymptotically stable, if the

largest Lyapunov exponent is negative; hence, if The theorem may be applied to any compound functjovi(t)),
1 (X g(-) being an arbitrary Borel measurable function, if the condi-
)\:Iim—ln(—) 0, (18) tions 2 and 3 are satisfied by the compound function. In the
toon € IX o)l present problem the ergodicity and stationarity is assumed about
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the processed (W (1), (1), P,(1)), g1, (P4(1),P5(1)), and 1
91,(P1(1),®,(t)) In addition, the processe¥ (t), ®4(t), and
®,(t) are assumed to be stationary. As the response process
driven by the procesZ(t), it is of bounded variation and so are
the processesV (i), ®q(t), P,(t), hy(V(1),P(1),P,(1)),
91,(P1(1),P5(1)), and gy, (P4(t),P,(t)); hence, they satisfy
condition 3 of the above theorem. Obviously condition 2 is also
satisfied.

However, it is difficult to analyze the strict-sense stationarity of
W(t), D1(1), Do(t), hy(W(1),P1(1), Po(1)), 91 (Pa(1), Po(1)), > OF
91, (P1(1),®,(t)), which are the complicated transformations of
the response process. The stationarity assumption about these pi
cesses may be justified by the fact that the response process
driven by the proces&(t), which attains stationarity afteralong _gg|
time interval, i.e., as—o, for example, its mean value is given

by

05}

14

ImE[Z(t)]=lim——(1—exp(— (v+u)t))= . . . .

e VTR prv 0 10 20 30 40 50
(24) t [s]

The probability densitiesp(y,¢.,4;) and p(¢,4,) are Fig. 2 Sample function of the stable displacement response
evaluated from Monte Carlo simulations of the hyperspherical aQ'(t') Moderate durations /moderate gaps: g=1.0s-1, v
(E:]luSI;';\r coordinate processéqt), ®,(t), andd,(t) based on Egs. =1.0s°L, {=0.05, =05, 7=0.5.

Due to the jump nature of the angular procesdggt) and
d,(t), and the fact that they are equal to zero during some sig- ) . .
nificant time intervals, the marginal probability densitie?\l Al th_e f'rSt. Nn(t)'ﬂr"{e” point ty, _subsequent o an
(¥, by,b,) and p(dby,b,) are very spiky, the spikes being at ,(t)-driven pomt,dNﬁL—l, hence, according ;o E@L7), there
$1=0, ¢,=0. This makes the numerical evaluation of the inteS @ Jump  change in ®(t) of  magnitude
grals(22) cumbersome. The evaluation is very much improved B (T (), Pa(ty,), Pa(ty,) = — Pi(ty,),
those spikes are represented in the probability densities in the (I)i(t;#):(Di(tlzﬂ)+gi#(q}(tlzp_)1¢)1(tlzﬂ)!¢)2(tlzﬂ)):0- (29)

following way:
o Thus, the initial conditionsb;(ty,) or ®;(t,,) for the subsequent
P, $1,42) =Pod(¢1) 5(h2)p(4) +(1=Po)p (¢’¢1'¢2)('25) time interval starting aty, or t,,, are determined.

(b1, b2)=Pod(h1) 3( ) +(1—Po)p®(¢y,6,), (26) © Numerical Results

. . . . . As the durations and time gaps are negative-exponential distrib-
where §(--+) is the Dirac deltap() is the marginal probability uted the mean duration E[ng]f Un andgthe meaFr)l time gap is

density of ¥(t), and %O(’p"ﬁl"f’Z)* P°(¢1.4,) are conditional E[T,]= 1/v. The mean interarrival time of the pulses equals
probability densitiesp®(1, 1, ¢2) =p(4, b1, b2 p17#0.62#0),  E[T,]=E[T]+E[T,]= U + 1w = (u+ )/ .

PO(¢1,h2) =P( 1, ol #1#0,p2#0), whose areas are normal- Computations have been performed for pulses with parameters:
ized to 1. The height®, of the spikes are obtained by collecting

i = = ,v)=(0.1,0.1); long durations/long gaps,
the counts for whichp, =0, ¢,=0. (a,v)=( _
: ; (m,v)=(1,1); moderate durations/moderate gaps,
The integrals in Eq(22) reduce to (m,v)=(10,10); short durations/short gaps,
3mi2 (#,v)=(0.1,10); long durations/short gaps.
A= —Zngofi lesmz yp(ih)dy The respective mean interarrival times areéE[T,]

=20;2;0.2;10.1s].
8ml2 (ml2 (ml2 Sample functions of the displacement respovigg and of the
+(1-Py) o _vlzhl(‘!”‘bl"{’?) velocity responseY(t) for the stable behavior, obtained fg
=0.5 and for the initial condition&’(0)=1 and Y(0)=0 are
0 1 shown in Figs. 2 and 3, respectively. It is seen that the system is
X (i, b1, ¢2)dYddrd eyt 5 vPoIn 2 performing essentially the natural vibrations.

Figure 4 shows an example phase plot of the stable response

—ml2

w2 [l obtained for3=0.5 and for the initial conditiony(0)=1 and
+(1=Po) o _7/2( 91,1, ¢2) Y(0)=0. An example phase plot of the unstable respdifises
=1.2) for the same initial conditions is shown in Fig. 5.
+u01,(b1,02)p°(b1,¢2)dp1d b, (27) Simulated sample function &i(t) obtained for the initial con-

dition Z(0)=0 is shown in Fig. 6.
The simulation scheme for the hyperspherical angular processeshe sample functions of the angular proces$ggt), ®,(t),
governed by Eq(15) is as .follows. Between the Pqisson point%mdq;(t) corresponding to the sample functionft) shown in
the Runge-Kutta scheme is used. At the fig((t)-driven point Fig. 6 and relevant to the stable response are shown in Figures
and at every firstN,(t)-driven point t,, subsequent to an 7_9 respectively. The behavior df;(t), ®,(t) is in agreement
N, (t)-driven point, there is an incremedN,=1; hence, accord- ith that predicted from the governing stochastic equations
ing to Egs.(15 and (17), there is a jump change i®;(t) of (15-17. Indeed the procesE(t) reveals jumps of magnituden2
magnitudeg;, (W (ty,), P1(ty,), Pa(ty,)) at the time instants separated by the intervals equal to the natural
N B B B B periods. This is in agreement with the fact that the system is
@i(ty,) = Pi(ty,) + i (W (ty,), Palty,) Pa(ty,).  (28)  performing essentially the natural vibratiotsf. Fig. 2), hence
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0 10 20 30 40 50 -6 -4 2 0 2 4
t[s Y
Fig. 3 Sample function of the stable velocity response Y(8). E?L'.OS quégeﬂpio;;f :Zeognstable fesponse for £=0.05 &
Moderate durations /moderate gaps: m=1.0s"!, »=1.0s"1, ¢ ' ' '
=0.05, B=0.5, v=0.5.

hencehys=vu/(u+v) is the stationaryfast—o) mean arrival
rate andh,s=1/E[T,].
X4(t) changes the sign periodically. The spectrum of the sampleThe curves in Figures 12—15 show the stability regions border
function of W (t) (Fig. 10 obtained with the aid of the fast Fourierlines. The stability region is below the curve. The dotted line and
transform technique reveals the peak at the natural frequency dashed line indicate lines of zero real parts of the eigenvalue with
=27/10=0.628 s and also some finite value at=0, which the largest real part, for the mean and mean-square stability, re-
corresponds to the nonzero time average of the sample functianectively. The thick solid line indicates the zero Lyapunov expo-
Finally, Fig. 11 shows the IA(t) for the stable response nentas obtained by direct simulation of the equation fak(t), as
behavior. given by Eg.(15). The thin solid line corresponds to the zero
In Figures 12-15, the stability regions are shown against thgapunov exponent as evaluated by ensemble averaging, in terms
nondimensional parameter= (u+ v) w/ wya, which is the ratio of integrals(22). The results for Lyapunov exponents obtained
of the mean interarrival tim&[T,] of the pulses to half of the from both methods are qualitatively the same. It is seen that the
natural periodT,=27/w of the system. In other words;is a lines of zero Lyapunov exponents lie above the lines obtained
relative measure of the density of the pulse train or of its medrom the mean-square stability. This is certainly supported by the
arrival rate. Note that the mean arrival raienewal density results shown in Fig. 12, where a very fine mesh was used for the

ho(t) of the underlying renewal process is values ofr close to zero. Such a refinement leads, however, to an
excessively long computation time and has not been done in other
mv . cases.
ho(t)= ——(1—exp(—(v+ u)t)); 30 . . .
o(t) V+,u( = (v pt) (30) If w=v, i.e., the mean durations of the pulses and mean time

gaps are the same, the curves showing stability regions have very
similar shape(Figs. 12—14. As the natural frequencw of the
system decreases, so does the parameded the stability region

0.6 increases. The curves for the moment stability have identical
shapes. However the stability regions are not the same, because
04}
02 " 1 S S— —
ot 0.8
S
-0.2 0.6
5
-0.4 04}
-06} 1 02t
o . , _ oL |
-1 -0.5 0 0.5 1 A .
Y 0 10 20 30 40 50
t [s]
Fig. 4 Phase plot of the stable response for  {=0.05, u=1.0,
v=1.0, B=0.5, 7=0.5 Fig. 6 Simulated sample function of  Z(t) for u=1.0, »=1.0
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Psi

,(t)

0 10 20 30 40 50
t

-0.8 / A . L \/ Fig. 9 Sample function of W(t) for {=0.05, u=1.0, »=1.0, B8
0 10 20 30 40 50 =05, 7=05

half of the natural period; i.ez=1. This is so because the exci-
tation itself as well as its mean valig Z(t) | and its mean square
E[Z?(t)] are not periodic functions. The mean value and the
mean square are equal and are both given by the expregipn

the results are shown against the relative parametsheny and  LIKeWise, if Z(t) is an external excitation, nothing like a *reso-
nance” effect is observed for the mean response when the mean

v are large, the same valueas for smallx and v corresponds to . . ; = : .
a higher natural frequency. For example for a pulse train witfterarival imeE[T,]= (u+ v)/pv is equal to a natural period
(m,v)=(0.1,0.1) ancE[T,]=20 (Fig. 12 the natural frequency n=2wlw; ie., when w=2mvu/(p+v). The mean value
corresponding to a value=1 equals /20, while for (x,v) E[Y(t)] of the response of the linear oscillator to an external
~(1,1) with E[T,]=2 (Fig. 13 it is m/2. It is seen that a larger ©XCitationZ(t) is given by[9]
stability region corresponds 0= 77/20 in Fig. 13 than in Fig. 12. v 1
This means that as the mean interarrival time of the pulses dev(t)= 2 ( 1- 7. 2
creases the stability region for the same oscillator increases. In (r+pe (vFptfo)™+ g
other words, the stability region is larger for the pulse train with v+
short durations and short gaps than for long durations and long - T(wd(Zgwf(er 1))COSwyt
gaps. d

When the pulses have long mean durations and short mean gaps
(Fig. 15, it corresponds to the load which is almost constant and + (22w — w? = {w(v+ ;L))Sinwdt)exrl(*éwt)) ,
quasistatic. The lines for mean, mean-square, and Lyapunov sta- /
bility by the direct simulations coincide. The stability region is (31)

essentially the same as for the classical buckling problem, i.e, .
B=1is tk?le critical value. gp where wy= wy1—¢* is the damped natural frequency of the os-

Interestingly, nothing like a parametric “resonance” effect i§i|lator. As it is seen there is no “resonance,” or singularity, effect.
observed when the mean interarrival time of the pulse train equals

Fig. 7 Sample function of ®,(t) for {=0.05, u=1.0, »=1.0, B8
=0.5, 7=0.5

w?exp(—(v+ u)t)

4
x 10
0.8
3.5
06}
3 L
04t}
25H
02¢
S 3 2]
& 0H =,
1.5H
-02}t
0.4 i
-06} i 0.5 K
-0.8 2 . 0 t L T
0 10 20 30 40 50 0 0.5 1 1.5 2
t [s] (W) [s71]

Fig. 8 Sample function of ®,(t) for {=0.05, ©=1.0, »=1.0, Fig. 10 Spectrum of the sample function of  W(¢) for {=0.05,
p=05,7=05 p=10, »=10, g=0.5, 7=0.5
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Fig. 11 Sample function of In  A(f) for the stable response be-
havior, for ¢=0.05, u=1.0, »=1.0, B=0.5, 7=0.5

Fig. 13 Moderate durations /moderate gaps: u=10s"%, »

=1.0s"%, ¢=0.05. Dotted line: mean stability, dashed line:
mean-square stability, thick solid line: Lyapunov exponents by
direct simulations, thin solid line: Lyapunov exponents by en-

Regarding the computational effort, it should be commente§mble averaging.
that the direct simulation converges much faster than the time-
averaging method, with a factor of 100. Further, the direct simu- .
lation is simpler to program. The main problem of the time?/ Concluding Remarks
averaging method is to determine the probability density functions Asymptotic stability of first- and second-order moments as well
P4, ¢1,¢2) andp(¢y,¢,), which is very time consuming. as Lyapunov asymptotitsampl@ stability with probability 1 are

In all examined cases, the asymptotic sample stability conditigivestigated for the dynamic system under a renewal driven jump
reveals larger regions of stability than the asymptotic mean-squgi@cess parametric excitation. The original state vector of the sys-
condition. This observation is in agreement with the general faglm is a non-Markov process; however, the excitation process is
that the asymptotic moment stability is more conservative thahown to be governed by the stochastic equation driven by two
Lyapunov asymptotic stability with probability Iasymptotic independent Poisson processes, with different parameters, which
sample stability [15,16. In particular, the asymptotic meanajlows one to convert the original non-Markov problem into a
square stability implies, for the linear systems, stability with proliyarkov one. The original state vector has been augmented by two
ability one[3]. Obviously, as the ordinary moments are consicgdditional equations. It has been shown that the set of equations
ered herein, the mean-square stability also implies the megj the mean values is closed by appending the equations for two
stability. extra second-order moments, and that the equations for second-

0.4H -

Fig. 12 Long durations /long gaps: m=0.1s"!, »=0.1s"!, ¢ Fig. 14 Short durations /short gaps: u=10s"! »=10s71, ¢

=0.05. Dotted line: mean stability, dashed line: mean-square
stability, thick solid line: Lyapunov exponents by direct simu-
lations, thin solid line: Lyapunov exponents by ensemble
averaging.
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=0.05. Dotted line: mean stability, dashed line: mean-square
stability, thick solid line: Lyapunov exponents by direct simu-
lations, thin solid line: Lyapunov exponents by ensemble
averaging.
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Investigation of the Formation
and Applications of Ice Powder

Water ice powder constitutes a potentially important manufacturing tool. Availability and

D. V. Shishkin cleanliness of this powder constitute its major advantage. It was shown that the ice
B particles could be used as an abrasive in the course of waterjet machining. Although the
E. S. Geskin erosion potential of ice particles is inferior to that of the conventional abrasives, the

environmental soundness of ice enables us to expend the use of the ice abrasive jets on
food industry, medicine, precision machining, etc. The principal issue in the use of the ice
B.S Goldenberg abrasive_s is pa}rticles formatio_n. Analysi§ of various technolog_ies shovx_/ed that an effe_ctive
e avenue in particle production is integration of the water freezing and ice decomposition.
As the results, the desired flow rate of ice particles at the desired temperature and size
distribution can be generated. The objective of the present paper is the experimental
investigation of the production of ice particles. An experimental setup was constructed
and used for particles fabrication at controlled conditions. The acquired information was
applied for the analysis of the phenomena leading to the particles formation. As a result
a hypothetical mechanism of the ice decomposition was suggested and validated. The
experiments involving the decontamination of the electronic devices, semiconductors, fab-
ric, leather, food products, polished metal, soft plastics, rusted auto parts, etc., were
carried out in order to demonstrate the potential application of the ice blasting.
[DOI: 10.1115/1.1795223

e-mail: gaskin@nijit.edu

New Jersey Institute of Technology,
Newark, NJ 07102

1 Introduction numerous studies, and a number of theoretical techniques were

suggested for process description. The phenomenon of ice forma-

Unique properties of the water ice determine its potential Manyan“under normal conditions was, for example, fairly well inves-

facturing applications. First, water ice is a readily available, ine>§i- ated by Sandersdit] and Hobbg2]. However, no information
pensive material, which, at least in principle, can be used as g y : !

reen manufacturing tool. Onlv water. electricity. and refrigera %available about ice behavior in the course of integration of the
9 Anufacturing tool. y water, icity, iger lidification and decomposition. The acquisition of such informa-
(if a cooling apparatus is not availaplare needed for the fabri-

cation of this tool, which can be produced “just in ime.” Second“on is the objective of this research. The work involved the ex-

ising applications of the ice particle is cleaning technology. the
Current cleaning processes are based on the use of chemicals or

sand abrasive-water blasting and, thus, bring about heavy environ- .

mental pollution. The ice-air blasting constitutes a unique cleanidg EXperimental Setup

technology that generates practically no off-products, thus has norhe setup for investigation of the ice powder formation in the

negative environmental impact. The use of ice blasting for sugurse of freezing is shown in Fig. 1. The system consists of the

diverse operations as graffiti removal, food cleaning, car washifgllowing functionally separated blocks:

etc., will result in the reduction of pollution and, thus, improve- ] o

ment of the quality of life in urban areas. Ice blasting can effec- * ice-making block, which includes the evaporator, water and

tively eliminate the consequences of chemical and biological at- cooling media precision control valves, auger, auger driver,

tacks. The fine ice powder will constitute an effective medical and sealing and cooling apparatus

tool. * ice-unloading mechanism, which includes the driver for
The app"cations above are feasible if and 0n|y if the ice par- noz.Zle'block traverse motion and drivers for nozzle-block

ticle will be readily available for users. The objective of this study ~ SPrings feeder ]

was development of a practical technology for particles produc-* nozzle block, which includes parallel-situated nozzles and

tion. Several technologies, including decomposition of solid ice, Nnozzle-supporting device

freezing of water droplets, and a combination of water freezing t,¢ ystem Fig. 1 constitutes a modified commercial icemaker
and ice decomposition, were tested. The ice decomposition WaSthe Hoshizaki Company of Amerid@]. Thus the dimensions
proven to be the most effective technology. The logistic of th the auger, heat exchanger, water supply port, etc., were deter-
process is straightforward and simple. The process is inexpensig, o g by the design of the Hoshizaki lcemaker 1. The coolant 2
and allows accurate control of particle size and temperature aqfly \yater control 3 valves determined the rate of the cooling
therefore, is able to address the needs of the industry. edia and water supply to the system. New auger driver 4 was
The formation and decomposition of water ice was a subject Qs incorporated into the system in order to increased the torque
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF and prevent ice jamming' The rotation momentum of the auger 5
MECHANICAL EN)élNEERpseor publication in the ASME QURNAL OF APPLIED ME- IS prOVIdl_Ed via a gearbox 6 with gea_r-ratlo 1:100. Cooling media
CHANICS. Manuscript received by the Applied Mechanics Division, July 2, 2003Was ﬂowmg thrOUgh the evaporator internal channels 7.
final revision, June 15, 2004. Associate Editor: D. A. Siginer. Discussion on the paper The ice-unloading mechanism 8 coercively delivered ice par-
e Do oSS and Emtaonc g, taaiiles 10 the abrasive port o the nozzles preventing condiits 9 and
of California—Santa Barbara, Santa Barbara, CA 93106-5070, and will be accepr%aezzs(e;vsggf V%Igsfrzmrcalﬁlgeg(;ngy 'At‘tt];hirﬂgtalzt”?é trr:_]eegﬁ:‘;es);ﬁﬁaggzﬁ'_

until four months after final publication of the paper itself in the ASMEJBNAL OF v !
APPLIED MECHANICS. rected it to the nozzle block 11. The nozzle block consisted of two

produced-powder, highly sensitive surfaces were treated.
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flow rates differed for liquid nitrogen and Galden HT-55 coolant:

Fig. 1 Schematic of experimental setup: l—icemaker, ~9.8 I/min for liquid nitrogen and 9.88 I/min for the Galden

2—cooling media control valve, 3—water control valve,

4—auger driver, 5—auger, 6—auger driver gearbox, HT-55 cooling liquid. The temperatures of the liquid nitrogen
7—evaporator internal channels, 8—ice unloading mechanism, and Galden HT-55 cooling liquid were-196°C and —72°C,
9—conduits, 10—nozzle ports, 11—nozzle block, 12—air flow respectively.

control valve, 13—sensors, DAQ—data acquisition card The granulometric composition of the ice abrasive as a function

of water flow rate was determined using the series of digital im-
ages and the Image Tool statistical package developed by Univer-
air guns connected in parallel and a special nozzle-supporting déy of South Carolina. Water, cooling media types, and flow rates
vice. The high-pressure air supply rate was also monitored by served as the main process control parameters. The auger was
air flow meter 12. The ice air jet was formed and directed to thextracted from the evaporator after the fixed-cooling time periods
substrate surface. and ice-particles formation phases were monitored and docu-
The system was also equipped with sensors 13 for monitoringented(Fig. 4). The ice structure was studied as well as crack and
the water flow rate, water temperature at the inlet, the temperatgmanulometric distribution along its way to the exit of the evapo-
of the wall separating the water and cooling media, and the icator. The ice behavior under dynamically applied compressive
temperature at the exit of heat exchanger. The system wasd shear stresses and fast cooling was investigated. The visual
equipped with a device for rapid extraction of the auger in order tibservation of process of ice-powder formation was conducted.
examine ice distribution during the freezing, fragmentation, and The actual time of ice-plug solidification for the distinct water
solid-state coolingFig. 2). A photograph of the system in opera-flow rates was established through the auger driver current-time
tion is presented in Fig. 3. diagram presented on Fig. 5. The ice-plug solidification and ther-
mal expansion time is characterized by the duration of half of
3 Experimental Investigation of Particles Formation  ascending wave on the current-time diagram. The fluctuating char-

Several experiments were conducted in order to determine c8fter of ice-powder flow at the evaporator outlet supported this
relation between process conditions and particles properties. Hanclusion. Distinct frequencies of these oscillations for different

water flow rate ranges from 0 to 200 ml/min. The cooling medi@ater flow rates were also observed. The frequency of ice-powder
oscillation was measured and compared with the drivers’ current

oscillations. They did directly correspond to the ice-powder flow

fluctuations. Then the conclusion could be drawn that the
descending half of the current wave corresponded to the plug
fragmentation.

Experimental results have shown that the granulometric com-
position of ice abrasive is directly related to the water flow rate
(Fig. 6) as well as the ice temperature at outlet point of the evapo-
rator (Fig. 7). The set of experiments was conducted to monitor
the above dependence and incorporate it into the technology of ice
abrasive production.

4 Phenomenology of Particles Formation

The nucleation of cracks under compressive stress occurs gen-
erally due to dislocation pileup at the grain boundaries and relief
of stress concentration by parting along the grain boundaries. The
phenomenon of crack nucleation has been well investigated for
low to moderate loading conditions, and this study indicates that
crack nucleation is well described by application of the delayed
elastic strain criteriofi1].

When ice is subjected to a stress it initially deforms in three
Fig. 2 Device for auger rapid extraction distinct ways: it undergoes an immediate elastic stegina tran-
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Fig. 4 Photograph of the ice-plug initial

(a) and final (b) formation phases

sient time-dependent delayed elastic straipn, and a time- effects have become negligible, the deformation process becomes
dependent nonlinear viscous creep strgjn The “delayed elas- more complex again, and a stage of tertiary creep may be entered.
tic” strain ¢4 also is referred as primary creep and is largely For high-stresses nucleation conditions, there introduced some
recoverable on unloading; the “viscous” straip is referred to as alternative nucleation criteriof2] that assumes that crack nucle-

the secondary creep and is permanent.

ation under compressive stress occurs simply when the lateral

To describe this stress-strain behavior for granular ice, wetlensile strain induced by Poisson expansion reaches a level al-
verified constitutive laws exist. Once the stage of apparentiyady defined as critical for tensile crack nucleation.
stable secondary creep has been reached and all transient cre@ased on the experimental results described above the hypo-

Motor Current vs. Time

Current (A)

Time (s)

——Water Flow
Rate=100
mi/min.

Water Flow
Rate=150
mi/min.

-~ Watter Flow
Rate=200
mijmin,

Fig. 5 Auger driver current versus time for distinct water flow

rates
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Fig. 6 Average diameter of ice granules versus water flow rate

at the evaporator outlet
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thetical mechanism of the ice plug fragmentation was suggested
(Fig. 8. According to this hypothesis, the ice nucleation initiates
as soon as the liquid water meets the evaporator wall having tem-
perature of—196°C. The initial stage of ice-plug formation is
presented in Fig. 4. According to Sander$af the rapid condi-
tions of ice-plug nucleation and propagation suggested that isotro-
pic ice polycrystalline structure has formed. Due to sufficient tem-
perature gradient during solidification, a multilayer ice-plug
pattern was formed throughout the ice plug volume and could be
visually observed in Fig. 4. The supercooling and rate of heat
removal at various sites of the plug determine the distribution of
ice properties. At the next stage of freezing, ice undergoes the
following transformations: the frozen boundary-layer thermal con-
ductivity is sufficiently higher than that for water and the ice-plug
formation process accelerated along with the generation of inten-
sive thermal expansion stress. Ice-plug expansion imposed high
pressure and shear stresses on the immovable boundaries. How-
ever, the ice plug can freely expand along the auger helical way.
This phenomenon was clearly indicated by the current-time dia-
gram and corresponds to the ascending part of the current cycle.

Average Dameter of loe Granules vs. lce Temperature
(Top Contrd Point)

Diameter of Ice
Granules (mm)

D2 WA OO N

Tenperature (deg O)

Fig. 7 Average diameter of ice granules versus ice tempera-
ture at the evaporator outlet
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Fig. 8 Schematic of the hypothetical mechanism of ice-plug fragmentation

According to Sandersofi], experiments conducted for moderateevaporator outlet. The supercooling process continued without
thermal stress conditions the ice-plug polycrystalline structure uany substantial changes in the granulometric composition. The
dergo the recrystallization process with tensile zone formatiatevelopment of this technology will enable producing low-cost
along the grain boundaries. It would be logical to make an afine powder. As the result it could be adopted by the semiconduc-
sumption that under high thermal stress conditions, polycrystalliter, electronics, and biomedical industries.

ice structure behaved similarly. Now the plug is populated with a

wide variety of cracks having the length of the order of the grain

size, lying at various angles clustered around the loading[&kis

The ice-plug decomposition starts under combined thermal expén- Cleaning of Sensitive Surfaces: Case Studies

sion conditions and dynamically applied stresses along with thea nymper of experiments were carried out in order to demon-
transition of the ice plug to a brittle mode due to the ice plug Ol e the potential applications of the ice particles. In the course

supercooling process. The tunnel and wing crack propagaigtihese experiments, ice particles were entrained in an air stream
along the grain boundaries were clearly observed during the €4 form ice-airjet1AJ). This jet was used for cleaning and de-

tractions of ice plug. . . oating of various surfaces. The parameters of ice-airjet were in
The shearing stress of the necessary magnitude provided QX following range: the average diameter of ice particles pro-
auger rotation finalizes the decomposition of the plig. 9. The - g,ceq by 1AJ system varies from 0.25 mm for biomedical appli-
stage finalizes the procedure of ice-powder formation. The igions to~3 mm for the majority of electronics and industrial
powder continued moving along the helical way toward thgieaning cases; water and ice flow rates ranged from 0 to 200

ml/min; the air pressure was 580 kiPgb psj with flow rate of
0.566 ni/min; ice temperature variation before entrainment to the
nozzle was from-50°C for biomedical cleaning te-80°C for the
industrial cleaning cases; the standoff distance varied from 5 mm
F2 Fa for most electronic and photonic cases to 25 mm for biomedical
applications.

Different electronic devise&computers, calculators, electronic
games, and watchesvere disassembled, and electronic boards
were contaminated by grease and metal powder. Then the boards
were cleaned and reassembled. The computers, calculators, and
watches worked normally. Other experiments involved degreas-
ing, depainting and deicing of liquid crystals, polished metals,
optical glass, fabric; removal emulsion from a film, etc. The bio-
medical applications of the IAJ were also investigated. In the

Fi11  course of the experiments, chicken and pork skin was treated by
IAJ. The feasibility of removal of the epidermis layer without
damaging the underneath-laying layers of the skin was demon-
strated. Extremely fine ice abrasive of average diameter of 300
microns was used for these purposes.

The feasibility of the damage-free and pollution-free decon-

F22 tamination of highly sensitive surfaces was demonstrated. A ge-

Fa neric environmentally friendly surface-processing technology is
emerging as the result of the above experiments. Figure 10 repre-

Fig. 9 Forces involved in ice-plug fragmentaton: F ,,, Sents photographs of basic types of deposit and substrates, which

F,,—principal compressive forces, Fa—auger generated forces were treated in the course of IAJ experiments.
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Fig. 10 Photographs of a) graffiti painting, b) graffiti painting removed with ice-airjet; ¢ ) heavily greased machined part, ¢)
grease removed from the part with ice-airjet

6 Conclusion fied icemaker can be also used for production of particles from

The performed study demonstrated that ice constitutes a viablg terials different from water ice.
abrasive material, while a 4N Auger type heat exchanger is#(’bknowledgment
competitive device for particles production. Of course, if inexpen-
sive ice is readily available, for example in the Arctic, the crush- The work was supported by the NSF Grant No. DMI9900247.
ing technology is the most advantageous. In a more general case,
when ice should be fabricated, the icemaker shown in Fig. 1 i ferences
more competiti\/e device for partides produc’[ion. One of thell] Sanderson, T. J., 198&e Mechanics: Risks to Offshore Structyrésaham &
SFrong advantages of this d.e\{i(.:e i.S its feas!bi"ty to contrpl partiCIe[Z] ch?lgrl?snls.L\c/’.?[:jlgr;’zuliE.PhysicsClarendon Press, Oxford.
size by the variation of solidification conditions. Thus, it can be [3] Hoshizaki America, 1998, Manual, Hoshizaki America, Inc., Peachtree City,
used to produce “just-in-time, just-needed” abrasives. The modi-  GA.
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Three-Dimensional Vibration
Analysis of Rectangular Plates
With Mixed Boundary Conditions

Three-dimensional vibration solutions are presented for rectangular plates with mixed
boundary conditions, based on the small strain linear elasticity theory. The analysis is
focused on two kinds of rectangular plates, the boundaries of which are partially fixed
while the others are free. One of those studied is a rectangular plate with partially fixed
boundaries symmetrically arranged around four corners and the other one is a rectangu-
lar plate with partially fixed boundaries around one corner only. A global analysis ap-
proach is developed. The Ritz method is applied to derive the governing eigenvalue
equation by minimizing the energy functional of the plate. The admissible functions for all
displacement components are taken as a product of a characteristic boundary function
and the triplicate Chebyshev polynomial series defined in the plate domain. The charac-
teristic boundary functions are composed of a product of four components of which each
corresponds to one edge of the plate. The R-function method is applied to construct the
characteristic boundary function components for the edges with mixed boundary condi-
tions. The convergence and comparison studies demonstrate the accuracy and correctness
of the present method. The influence of the length of the fixed boundaries and the plate

thickness on frequency parameters of square plates has been studied in detail. Some
valuable results are given in the form of tables and figures, which can serve as the
benchmark for the further researcH.DOI: 10.1115/1.1827250

Keywords: Eigenfrequency, Elasticity Solution, Mixed Boundary Conditions, R-Function,
Ritz Method, Thick Rectangular Plate, Three-Dimensional Vibration

tion technique combining with the weighted residual method
along the interconnecting boundaries of subdomains. Su and
iﬁng [11] presented a nondiscrete approach for vibration and
Hckling analysis of rectangular thin plates with mixed edge sup-
s. Kim and Dickinsori12], and Kitipornchai et al[13] used

1 Introduction

Rectangular plate§1] have wide applications in various
branches of engineering such as the floor slabs and pile cap
structural engineering, printed circuit boards and solar panels

electrical engineering, and so on. In some cases, the bound %tL ; ltinli hod dv the f brati f
supports of a plate may be discontinuous, and thus exert a sigrifi¢ -@grangian multiplier method to study the free vibration o

cant influence on the mechanical properties of the structuresPAint-supported thin and moderately thick plates, respectively.
number of publications on rectangular plates with mixed edd/é(e' et al.[14] used the dls_crete singular convo_lutlon algo_rlthm_ to
conditions can be found in the literature. Various analytical angjudy the natural frequencies of rectangular thin plates with mixed
numerical methods have been adopted in the vibration analydi@undary conditions. Liew et g|15] analyzed Mindlin rectangu-
Using the superposition method, Gormigh-4] studied, respec- lar p!ates with _|nternal point-supports by directly addl_ng_the geo-
tively, the vibration frequencies of thin and moderately thick rechetric constraints of the point-supports to the admissible func-
angular plates with mixed edge supports such as point suppdi@fis- Moreover, the differential quadrature mettd®,17 has
and partially clamped supports. Keer and Sf&fildeveloped the been applied to the .V|bra.t|on analysis of Klrghhoff and erjdlln
dual series solutions to study the free vibration of rectangular thifctangular plates with mixed boundary conditions, respectively.
plates with mixed edge conditions, which are finally reduced to Both the classical thin plate theory and moderately thick plate
the homogeneous Fredholm integral equations of the second kiHgory are approximate theories by imposing some assumptions
Narita [6] gave the trigonometric series-type solutions for then the deformation of a plate, especially on the strain and/or stress
orthotropic rectangular thin plates with mixed boundary cond#istribution along the thickness of the plate. These assumptions
tions. Torvik[7] developed a variational approach to analyze thieduce the dimensions of the plate problem from 3 to 2, therefore
dynamics of rectangular thin plates with mixed or discontinuowgreatly simplifying the formulation and solution in both analytical
boundary conditions. Fan and Cheuf&] used the spline finite and computational methods. However, they also introduce errors
strip method to analyze the vibration of rectangular thin plates the same time. The three-dimensiof) analysis on the basis
with complex edge conditions. Liew and his co-workges10] of small-strain linear elasticity theory does not rely on any hy-
studied the free vibration of isotropic and anisotropic rectangulpotheses involving the kinematics of deformation. Such analysis
thin plates with mixed supports by using the domain decomposiet only provides realistic results but also brings out physical
insights, which cannot otherwise be predicted by the two-

To whom correspondence should be addressed. dimensional(2D) analysis.

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF Searching the literature. not a solution of 3D vibration for
MECHANICAL ENGINEERSfor publication in the ASME OURNAL OF APPLIED ME- ’

CHANICS. Manuscript received by the Applied Mechanics Division, July 23, 2003?'8'tes with mixed boundary conditions has been found. However,
final revision, June 30, 2004. Associate Editor: N. Sri Namachchivaya. Discussion bh the recent two decades, some attempts have been made for 3D
the paper should be addressed to the Editor, Prof. Robert M. McMeeking, Journalgbration analysis of rectangular plates with uniform boundary

Applied Mechanics, Department of Mechanical and Environmental Engineerin it i ; ;
University of California—Santa Barbara, Santa Barbara, CA 93106-5070, and will gondltlons' lSrInI\llaS et a[ﬂ'sf] gav_e thle exact analytical SOIUEOH
accepted until four months after final publication in the paper itself in the ASM@T rectangular plates with four simp y-supported edges. Cheung

JOURNAL OF APPLIED MECHANICS. and Chakrabart[19] used the finite layer method to study the
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vibration of thick rectangular plates with general boundary condi- For simplicity and convenience in mathematical formulation,
tions. Hutchinson and Zillimef20] and Fromme and Leis§21] the following nondimensional parameters for the plate shown in
used different series solutions to analyze the 3D free vibration Bfg. 1(b) are introduced
a completely free parallelepiped. Malik and BE?2| and Liew . .
and Teo[23] used the differential quadrature method to analyze ¢=2xla—1; n=2ylb—1; {=2z/h @
the 3D vibration of rectangular thick plates. It should be merwhere O<x<a and O<y=b. Using the earlier coordinate trans-
tioned that in the 3D vibration analysis of rectangular plates, thermations, the rectangular hexahedral domain of the plate in Fig.
Ritz method has demonstrated its advantages in both accuracy @i can be mapped into a cubic domain as shown in Fig) 1
computational cost. Leissa and Zhd24] and Lim[25] used the whereé,=2a,/a—1 and7o=2by/b—1.
simple algebraic polynomials and Liew et §26—28 used the
o.rthogonal polynomials as admissible functions to study the 39 Basic Formulas
vibration characteristics of rectangular plates. Recently, the au- o e .
thors[29] used the Chebyshev polynomid0] as the main ad- Ba§ed on the 3D smal! strain Ilngar elgstlmty theory gnd using
missible functions to analyze the 3D vibration of rectanguldhe dimensionless coordinates defined in B, the maximum
plates with various uniform boundary conditions. High accurac§€r9y functionall of a rectangular plate under free vibration can
stable numerical computation, and rapid convergence have b&nWwritten in the volume integral form as
observed. _ _

. . . H Amax Tmax (2)

In this paper, a global solution approach based on the Ritz

method has been presented for the 3D vibration analysis of re¢t2€re
angular plates with mixed boundary conditions. The Chebyshev Eh 1 r1 (1 S
polynomials multiplied by a characteristic boundary function argmax=—f f f (—A1+ A+ = Az |dZdpdé;
taken as the admissible functions. The characteristic boundary ANLtw) Joa)oa) g\ 120 2 ?)
function satisfie.s the essential geometric boundary conditions qf P
the plates, but it takes no account of the stress boundary condi- Tmax:£abhw2f f j (U2+V2+W2)d7d pdé
tions. Since the boundary characteristic functions of the edges 16 PR BT Y
with mixed boundary condition§.e., the mixed edgesannot be . . ) , . . ) .
described by simplée algebraic polynomials, the method given i Which E is the Young's modulusy is the Poisson’s ratio, anl
Ref. [29] to construct boundary characteristic functions for unilS the mass density per unit volume, denotes the natural fre-
form edges is not applicable to the complicated boundary con@U€ncy of the plate and

tions in the present study. Instead, the R-function method is ap- A (4w AT N2 A2 T2 2.
plied to construct the characteristic boundary function M (8f§+8’ﬁ+8“) P Aomepte, e
components on the edges with mixed boundary conditions. Some Aszgg +§§{+§2§,
valuable results have been obtained. 7 7

— N NV AW

e e EaqnT Mg BT T

3 7 y 9 )
U oV _ NU W _ NV IW

2 Merllng of the Plate | | . Eep=\ T + iE gg_y 37 n e 8“_7 37 Y i
Consider a rectangular plate with partially fixed edges sym-

metrically disposed around four corners and the other edges free N=alb; y=h/b

as shown in Fig. (). It is assumed that the parts that are fixed

have displacements in all three directions completely restrainv?g

The plate has a lengtha? a width 2o and a uniform thicknesk.

The lengths of the free boundaries at the edgestb are both

In the present analysis, each of the displacement amplitude
nctionsU(&,7,0), V(&,1,¢) and W(&,7,{) is taken, respec-
tively, in the form of triplicate series of Chebyshev polynomials
multiplied by a characteristic boundary function which ensures

equal to_%to. Similarty, the widths of the free boundaries at th‘?hat the displacement component satisfies the essential geometric
edgesx=*a are both equal to I2,. The plate geometry and boundary conditions of the plate, i.e

dimensions are defined with respect to a Cartesian coordinate sys-
tem (x,y,z), the origin of which is at the center of the plate and *

the axes are parallel to the edges of the plate. The corresponding U(¢, 7,{)=F (¢, 77)2 Z Z AiikPi(&)P;(n)PW(0);
displacement component at a generic pointware, andw in the i=1j=1k=1

X, ¥, and z directions, respectively. In the particular caseagf © ® o
=a andby=h, the plate is only fixed at the four corners. It is _ )
assumed that the plate is made up of isotropic material. Consid- V&1 =F.(&, 77)21 mzzl HZ BimaP1(£)Prm(7)Pn(£);

ering the symmetry of boundary conditions, the vibration charac- (5)
teristics of the plate can be distinctly divided into eight categories. o

Using the symbol “A’ to define the antisymmetric mode and the

symbol “S” to define the symmetric mode, the vibration modes of W(E 7,0)=Fu(é 77)2 Z Z CparPp(€)Pq(7)Pr({)

a plate can be decomposed into categories AAA, AAS, ASA, ASS, prtamtr=d

SAA, SAS, SSA, and SSS, where the three capital letters cormghereA; , Bin,, andCq, are the unknown coefficient®s(x)
spond to the vibration mode in the y, andz directions, respec- (s=1,2,3...; x=¢§, n, (SJ is the one-dimensionath Chebyshev
tively. In such a case, only a quarter of the plate should be takpalynomial which can be written in terms of cosine functions as
for the analysis, as shown in Fig(kl where the shaded areasfollows
denote fixed edges with displacements in all three directions com- _ . _
pletely restrained. The geometric boundary conditions at the faces Ps(x)=cog(s—Darccogx)]; (s=1,23...) (6)

x=0 andy=0 for different categories of vibration modes areNote thatF (¢, 7), F,(& 7), andF,,(&, ») are the characteristic
given in Table 1. Moreover, as a consequence, Hig) dlso de- boundary functions, respectively, corresponding to the displace-
scribes a plate partially fixed around one corner only. In suchnaentsu, v, andw. They should be continuous and differentiable.
case, the length and width of the plate arandb, respectively, However, they cannot take zero value at any point in the domain
and the geometric boundary conditions at the face® andy or on the boundaries except for the boundaries with given zero
=0 are given in Table 2. constraints.

% ©

[y
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Fig. 1 A rectangular plate with mixed boundary conditions: (a) planform of the plate, (b) views of the
quarter plate, (c) views of cubic domain after mapping

It should be mentioned that comparing to other polynomial se- oIl oIl oIl
ries, the Chebyshev polynomial seri{gf] shows a lot of excel- A =0, B =0, 7C =0
lent properties in the approximation of functions, such as the rapid iik Imn par
convergence and the numerical robustness. Substituting@q. (i,j,k,I,mn,p,q,r=123...) @
into Egs.(2)—(4) and minimizing the functionall with respect to |eads to the following governing eigenvalue equation in matrix

the coefficients of the admissible functions, i.e. form

Table 1 The geometric boundary conditions at the faces x=0 and y=0 for plates partially
fixed around four corners

Symmetric modes Antisymmetric modes
Boundary u v w u v w
x=0 Zero Free Free Free Zero Zero
y=0 Free Zero Free Zero Free Zero
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Table 2 The geometric boundary conditions at the faces x=0 and y=0 for plates partially
fixed around one corner only

Boundary x=0 y=0

condition u v w u v w
Fixed Zero Zero Zero Zero Zero Zero
Free Free Free Free Free Free Free
Hard S-3 Free Zero Zero Zero Free Zero
Soft S-S Free Free Zero Free Free Zero
Sliding Zero Free Free Free Zero Free

*Note: S-S means simply-supported boundary.

[Kuu] [Kuv] [Kuw] O-n:O, 0’5520, (T.”g:O (10)
(Kol [Kypol  [Kpwl wheren denotes the normal direction of the edges.
(Ko™ [Kowl™ [Kuwl The authorg29] recently used simple algebraic polynomials as
e o o characteristic boundary functions to study the 3D vibration of
[(Myd] 0 0 (A} {0} rectangular plates with uniform boundary conditions and obtained

excellent results. However, these simple polynomials cannot
—A2l 0 [My.] 0 {B} 1 =1 {0} model mixed boundary conditions. In the present study, the
0 0 [Myw] {C} {0} R-functions[31,37 are used to construct the characteristic bound-
®) ary functions of the mixed edges. Note that the upper and lower
faces of the plates are always free, and therefore there are no
in which A=wa\p/E, and[K;;] and[M;;] (i,j=u,v,w) are the geometric restraints for these two faces. For the plate as shown in
stiffness and diagonal mass submatrices, respectively. The vec®igs 1(b), each of the characteristic boundary functions in .
{A}, {B}, and {C} contain the unknown coefficien®; , Binn, can be written as a product of four characteristic boundary func-
andCpq, . Solving Eq.(8) yields the frequency parameteksand tion components as follows
the mode shape corresponding to each eigenvalue.
The vibration modes of a uniform plate can invariably be di- Fu(§,m)=Fu(&)Fu(nFus(&nFu(é ),
vided into two categories: flexural modé&mtisymmetric ones in

the thickness directiorand extensional modésymmetric ones in Fo (&) =F,1(F,2(mF 3(€ mF,a(ém), (11)
the thickness direction In Eq. (5), by takingk=1,3,5..., n Fo(&n)=F E E n)F ,
=1,35...,andr=2,4,6 ... for the symmtric modes in the W& =Fua(OF (M ual & 1P sl 7’)_ )
direction, and takingk=24.6..., n=24,6..., and r WhereF,(§), F,i(£), andF,(&) are the characteristic bound-

—1,35... for theantisymmetric modes in thedirection, these ary function components @t~ 1, respectively, corresponding to
two categories of modes in the thickness direction can be segésplacement amplitude functiontl(¢,%,{), V(¢ 7.{), and

rately determined while maintaining the same level of accuracy/V(¢,7.£). The characteristic boundary function components
Fu(m), Fyo(n), andF,,(7) are those aty=—1, respectively,

e . corresponding to displacement amplitude functidhéé, »,{),
4 Characteristic Boundary_ Functions | V(& m0), andW(E 7,0). Similarly, Fys(Z,7), Fos(é,7), and
One may observe that E¢p) is the key to the construction of F,5(¢,7) are those até=1 while F 4(&,7), F (& 7), and
the characteristic boundary functions in the Ritz method, whidh,,(&,7) are those ay=1. The characteristic boundary function
are determined by the geometric boundary conditions of the plat@mponent$29] at the boundarie§=—1 and»=—1 can be eas-
For fixed edges, the geometric boundary conditions are ily obtained because of the consistency of the boundary conditions
U=0" V=0 W=0 ©) at these two edges, which are given in Tables 3 and 4, respec-
' ! tively, for the two kinds of rectangular plates considered here.
and for free edges, the stress boundary conditions are However, the earlier approach for uniform boundary conditions

Table 3 The characteristic boundary function components of plates partially fixed around four
corners at the boundaries &=—1 and »=—1

Boundaryé=—1 Boundaryn=-1
Category
of mode Fui(é) F,1(¢) Fui(€) Fu2(7) Fu2(m) Fu2(7)
A 1 1+¢ 1 1+7 1 1
S 1+¢ 1 1 1 I+ 7 1

Table 4 The characteristic boundary function components of plates partially fixed around one
corner at the boundaries &=—1 and np=-1

Boundaryé=—1 Boundaryn=-1
Boun_dary vé L&l
condition Fui(é) F,1(€) Fua(€) Fua(n) Fy2(7) Fuz(7)
Fixed 1+¢ 1+¢ 1+¢ 1+7n 1+7 1+7n
Free 1 1 1 1 1 1
Hard S-S 1 *¢ 1+¢& 1+7 1 1+7y
Soft S-S 1 1 *é 1 1 1t+»n
Sliding 1+¢ 1 1 1 1ty 1
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Table 5 Convergence of the first six dimensionless frequency parameters of square plates
partially fixed around one corner,  &,=0 (ap,=a/2) and 5,=0 (by=b/2)

h/b IXJIXK 0, Q, Q4 Oy Qg Qg
Antisymmetric mode in the thickness direction
0.1 8x8x2 30.70 52.18 60.67 66.48 79.32 93.75
8X8X%X3 30.70 52.16 60.65 66.46 79.28 93.71
10x10x3 30.56 51.82 60.35 65.97 78.68 93.41
12x12%x3 30.48 51.58 60.17 65.68 78.33 93.24
14X14X3 30.44 51.44 60.05 65.52 78.13 93.16
16X16X3 30.41 51.34 59.97 65.41 77.99 93.10
18x18%x3 30.38 51.27 59.91 65.33 77.90 93.07
0.25 6xX6X3 22.51 33.45 38.46 42.94 49.65 57.57
6X6X4 22.51 33.45 38.46 42.94 49.65 57.57
8x8x%x4 22.40 33.12 38.11 42.66 49.21 57.26
10Xx10x4 22.35 32.98 37.96 42.55 49.03 57.17
12x12x4 22.32 32.89 37.86 42.48 48.93 57.12
14X14X4 22.29 32.82 37.80 42.45 48.88 57.10
16X16x4 22.28 32.77 37.75 42.42 48.84 57.08
Symmetric mode in the thickness direction
0.1 8X8x2 95.28 114.4 136.8 143.4 176.4 179.0
8X8X%X3 95.28 114.4 136.8 143.4 176.4 179.0
10X10x3 94.67 113.9 136.3 143.2 175.6 178.4
12X12X3 94.29 113.7 136.0 143.0 175.2 178.1
14X14X3 94.07 113.5 135.8 143.0 174.8 177.8
16X16X3 93.89 113.3 135.7 142.9 174.6 177.7
18%X18x3 93.76 113.2 135.6 142.9 174.4 177.6
0.25 6x6X3 38.69 46.30 55.16 57.74 71.16 72.02
6X6X4 38.69 46.30 55.16 57.74 71.16 72.02
8X8%x4 38.21 45.90 54.76 57.38 70.57 71.55
10X10x4 37.96 45.71 54.57 57.29 70.28 71.31
12X12x4 37.82 45.60 54.46 57.23 70.08 71.18
14X14X4 37.73 45.52 54.39 57.21 69.95 71.10
16X16x4 37.66 45.47 54.33 57.19 69.86 71.04

does not apply to the characteristic boundary function componesits Convergence Study
at the boundaries=1 and »=1 because of the discontinuity of

boundary conditions. In the present study, the basic concept of thsIt IS Wle” kn(:'wn that the Rflft_z_meth((de prO\é'deS th? upper: bo#n.d
R-functions[31] is used to construct the characteristic bounda g/genvalues. However, its efficiency depends greatly on the choice

I L. ! g
function components at the boundarigs1 and 7=1. The math- o global admissible functions. These upper bound estimates could

. e ; _ . - e improved by increasing the number of terms of admissible
ematical definition and demonstration of the R-functions will no:f Hfﬁons in the numerical computation and, hence, solution of

quoglsggispsr?gzl]n detail. Interested readers may consult the reIevagn accuracy can be obtained theoretically. However, a practical
. . . ) ' limit to the number of terms used always exists because of the
Usmg_the R-conjunction operation defined by Rvaci8sj, we limited speed, capacity, and numerical accuracy of computers. In
can easily obtain that : ! L . . :
the three-dimensional vibration analysis of an elastic body in par-
_ _ _ e _ ticular, numerical instability may occur with a great number of
Fa(&7)=Fus(&,7)=Fus(&, ) =Fus(&m)=(e= D7~ 70)  torms ‘of admissible functions, especially when triplicate series are
== 1+ p— o— (E— 1) 2+ (17— 10)2 (12) used. Therefore, the validity of a numerical method often hinges
on the convergence rate, numerical stability, and accuracy of the
Fu(&m)=F -F =F =(&-£)0(y—1) Mmethod. . .
(&M =Fual&, M =Foa(&m)=Fual&, )= (6= &) D7~ 1) Square platesi.e., aspect ratio.=a/b=1) are taken for the
=¢—Eot p—1— (= &9)%+(n—1)2 (13) convergence studies. The plates partially fixed around one corner
have thickness ratiob/b=0.1, 0.25 while the plates partially
where the symbol IT" is the R-conjunction operator. It is obvious fixed around four corners have thickness ratié@b)=0.1, 0.25.

that In each case, two thickness-side ratios corresponding, respec-
tively, to moderately thick and very thick plates are considered.
( )[ =0, on =gy, £=1 w4 On the edg(/esle an(d 7=1, the)lengc}r;) r%ios of t(he free bo;md-
Fs(€é,7m . . 14) aries areay/a=0.5 (i.e., £=0) andby/b=0.5 (i.e., 70=0),
<0 in the plate domain respectively. The Poisson’s ratie=0.3 is adopted in the present

study unless stated otherwise. All the computations were per-
=0, on =&, =1 formed in double precisiofil6 significant figuresand 24-point
<0 in the plate domain (15) piecewise Gaussian quadrature was used numerically to evaluate
the integrals which form the stiffness and mass matrices in Eq.
Using the earlier characteristic boundary function component8). For simplicity, equal numbers of terms of Chebyshev polyno-
Fu(&,7), F (& 7), andF,(& 7) can exactly satisfy the geomet-mials were taken for the displacement amplitude functiony,
ric boundary conditions of the plates. It is obvious that in thand W in each coordinate direction, namely=L=P, J=M
present analysisi,= —1 (i.e., ap=a) means that the plate has a=Q, andK=N=R. To facilitate the comparisons with 2D re-
completely fixed boundary aj=—1 (i.e.,y=b) and 5,=1 (i.e., sults, a dimensionless frequency parameter is introduced as
by=Db) means that the plate has a completely fixed boundary at
¢=1(i.e.,x=a). The case ofy=1 (i.e.,ap=0) andny=1 (i.e.,

by=0) means that the plate has a fixed point-support at the corner :ﬂ 21— 2A = b2 ahiD
£=1(i.e., x=a), 7=1 (i.e.,y=b). 0= gp V1A= A= b ph/D (16)

Fa(é, 77)[
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Table 6 Convergence of the first six dimensionless frequency parameters of square plates
partially fixed around four corners,  &,=0 (ag=al/2) and 7,=0 (by=b/2)

h/(2b) I XJIXK 0, Q, Q4 O, Qg Q¢
SSA mode
0.1 8x8x%2 5.597 13.30 16.49 27.37 30.47 39.76
8X8%3 5.595 13.29 16.48 27.36 30.46 39.73
10X10xX3 5.561 13.18 16.36 27.29 30.37 39.64
12x12%3 5.540 13.10 16.30 27.24 30.33 39.59
14Xx14X3 5.526 13.06 16.26 27.22 30.30 39.56
16X16X3 5.517 13.03 16.23 27.20 30.29 39.54
18x18%x3 5.510 13.00 16.21 27.19 30.28 39.53
0.25 6xX6X3 4.271 8.316 10.51 17.18 18.54 22.22
6X6X4 4.270 8.315 10.51 17.18 18.54 22.22
8X8%4 4.232 8.193 10.40 17.12 18.44 22.12
10x10x4 4.213 8.134 10.36 17.10 18.41 22.08
12x12x4 4.201 8.099 10.33 17.08 18.39 22.06
14X14X4 4.193 8.079 10.32 17.08 18.38 22.05
16X16xX4 4.188 8.065 10.31 17.07 18.37 22.04
SSS mode
0.1 8xX8x2 28.61 41.30 56.35 61.12 76.76 78.67
8X8%3 28.61 41.30 56.35 61.11 76.75 78.67
10X10X3 28.41 41.14 56.12 61.03 76.59 78.29
12x12%3 28.30 41.05 55.98 60.97 76.48 78.07
14%14%3 28.24 41.00 55.88 60.93 76.42 77.93
16X16X3 28.20 40.97 55.80 60.91 76.37 77.84
18X18%3 28.17 40.94 55.74 60.89 76.34 77.77
0.25 6X6X3 11.64 16.56 22.68 24.40 29.90 31.27
6X6X4 11.64 16.56 22.68 24.40 29.90 31.27
8X8%x4 11.47 16.41 22.51 24.34 29.84 31.00
10x10x4 11.39 16.35 22.42 24.31 29.81 30.85
12x12x4 11.35 16.31 22.37 24.29 29.79 30.76
14x14x4 11.32 16.29 22.33 24.28 29.78 30.70
16X16xX4 11.31 16.28 22.30 24.27 29.77 30.66

whereD=Eh%/[12(1-1?)] is the flexural rigidity of the plate. also be used as the main admissible functions. However, if simple
Table 5 shows the convergence of the first six dimensionlegkgebraic polynomials are used as admissible functions, the maxi-
frequency parameter®; (i=1,2,...,6) for theplates partially mum number of the terms should be carefully controlled; other-
fixed around one corner and completely fixed at the edge® wise ill-conditioning and unstable computation may occur. This
andy=0. Similarly, Table 6 shows the convergence of the first sigan be improved by using orthogonal polynomials instead but it
dimensionless frequency parameteis (i=1,2,...,6) of the will complicate the analysis. The truncation errors arising from
SSA and SSS modes for the plates partially fixed around fotlre calculation of orthogonal polynomials by the Gram—Schmidt
corners. In these two tables, the numbers of terms irxtaedy process may also lead to further inaccuracies. The Chebyshev
directions both vary from 8 to 18 with increments of 2 when thpolynomials possess the simplicity of simple algebraic polynomi-
thickness ratio is equal to 0.1, and from 6 to 16 with increments afs and the efficiency of orthogonal polynomials, and can avoid
2 when the thickness ratio is equal to 0.25. The number of terrife2 numerical instability of higher-order simple algebraic polyno-
in the z direction is fixed at 3 when the thickness ratio is equal tonials and the complication in constructing orthogonal polynomi-
0.1 and at 4 when the thickness ratio is equal to 0.25. Moreoveafs. More detailed discussions about the excellent properties of
the cases with term>88x2 when the thickness ratio is equal toChebyshev polynomials in vibration analysis can be found in Ref.
0.1 and term &6x3 when the thickness ratio equal to 0.25 arg33].
taken to investigate the effect of number of terms in the thickness
direction. It is seen that the convergence trends are similar for .
both cases. With increasing number of terms of the admissibie Comparison Study
functions, all of the frequency parameters monotonically and The present results for partially fixed cantilevered Kirchhoff
steadily decrease. One can see that for plates with thickness ragictangular plates and Mindlin rectangular plates with point sup-
0.1, the differences between results from terms882 and ports at four corners have been compared with available solutions.
8x8x3 are very small, with the maximum being 0.04 only. Foit is obvious that the solutions based on either classical thin plate
plates with thickness ratio 0.25, the differences between the tbeory or moderately thick plate theory only account for the anti-
sults from terms &6Xx3 and 6<6x4 are also very small, with the symmetric modes in the thickness direction. Referring to the
maximum being 0.001 only. Moreover, for plates with thicknesR-function given in Eq.(12) or (13), the case 0f,=1 and 7,
ratio 0.1, the maximum error between the results from terms E61 represents a concentrated support which corresponds to the
X16X3 and 18<18x 3 is lower than 0.14%. For plates with thick-clamped point support in the 2D theories. To be consistent with
ness ratio 0.25, the maximum error between the results from terthe available results, only zero displacemenat the point sup-
14xX14X4 and 16<16x4 is lower than 0.19%. These clearlyports should be satisfied. In such a case, we should take
show the convergence of the present method. In general, for tigs(&, 7) =F,3(& n) =F4(& n)=Fu(& n)=F,4(€,7n)
plates, a small number of terms of Chebyshev polynomials in theF,4(¢,7)=1 so that the displacements and v are unre-
thickness direction versus a large number of terms of Chebysh&vained. Table 7 gives the first six frequency parameters of rect-
polynomials in the length and width directions should be usedngular plates with point supports at four corners. Two different
However, with increasing plate thickness, more terms of theickness ratio/(2b)=0.1, 0.2 and three different aspect ratios
Chebyshev polynomials in the thickness direction compared wifa/b=1.0,1.5,2.0) have been considered. In the numerical com-
those in the other directions is needed. putations, 1&14x3 terms of the Chebyshev polynomials in the
Apart from the Chebyshev polynomials, other polynomials sudhree coordinate directions are used for plates with thickness ratio
as simple algebraic polynomials and orthogonal polynomials may(2b)=0.1, while 12<12X4 terms are used for plates with
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Table 7 Comparison of the first six frequency parameters Q=4Q/n? of antisymmetric mode
in the thickness direction for the rectangular plates point-supported at four corners. Note: The
superscript letters are the mode types in the x and y directions, respectively.

h/(2b) Method O Q, Qs Q, Qs Q4

a/b=1.0

0.1 3D 0.665F°  1.39329%) 1393298 193575 323722  3.8398°
Mindlin? 0.6721 1.4156 1.4156 1.9194 3.3262 3.8908

0.2 3D 0.5734°  1.119%8%® 111939  1.7697°  2.4480°  3.0537°

he1s Mindlin? 0.5932 1.1761 1.1761 1.7630 2.5904 3.1345

alp=1.

0.1 3D 0.3893°  0.88272 1.0430° 1.4325°  2.10882  2.8478°
Mindlin? 0.3878 0.8850 1.0605 1.4376 2.1328 2.8623

0.2 3D 0.3583%  0.755%2 0.8763° 1.2736°  1.727%%  2.2067°

20 Mindlin? 0.3623 0.7734 0.9132 1.2930 1.7830 2.1969

alp==~2.

0.1 3D 0.2363%  0.6485%% 0.7793 1.2116%  1.4877%  1.7062°
Mindlin? 0.2311 0.6445 0.7824 1.2233 1.4862 1.7082

0.2 3D 0.2248°  0.572f2 0.6877° 1.0528°  1.280%%  1.5329°
Mindlin? 0.2232 0.5769 0.7021 1.0778 1.2964 1.5431

aSee Ref[13].

thickness ratioh/(2b)=0.2. The results are compared with theerrors between the present solutions and the finite element solu-
Mindlin theory solutions of Kitipornchai et a13]. It can be seen tions are within 1% except for the second frequency parameter of
that the present solutions are in agreement with those of the #i2 SS mode for the plate with thickness rdti§g2b) =0.1 where
Mindlin solutions. The maximum error is less than 6264480 vs the error(0.5986 vs 0.614Ris about 3%.
2.5904, which occurs at the fundamental frequency of AA mode
for the square plate with the thickness rati{2b) =0.2. .
Table 8 gives the first six natural frequencies of each moc?e Numerical Results
category for square plates with partially fixed boundaries aroundFrom the earlier convergence and comparison studies, it has
four corners. It is assumed that the plate has length and widthbeen shown that the present method can provide results with sat-
=pb=1.0m, Young's modulusE=1.0Pa, and mass densityisfactory accuracy for the 3D vibration of rectangular plates with
p=1.0 kg/n?. Two different plates are considered. One has mixed boundary conditions. In this section, some valuable resuilts,
thickness h=0.2m, and length ratiosay/a=0.5 and bg/b  known for the first time, are given in tabular and diagrammatic
=0.75 at the partially supported edges. The other has a thicknéssns. Tables 9—11 give the first six frequency parameters of each
h=0.4 m and length ratiog,/a=0.25 andb,/b=0.5 at the par- mode category for square plates partially fixed around four cor-
tially supported edges. In the numerical computation<12x4 ners. Three different thickness ratib$(2b)=0.05, 0.125, 0.25
terms of the Chebyshev polynomials are used. The present resaftsl four different length ratios of the free boundaries /@
are compared with those obtained by the 3D finite eleneBi =b,/b=0.25,0.5,0.75,1.0) are considered. It is clear that the case
analysis. The eight-node hexahedral elements of the commeraéla,/a=b,/b=1.0 represents fixed point-supports at four cor-
programsTRAND7 [34] are used to obtain the reference finite elerers. It is seen that increasing the length of free boundaries and/or
ment solutions. Altogether 2020x4=1600 cubic brick elements the plate thickness, all of the frequency parameters monotonically
are used for the plate with thickne$s=0.2m and 220x8 decrease and the SSA modes always provide the lowest frequency
=3200 cubic brick elements are used for the plate with thickneparameters for all cases. Moreover, for thin plates, the frequency
h=0.4m. Good agreement has been observed in all cases. pdrameters of the symmetric modes in the thickness direction are

Table 8 Comparison of the first six natural frequencies of each mode type for square plates
with partially fixed boundaries around four corners. Note: The superscript S means symmetric
mode in the Zz direction.

Mode Method wq Wy w3 [N wsg wg
ag/a=0.5,by/b=0.75,h/(2b)=0.1
AA Present 0.9775 1.404 1.516 2.136 2.145 2.558
3D FE 0.9857 1.393 1.521 2.137 2.154 2.562
AS Present 0.4298 0.9064 1.045 1.606 2.044 2.286
3D FE 0.4336 0.9062 1.043 1.617 2.058 2.270
SA Present 0.6247 1.043 1.138 1.372 2.086 2.088
3D FE 0.6301 1.051 1.135 1.374 2.079 2.081
SS Present 0.2820 0.5986 0.9216 1569 1.594 1.762
3D FE 0.2845 0.6142 0.9331 1.593 1.639 1.753
ag/a=0.25,by/b=0.5,h/(2b)=0.2
AA Present 1.764 1.807 2.548 2.729 3.162 3.371
3D FE 1.768 1.798 2.541 2.733 3.143 3.365
AS Present 0.9646 1.237 1.719 2.565 2.828 2.978
3D FE 0.9711 1.235 1.775 2.565 2.817 2.973
SA Present 1.267 1.590 2.170 2.399 2.592 3.019
3D FE 1.275 1.591 2.184 2.383 2.608 3.013
SS Present 0.6349 1.268 1.941 1945 2.463 2.891
3D FE 0.6377 1.273 1.942 1.959 2.456 2.890
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Table 9 The first six frequency parameters of AAA and AAS modes for square plates (a=b)
partially fixed around four corners

h/(2b) ag/a O, Q, Q4 O, Qg Q¢

AAA modes

0.05 0.25 25.03 52.06 54.06 75.81 92.56 94.47
0.5 22.31 39.43 48.82 54.99 67.87 83.94
0.75 16.38 24.83 35.52 50.17 59.29 69.88
1.0 10.42 17.42 29.41 40.89 47.96 57.91

0.125 0.25 13.42 22.78 23.61 29.08 29.87 31.45
0.5 11.95 17.71 21.24 24.53 27.09 28.84
0.75 9.191 13.17 17.92 23.08 24.94 27.58
1.0 6.056 11.15 15.04 19.98 22.49 24.91

0.25 0.25 19.84 36.59 38.24 49.88 58.74 59.85
0.5 17.67 27.86 33.91 39.31 46.75 54.74
0.75 13.29 19.14 27.12 36.53 41.97 47.31
1.0 8.575 14.97 22.41 30.49 36.11 41.11

AAS modes

0.125 0.25 27.02 35.68 47.86 49.85 57.69 69.83
0.5 21.13 32.21 39.37 43.55 46.84 58.45
0.75 15.22 25.81 37.39 37.72 41.50 56.33
1.0 7.995 19.60 34.34 36.46 36.93 49.30

0.25 0.25 13.56 17.86 23.97 24.98 28.91 33.76
0.5 10.63 16.17 19.66 21.83 23.51 29.11
0.75 7.659 13.00 18.61 18.90 20.79 27.77
1.0 4.249 9.975 17.39 18.25 18.41 24.64

significantly higher than those of the antisymmetric modes. Hovir/b=0.25, the first two forh/b=0.20 and the fundamental one
ever, with increase in plate thickness, the rate of decrease in ffer h/b=0.15. Since the third frequency parameter foib
quency parameters of the symmetric modes in the thickness direcg 20 and the second and third frequency parameter/for
tion is quicker than that of the antisymmetric modes. =0.15 are much higher, they are omitted from the figure. More-
Figures 2—5 show the first few frequency parameters versus %\?er, for thin plates, the frequency parameters of symmetric

length ratioag/a of the free boundaries of square plateg - . S - ;
—1.0) partially fixed around a corer. It is assumed that thrgodes in the thickness direction belong to the higher-order ones,

lengths of the two adjacent fixed boundaries around the corner 4%l therefore they are aiso omitted from the figure fib
the same, i.eby=a,. Five different thickness ratios are consid-—0-10 andh/b=0.05. Note that the symmetric modes in the

ered, i.e.,h/b=0.05-0.25, with an increment of 0.05. Figuresthickness direction cannot be predicted by the classical thin plate
2-4 give the first three frequency parameters of antisymmettizeory. One can also observe from Figs. 2-5 that the frequency
modes in the thickness direction. With the decrease of plate thigharameters always monotonically decrease with the increase in the
ness and, hence, more restraint on shear deformation, the feggth ratio of the free boundaries. The increase of the length of
quency parameters of flexural modes increase and approach thpa&i edges is equivalent to an increase in restraint stiffness and
obtained from the classical thin plate theory. This is easily olance it always results in an increase of eigenfrequencies. More-
served in the 3D SO.IUt'OnS shown in Flgs. 2-4, where the fr‘(’)'ver, it is shown that a longer free boundary has more sensitive
quency parameters increase monotonically as the plate beco 8 uency parameters. By increasing the length ratio of the fixed

thinner and approach those of the thin plate approximated . o
h/b=0.05. Figure 5 gives the first few frequency parameters undaries, the variation of frequency parameters tends to slow

symmetric modes in the thickness direction, i.e., the first three fgpwn.

Table 10 The first six frequency parameters of ASA  (SAA) and ASS (SAS) modes for square
plates (a=b) partially fixed around four corners

h/(2b) ag/a 0, Q, Q4 O, Qs Qg

ASA (SAA) modes

0.05 0.25 15.91 35.58 42.30 56.47 69.12 72.86
0.5 12.05 22.73 34.43 46.20 53.54 66.70
0.75 7.597 17.57 24.97 36.79 48.67 51.37
1.0 4.496 13.09 19.81 28.20 40.10 46.65

0.125 0.25 13.24 26.01 30.02 38.82 46.37 48.35
0.5 9.826 17.92 25.45 33.66 38.51 45.06
0.75 6.433 14.58 19.68 27.67 35.99 37.41
1.0 3.933 11.28 16.14 22.58 29.64 35.43

0.25 0.25 9.329 16.50 18.88 24.05 27.18 28.87
0.5 6.867 12.52 16.45 21.44 23.71 26.58
0.75 4,751 10.56 13.50 18.18 22.49 23.34
1.0 2.985 8.448 11.55 15.58 19.29 22.41

ASS (SAS modes

0.125 0.25 21.65 37.95 42.96 57.02 58.91 61.28
0.5 15.71 31.33 37.12 49.29 53.47 57.14
0.75 11.03 26.14 32.10 45.52 47.26 49.94
1.0 6.266 20.36 28.05 38.54 43.23 46.47

0.25 0.25 10.91 19.02 21.57 28.12 29.14 30.57
0.5 7.923 15.71 18.58 24.45 26.59 28.50
0.75 5.575 13.10 16.10 22.72 23.22 24.99
1.0 3.297 10.34 14.14 19.44 21.52 22.90
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Table 11 The first six frequency parameters of SSA and SSS modes for square plates (a

= b) partially fixed around four corners

h/(2b) ag/a Q4 Q, Q4 Q, Qg Q¢

SSA modes

0.05 0.25 7.656 25.99 28.98 42.60 53.38 57.11
0.5 5.931 15.62 19.32 31.56 35.75 49.64
0.75 4.040 9.085 13.60 29.08 32.77 39.39
1.0 2.284 5.475 11.14 23.05 28.61 32.73

0.125 0.25 6.834 19.77 22.13 29.90 35.18 38.82
0.5 5.316 11.96 14.95 25.11 27.78 35.36
0.75 3.689 7.460 11.53 23.33 25.96 29.25
1.0 2.127 5.079 9.540 18.10 23.46 25.91

0.25 0.25 5.381 12.79 14.35 18.91 21.57 23.84
0.5 4.213 8.134 10.36 17.10 18.41 22.08
0.75 2.989 5.664 8.599 15.87 17.41 19.07
1.0 1.754 4.423 7.229 12.51 16.24 17.66

SSS modes

0.125 0.25 31.58 41.11 49.40 49.74 65.48 69.40
0.5 22.65 32.83 44.78 48.77 61.10 62.40
0.75 19.11 29.81 35.48 42.99 55.15 57.97
1.0 18.22 25.36 26.66 36.96 46.78 53.88

0.25 0.25 15.94 20.52 24.69 24.83 31.62 34.67
0.5 11.39 16.35 22.42 24.31 29.81 30.85
0.75 9.580 14.82 17.80 21.59 27.62 28.45
1.0 9.115 12.91 13.34 18.59 23.61 26.84
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a/a

0 0.2

Fig. 2 Fundamental frequency parameters of antisymmetric
modes in the thickness direction for square plates (a=b) com-
pletely fixed at two adjacent edges and partially fixed around a
corner (by=a,) with respect to the length ratio  ay/a of the free
boundaries (¢ h/b=0.05, O h/b=0.1, A h/b=0.15, O h/b
=0.2, X h/b=0.25)
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Fig. 3 The second frequency parameters of antisymmetric
modes in the thickness direction for square plates (a=b) com-
pletely fixed at two adjacent edges and partially fixed around a
corner (by=a,) with respect to the length ratio  a,/a of the free
boundaries (¢ h/b=0.05, OO0 h/b=0.1, A h/b=0.15, O h/b
=0.2, X h/b=0.25)
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Fig. 4 The third frequency parameters of antisymmetric
modes in the thickness direction for square plates (a=b) com-
pletely fixed at two adjacent edges and partially fixed around a
corner (by=a,) with respect to the length ratio  aq/a of the free
boundaries (¢ h/b=0.05, OO0 h/b=0.1, A h/b=0.15, O h/b
=0.2, X h/b=0.25)
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Fig. 5 Frequency parameters of symmetric modes in the thick-
ness direction for square plates (a=b) fixed at two adjacent
edges and partially fixed around a corner  (by=a,) with respect
to the length ratio ay/a of the free boundaries (¢ fundamental
for h/b=0.25, O second for h/b=0.25, A third for h/b=0.25, O
fundamental for h/b=0.2, X second for h/b=0.2, + fundamen-
tal for h/b=0.15)
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1 Introduction the crack propagation direction. Very recently, Chalivendra et al.

. . . . . [16] developed the asymptotic expansion of dynamic out-of-plane
With the mtroductl_on of functionally graded materigSGMs) displacement fields for an inclined crack propagating with con-
[1], research on various aspects of fracture of these nonhomoasi -

lids h ted tensi int ¢ Consid nt velocity with respect to the property gradatibmall these
neous tsofl N | t‘f"S lgenera.e | exdenswe n ertels : koﬁs' Er ies, the asymptotic expansions were developed for a constant
amount of analytical, numerical, and experimental work nas Degp, o velocity Since the properties around the crack tip in FGMs
reported on quasistatic fracture behav_lor of FGMs by several r@ﬁange during crack propagation, the crack growth in a FGM is
searcher§2—8]. However, the dynamic fracture of FGMs hagjye|y"to be transient, with the crack speed and dynamic stress
received much less attention from researchers. Atkinson and Lh

) e . . nsity factor changing as a function of time. The transient phe-
[9] were the first to study crack propagation in materials Witomena would be more predominant when the crack propagates

spatially varying elastic constants using integral transforms. Vefypitrarily at an angle to the property gradation in FGMs. Freund
recently, Wang and MeguidLO] performed a theoretical analysisang Rosaki§17] developed asymptotic expansion of near-tip field
of a finite crack propagating in an interfacial layer with spatiallyqyations for homogeneous materials and discussed about the im-
varying elastic properties under antiplane loading conditions. dbrtance of transient terms on the accuracy of description of
was identified that the fracture parameters of the interfacial craglgck-tip fields. However, asymptotic expansion of near-tip field
are influenced by both the local and the remote elastic properti@guations for a transient crack growth in FGMs has not yet been
of the media. Along with theoretical studies few numerical studiggported.
on dynamic fracture of FGMs are also reported. Using a finite- |n this paper, through an asymptotic analysis, the transient out-
element method, Nakagaki et 4lL1] addressed dynamic crackof-plane displacement field and its gradients for a transient crack
propagation in the functionally graded particle dispersed materiglopagating at angle to the property gradation in FGMs are devel-
under dynamic loading and determined the effect of gradation @ped. The shear modulus and mass density of FGM are assumed
crack-tip severity as it propagates in FGM. To date, very fewp vary exponentially along the gradation direction. The mode
experimental studies on dynamic fracture are availablmixity arising out of the inclination of property gradient to the
Parameswaran and ShuKl&2] investigated dynamic fracture in propagating crack is accommodated in the analysis through super-
FGMs with discrete property variations using photoelasticity. Rgosition of opening and shear modes. First three terms of out-of-
cently, Rousseau and TippJiL3] have experimentally investi- plane displacemnet fields are developed and the effect of transient
gated cracks propagating along the gradient in FGMs under imrack growth on contours of constant out-of-plane displacements
pact loading using the coherent gradient sens@S technique. is discussed.

For detailed experimental investigation of fracture of these ma-
terials using techniques such as photoelasticity and CGS,
asymptotic expansion of crack-tip stress fields are necessaty. Theoretical Formulation
Parameswaran and Shuklsd] obtained the first three terms inthe ot 4 continuum level, the properties at any given point in an

asymptotic expansion of stress field equations for a steady-sta{§m can be assumed to be same in all directions; hence, FGMs
crack propagating along the direction of gradation in FGMs anghn pe treated as an isotropic nonhomogeneous solid. Spatial
investigated the effect of different levels of nonhomogeneity opgriation of elastic properties and inclination of property gradation
the crack-tip stress fields. Recently, Jiang and Wl devel- girection to the propagating crack make analytical solutions to the
oped the opening and sliding displacements for a propagatisgstodynamic equations extremely difficult. Hence, an asymptotic
crack in FGMs using Fourier transform method. In their study, thenalysis similar to that employed by Freuid] is used to expand
properties were assumed to vary exponentially perpendiculartf stress field around a crack propagating at an arbitrary angle to
the property gradation direction.
1CT o ‘tN'T;OT g%rriipogdelhcg '\S;lhowd be aDdd_ressedﬁEAMEmCAN ooy OF An isotropic linear elastic FGM, containing a propagating crack
ontripute: y the Applie echanics Division O H H H H .

MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- at[ an apgle to the prop_erty grada.tlon direction |n.lheY wo .
CHANICS. Manuscript received by the Applied Mechanics Division, August 25, zoogl_mensmnaKZ-D) p_lane is shown F_lg- 1. T_he c_rack IS p_ropagatlng
final revision, August 3, 2004. Editor: K. Ravi-Chandar. Discussion on the papwith varying velocity(c) as a function of time in th& direction.
should be addressed to the Editor, Prof. Robert M. McMeeking, Journal of Appliethe shear modulus and mass density are assumed to vary expo-
Mechanics, Department of Mechanical and Environmental Engineering, Universj : ; i ; ; ; ; ) ;
of California—Santa Barbara, Santa Barbara, CA 93106-5070, and will be acceprg%n.tla”y INXy direction as given In qu) and the POI.Sson.s rat_lo .
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By defining w=dv/dX—aduldY as the rotation, we can write

v2u— A o
U= 9X oy

9)
) i . . A . A dw
Fig. 1 Propagating crack orientation with respect to the direc- V= — + —
tion of property variation in FGM Y X

where

X = o @XROXy),  p(X)=poexp(8Xy) (1) 2 P
where iy and pg are the shear modulus and density at the origin ax?  ay?

(X=X,=0), respectively, andis the nonhomogeneity parameter . )
having dimension(Length . Equation (1) can be written in  Using Eq.(9), Egs.(7) and (8) are manipulated to represent
terms of (X,Y) coordinates by using simple transformation athem in terms ofA and w only. This manipulation involves, first

shown below.

m(X,Y)=poexpaX+BY), p(X,Y)=poexpaX+pBY)

differentiating Eq.(7) with respect toX, differentiating Eq.(8)
with respect toy, and then adding them together. Second, (Z3.

is differentiated with respect t¥, Eq. (8) is differentiated with
respect toX, and then subtracted from the former. The resulting
equations are given below.

)

1) dtane 3)
= ! T dA dA k—1\ dw k—1\ dw
\/1+tar12<p 1+tar?(p VZA"‘“W"‘B(?__CV — W+B |
It can be observed that the Lame’s constant also varies exponen- K K
tially, as shown in Eq(4). k—1\ po A 10
—K - o 2
NOGY) = 2 g eXBlaX-+ BY) (4) ke at
_(a_ ; —(2_ dw dw 3—k\ JA 3—k\ dA Pw
where k=(3—4v) for plane strain and=(3—v)/(1+v) for plane Viota ot oo o Ry o8 _Poow
stress. axX Y k—1)aY k—1)dX po gt?
Let u andv, functions ofX, Y, andt, represent the displace- (11)

ments in theX andY directions, respectively, withrepresenting ) _
the time. The Hooke’s law for a plane problem can be written as The above equations would reduce to the classical 2-D wave
equations of dilatation and rotation by assigniagnd 3 to zero.

du 33—« ; ; ; ;
_ Due to nonhomogeneity, these equations lose their classical form
=l2—<+——=A e X+ BY . . ;
Txx ( X k-1 )'“0 XplaX+BY) and remain coupled in two fields and w, through the nonhomo-
P 3 geneity parametera and 8.
_ v K Using the transformations given in Eq42), (13), and(14), the
=2—+——A explaX+ BY 5 . X P ’
Yy ( Y k-1 )’“O HaX+BY) ©) equations of motiori10) and(11) are further written in the crack-
tip moving coordinate referencex,fy), as given in Eqs(15) and
Ju  Jduv (16)
Txy= ﬂ_YJ’_ﬂ_X ,u,oeX[:(aX—F,BY) :
in which A = au/aX + dv/aY is the dilatation andryy, @yy, and x=X-ct, y=Y (12)
oxy are the in-plane stress components. The equations of motion 2 2 2 2
for a plane problem can be written as rs_or T (13)
5 axX?  gx? gY?  gy?
(J(TXX (J(TXY a°u
X oy P2 ©) O P
—=C"—+——-Cc—-—-2C—— (14)
2 2 2
dowy  doyy 3 at ax*  ot? - ax Xt
X aY U g2 where
Substituting for the stresses and density from G&gand Eq.(1), Jc
respectively, into Eq(6), after simplification, the equations of c=—
motion become a
33—« (9A+ 02u+ ) +202u+2 au 2&2A+¢92A+ 0A+ dA k—1 z?w+ k—1\ dw
k—1) X aY? IXaY NG “ X Bl ax?  ay? * % A ay k1 ay B k+1) dx
. 3—« At du dv\ pg du ; po [k—1 ,aA+2 PN PA o 15
1) AAN T X T e % o\ o 1) | Sox 2ot )T (%)
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zﬁzw Pw dw dw (3*;() dA (3*K) dA

k—1] ox

L Po A PN FPA o 6
ol S T | (16)
where
B Po k—1 ) 1/2
= /.L_o k+1 ¢
and

112
as=(l— %Cz) .
0

- 7 7 J J
S L em-ne a|2_¢2m+ ¢;‘ 4 mr1)r2 a%-l—ﬂ%
m=0 an ans 71 72
k—1\ I, k—=1\ dn| po(k—1\[. ddm
- + — |+ = c—
N+t an, k+1)dny| pol\lkt+1l an,
2 _ 2
CM _ m+3)12P0 k—1)9 ¢m=0 (21)
dmydt Mo\ k1) 42
S P P W Y
2 (m-1)p2| 22 7m 7 M) (mt12 , Z M a7 Tm
€ ag—, > € a 3
m=0 an an5 71 72
3—«k\ ddn, 3—«k\ ddm| po[k—1\[. Iy
—a + +— c—
k—1 (97]2 k+1 (9771 Mo Kk+1 (97}1
2 _ 2
+2 Ihm\ | _ _miapePo[ K L| 0 wm:g 22
Comat) [~ € 2 (22)
7 mo\k+1] gt

It is assumed that for transient crack growth, the crack velocity oy Egs (21) and(22) to be valid, the partial differential equa-

(c) is a function of time and the fields and w depend explicitly

on time in the moving coordinate reference.

2.1 Asymptotic Expansion of Crack-Tip Fields. In the

tions corresponding to each poweragfe "2 €°,€*?, . .. ) should
vanish independently. This leads to the following set of partial
differential equations.

asymptotic analysis, first, a new set of coordinates is introduced agor m=0 and m=1,

defined in Eq(17).

2 b P _

0 223
771:)(/6’ 772:y/6, for 0O<e<1 a7) Al 0777% 19775 (22)

eis a small parameter and agpproaches zero, all the points in o, P Py
the x—y plane except those near the crack-tip are mapped beyond =0 (23)

the range of observation in the,— 7, plane. Equation$15) and
(16) are now written in these scaled coordinates as below.

LA A
a|—2+ —2+€ 4%
any  9dn;

k—1
@ k+1

20}
/7

k—1
k+1

. A A PA
C—+2c———€—
Ny dnot g2

k—1
k+1

0

Bt B
dn

Mo

-0 (18)

5 Po P
as— + - +e€
any  dn;

w _
dny T I

+B(3—K> &A}Jr po|. A o PA A
—|+—|c—+2cC —e—|=
k=1)dm] wmo| dm andt g2

(19)

U™ 2
any amny

Form=2 and m=3

92 9 A A k—1\ I
01|2 ¢m+ ¢m+a ¢m 2+,3 ¢m 2 a(K+1) ‘pm 2

an?  ans any a7 any

_ k=1} -2 Po k=1 éa¢m72+20 b2
k+1) dn, Mo\ k+1 an, dn ot

=0 (24)

262¢m+ 02¢m+ ‘9wm72+18‘9¢m72 a( K_l) IPm-2

a a
Son? ond am any k+1] dn,
_ k=1| dpm-2 Po k=1 éa¢m72+zc P2
k+1) dn Mo\ k+1 an, dnot
=0 (25)

It should be observed from the above set of equations that Egs.

Atthis stage it is assumed thatandw are represented as a powel(22) and (23) are similar to that for homogeneous material where

series expansion ia.

%

ALY, D =A(eny ey, )=, €™ V2B (), 7,,1)
m=0 (20)

%

W(X,y,1)=w(eny,em,,t) = EO ™ D2y (91,7m2,)
=

Now, substituting power series expansid2§) into Egs.(18)
and(19) gives the following equations.

Journal of Applied Mechanics

as the partial differential Eqs(24) and (25), associated with
higher powers ofe are coupled to the differentials of the lower
order functions through the nonhomogeneity parameteaad 3.
Equations(22) and(23) can be easily reduced to Laplace’s equa-
tions in the respective complex domaifis= 7, +ia; 72, {s= 71
+iagny, i=y—1.

Since the crack is propagating at an angle to the direction of
property gradation, the stress field near the crack tip is a combi-
nation of both opening and shear modesxed mode. For elastic
solution the stress field related to opening mode and shear modes
can be superposed to obtain the mixed mode solytl& The
solutions for the Egs(22) and (23) are same as homogeneous
material[19,20 and can be written as
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0
do=Re Fo({))]+ IM[Ho(£)1=Ag(t)pi * cos
—Co(t)p(l’zsin%
h1=Aq(1) (26)
Po=1M[Go({s) 1+ R Io({s)1=—Bg t)ps
_ 05
+Dy(t)ps 1’Zcos?
1=Dy(1)
where
pi=[ni+afn3  tang="1",
71
ps=[7]§+a§7]%]l/2, tanfs= —
71

In the above Eqgs(26), A,, B,, C,,, andD, are real constants
that vary with time. It can also be noticed that, 6,, ps, andé,
are also functions of time.

Using the definitions of dynamic stress intensity factds and
K,p for opening and shear modgs9] as given in Eq(27), the
relations betweer\y(t), K,p(t) andCy(t), K, p(t) are obtained,

respectively.
Kip=Lim y2mxay,

x—0

(1+a2)(1-ad) Kp(t)

Ao(t)= :
olt) dajag—(1+ a§)2 /.LC\/Z 28)
oyty= 2osimad) Kin(®

dajag—(1+ ozg)2 meN2m

where u. is the crack-tip shear modulukp(t) andK,p(t) are
the respective time-dependent mode-I and mode-II dynamic stress
intensity factors.

Considering the crack face boundary conditiang=0 and
oyy=0, we can also obtain the following relationships between
Ag(t), Bo(t) andCy(t), Dy(t), respectively:

2
1= s
Bo(t)= 5 A,
s | (29)
Dy(t) 1+a§ —aic B
0 2a5 1—-a? 0

The solution for the Eqg924) and(25) corresponding to higher
powers ofe (m=2) consists of two parts—classical solution and
solution due to honhomogeneity—and these can be obtained re-
cursively[17]. The solutionsp, and, obtained are given below.

At this stage it can be noticed that the solutiehys «q, ¢, and
1 automatically satisfy the compatibility equations because the

y=0 27) solutions are same as those of homogeneous materials. Since the
K, =Lim y2mx nonhomogeneous specific parts ¢ and ¢, are obtained form
n e VTR Ty ¢o and i, they also automatically satisfy the compatibility
y=0 equations.
|
6 0 aPg(t) 36 aCo(t) 36, BAo(1) 36, BCo(t) 36,
12 o 1/2 _ 12 d ) 1/2 1/2 12 )
do=As(t)p; cosZ+Cz() sm2 4a|2 P 52 + 4a|2 esin 5 A, pisin 5 Ao P cos2
2aas (k=1 1 Os 1z s 2B (k-1 2. Os 12 O
E 1 Bo(t)ps cos?+D0(t)p sm2 +H 1 Bo(t)ps smE—Do(t)p cosE
36, 36,
l[Ao t)]P”zCOST— Di[Cq(t) ]Pll23|n7
1 36, 76, 1 36 1 76
——BA|(t)p1/2c057+—BA|(t 1’2c057— BQ(t)pllzsmTl—z BC,(t)pllzslnTI (30)
O 0s  aBy(t) 360s aDy(t) 365 BBy(t) 365 BDy(t) 36
_ 12 i S 12 055> 0 12 o S 0 12 ana S 0 1/2 SYs 0 12 007s
lﬂz Z(t)p S|n2 +D2(t)p 52 + 4a§ psSIN 2 4DZ§ Ps S 2 4as Ps 2 40[5 Ps 2
2aa| 3—k 0|
> 2( 1) Ao(t)pllzsmi+C0(t)pmcos§
ap —ag
2B (3—« w0 w01 vz 30s L
- af—a_fj(k )[Ao(t)p cos§+Co(t) sm2 ——DS[BO(t)]p sm7 S[Do(t)]p cosT
1 30 1 765 1 36 1 76
_ T ppl 12 1 1/2 - 1 1/2 SUs ., 1 1/2 _Us
4BB (t)pg “sin—— 5 2 =5 BB;(t)p5“sin—— 5 4BDS(t)pS coS 5 +248Ds(t)pS coS 5 (31)
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where 2
2 d ¢25

Pos_ (K*l) o ;B(Kfl)
2

1 _ Po k—1) yec(t) d @ ‘9775 + (9712 k+1 (9_771: k+1
DilAWI="~| 7|7 gi[c(DA],
Folk “ B —3/2 o; 305 D —3/2 305
. po [ k—1| Ve d X| Bo(t)ps sin—-— o(D)ps Cos—-
DilCo()]=— —— T [e(D)Co(1)]
Mo\ Kkt+1] o2 dt (36)
3 po)z k—1)2c?(t) de(t)
BA(t)==|— Aot ,
v 2(,“«0 ktl] o olt) dt a2‘92¢26+¢92¢26__Po k=1 -¢9¢0+2C 7o
a2 2 T o\ kt+1)\ oy T oot
B0~ 3 ( PO)Z( Kl)zcz(t) 0 de(t) n I Mo\ K 71 71 -
! 2 o) \kt1] b 7O dt
1 po Ve(t) d The irregular part of the solutioth, given in Eq.(30) is asso-
Dg[Bo(t)]=— o o2 grlc(WBo(D)], ciated with solutionss,, and ¢, [the solutions of Eqs(35) and
0 s (36)]. In order to eliminate the irregular behavior, the terms in the
po Ve(t) d right-hand side of the partial differential Eq®5) and (36) are
DIDy(t)]=— — —t[c(t)DO(t)] expanded in terms gf, and 6, . First a is expressed in terms of
Mo ag a, through the following equations.
BBL(t) = 3(p0)2c2<t> de(t)
s 2 po) o4 T dt a? c\? . c\?
—|=1-M =] oral=al(1-¢), &=\—| (39)
BDL(t _3(P0 2er o del) @ s o
s(h=3 o a—g o)~

It can be observed that the first two terms in the above &@. Knowing the elastic constants, the parametetan be obtained

and (31) are same as those for a mixed mode crack in homogough curve fitting. For a Poisson's ratio of 083js 0.7. Now

neous materials and the additional terms are the result of the rﬁH-bSt'tL.mng the rel§t|0|(138) in the expression fops and 65, we
terial nonhomogeneity. The last six terms in the soluti@@ and Can Writeps and ds in terms ofe as given below.

(31) are transient part of the differential Eq24) and (25). The

equations also reveal that the two terms with coefficients _ \/ﬁ _

2aagl(af—a?) and 28/(a?—a?) in Egs. (30) and (31) ap- ps=Vmtai(l=&n; and @ame=yl-ia 7’2/771(39)
proach infinity as crack speed approaches zero becauseapoth

and ag approach values close to 1. This irregularity, which occurs

for c<0.3%q, is due to the coupling betweehand w through the Using the above relations, the right-hand side of the E3fS.
lower-order partial differentials in Eq§10) and(11). This irregu- and (36) are now expanded as a Taylor series in terms of the
larity was duly discussed by Parameswaran and ShHakleand a parametei, resulting in the following differential equations.
remedial approximation was proposed for the steady-state prob-

lem. The important details of irregularity and remedial approxi-

mation using their procedure for the transient problem are dis; #¢,, 3 ¢,4

cussed below. a5~

2 2
The solution for Eq.(24) is obtained in six parts ¢¢,= ¢, 971 973
+ hoot dogt hoat host ppg) from the following differential —aas (k-1 . 3 36,
equations. = - e i}
q 2 2 5 K+1)P| Bo(t)] | 1+ g & |cos—
J J
o? ¢221+ ¢221:o (32) 374
an an5 ~8 3 COST
by b Zon)
2 — _Y 3 . 30| 3 . 70|
ok ol Yom 33) +Dy(t) (1+ §§)Sln7* Sésin +0(§2>] (40)
o? <92¢23+ 1924523: _ L 9%0 (34)
s s 972 i (724525+ P bos
I 2 2
o2 92¢24+ P s any I3
! 2 2
(7771 (7772 ,8 K_l 3/2( 3 ) | 3 . 70|
== P —Bo(t)| | 1+ s &|sin——— < ésin—
k—1\ ao 2\ k+1 8 2 8 2
“ N %+ 1), 3 36, ) ,
+Dy(t) 1+§ 0057—550037 +0(&9)
_ Taas K- 1
2 k+1 (41)
36 36,
X | Bo(t)pg 32 cosTS +D0(t)ps_3123in75 It was identified that is very small for crack speeds<Cc/c;

<0.3, and therefore the higher order terms @£%) are ne-
(35) glected. The final solution obtained in termsand 6, is given in
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Egs.(42) and(43). However, for crack speeds>0.3c,, £ is not B[r—1 3 o? 1 39
negligible and the solutions provided in Eg30) and(31) can be 4525:5 1 ﬂ’z[ 1+§ 1——5) —Z(Bo(t)sinTI
directly used. K ai] || 2
Dyt 36, 3 a2\ - (B (s 76,
- COS—— sl1-—=]||—= sin—-
_—aag(k—1) 1+3 1- ag — Bo(t) | 0 2 8 o 2a|2 0 2
¢24_ 2 k+1 Pi 8 C(|2 a|2 O( Cos 2 -
I
-D (t)cos—) (43)
4D i 30| . 3 1 ag 1 B 70| 0 2
O(t)SInT 8 01_|2 12a|2 O(t)COST A similar approach is used to correct this irregularity in B31)
by representing right-hand-side terms associated with irregular
76, differential equations in terms qfs and 5. These changes are
+D0(t)sin7) (42) incorporated to obtain well-behaved solutions ¢f and ¢, at
velocities less than the @3and are given below.
|
0, 0, aAy(t) 36, aCy(t) 36, BA(t) 36, BCy(t) 36,
_ 112 (ot 12 gjn— 12 (201 12 i 201 12 i 271 U2 ama !
b2=ARa(D)pi " cos + Cy(t) p " sin 4a? pi > 4a? pi > 4oy P > 4, P >
—aag[k—1 12, —-P s 30+D . 36, N R s 70'+D ) 76,
e L o o(t)eos—=+Do(t)sin—= 1227 o(t)cos—=+Do(t)sin—
+B k=1 | P Bt 36, - 36, + =R (s s 76, Dt 76, 1D1A 1n . 36
2\ er 1P| | 5g2 | BolsinZ5==Do(t)cos 5 1202 o(D)sin—=—Do(t)cos— 5 DilAo()]pi cos—
1 36, 1 3, 1 76, 1 36, 1 76
——D|[Co(t)]p1/25|n7— BA (t)p1/20037+2 BA (t)meOSTI— BCH(Dp{sin5— 7 BCl(t)p”ZSInTl
(44)
Os 0s aBy(t) 36s aDy(t) 36s BBy(t) 36s BDy(t) 36
_ 12 i S 12 =S 0 U2 ain27S 0 12 ana S 0 12 ana S 0 12, 007s
Y=By(t)ps sm2 +D,(t)ps > + : s sin— 202 s C0S— o, Ps ) da, P sin—
aq) 3=k 1, -1 At 305 Ot 305 4R L - At 705 +Cuft 704
5 1 e=1/Ps 152 ™ o()sin—=+Co(t)cos— 207 o()sin—=+Co(t)cos—
+B3—K 2 1At 30Ct 365 PR (A YGCt A llBtl’z 365
2|z P3| Q| 3z | AolDe0s 5~ Coltysin7 | | +R -5 | Ao(t)cos 57— Co(tysin5 D[Bo(t)]pE?sin—
1 1 36 1 1 36 1
_ It 12, _ T rRl) L2 — BBYt)p 25 — ZBDY1)p2¢ 12 0 0g 8
D s[Do(t)]ps 2 4BB (t)ps“sin—— > + 24BB (t)ps 2 4BD (t)ps“cos—— > 24BD (t)ps (45)
I
where h3=Ag(t)r, cosd,+ Cy(t)r, sin b, (46)
y3=B3(t)rgsin 65+ Ds(t)rgcoshy
2 2
3 ag 3 ag
P:1+§ 1- ;I ’ Q:1*§ 1- ;I By satisfying crack face boundary conditions, the coefficiénts
B; andC;, D3 can be related as
2
3 ag)? _ 2as 1+ ag
) I T As(t)= — B5(t 47
R—s{l (a.) (0= 5 2Bl (47)
1-a? 1+a?
. Ca(t)=——— —5_—Ds(t) (48)
The higher order terms fan=3 are same as those for homo- l-ag <@

geneous material for mixed mode loading since the partial differ-

ential equations[see Egs.(24) and (25)] reduces to scaled Now, by substituting¢,, ¢1, ¢,, and ¢3 in the Eq.(20), the
Laplace’s equations on substitutigg and ;. The solutionsp;  expressions fold and dA/dx and dA/dy can be determined and
and ¢4 are given below. they are given below.
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B [% B 1% 6, 0 aPp(t) 36, aCy(t) 36,
_ 1/2 | 12 i ) 1/2 12 A 0 12 | 0 1/2 o I
A=Aq(t)r, cos—2 Co(t)r, sm—2 +AL(t)+A(D)r; cos—2 +Cy(t)r; 2 —4a|2 r cos—2 + —4a|2 r sln—2

Gay VN Ty ST o

7,8A0(t)r1,2 36, BCo(h) 4 ﬂi aas("*l) 1/2[
2 2

-P 36, 36,
Bo(t)cos—+D0(t)sm—
a

n B.(t 70 LDt . 70| +B k—1 12 P Bo(t i 30| D(t 30|
o |2 o(t)cos— 5 ol )smT 5| r 1 r 27z|2 ol )smT ol )0057
- 76, 76, 1 b 36 1 b 36 1 1 36
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12a? 2 2 2 2
1 w. S0 1 14y, 102 36 1 w2 (O ;
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A At r, 32 36'+C t r32 39|+A . 2 g ot Y20 aAg(t) BCot) 56,
ax =Pl T oo H Coll) T singm A 500y TGl SN | T e ey | 2 |02
6\ [ aCo(t) BAoY) CY¥20 5y, 60\ aag[k—1\r ¥ 56, 6,
+2 cosz)+ 4a| 4o 2 —sin— +2 smi il oy e ZTqZBO(t) c057+2 cosi
-P 56, 6 96, 56, 96, 56,
+ ZTqZDO(t) —SII"I7+2 sm; + 30057+4 cosT + _|2D0(t) 35|n7+4 smT
+,B k—1\r 2] P - 56, o 6, P - 56, o 0,
2\ %r1) 2 271,2 o(t) s.ln2 sin > 271? o(t) 0052 cosE
2R ey —3sined 4 a sl || =R by(t)| -3 cost + 4 cos)
o o(t) sin—- 5 SIHT 1207 o(t) cos— cos—-
L DA ]+ SBAL r'm( % 2 cost lch 0]+ SBCY(t i 20 o sin?
5 i[A()] n () 2 0052 C032 i[Co(D)] 2 (O ]—5— 2 S|n2 SlnE
- Zpalt - “3cos 44 cost| - Lpcit - 3 i 4 4 sint) + Ayt 50
+ 2aBAID) | ~Bcosg 4 cos| - 7B | ~3singmdsing |+ Al (50)
%*—A Ha rI73/23in36’| Co(t) rIﬂwcosﬁ+A Ha Ll/Zsinﬁ+c N LlIzcosﬁ — aAO(t)—BCO(t) @ r|*1/2
ay R 2 TR 2 T2 2 T2UT 2 4a? 4oy |7" 2
56, C 6\ [aCo(t) BAsN)) ¥ 54 0\ aaas(k—1\r ([P 56,
(—smT—Z S|n5)+ 4a|2 da, a— 0057+2 cosE - 1 2 2T¥|280(t) —smT
2'0'+_ 0l cos +2 cost | | +] - By(t)| =3 sinoA— 4 sinot| | + Dy(t)| 3 cos)
sm2 a| Dy(t)| cos—— 5 0032 2a|2 o(t) sin— 5 sin 5 a,2 o(t) 0057
s 561\ || , Bas(x—1 2l p 5t 5.9|+2 6, P - 56, 5 i
0057 5 |\ 1l 2 271,2 o(t) cosT cosE 271? o(t) smT sm2
2R ey[3cosd g 50') R byt —3 s 4 st
01| o(t) CoS—-+4 cos— o(t) sin > sin >
L DA+ SBA 2 2sin) | 2 picyn]+ ~BCit T 2 cost
5 DilAdO]+ 7 BAI(D) | — sin—-—2sin5 | = | 5 D{{Co(V) ]+ 7 BCH(D) ja—; 0057 cos

—1/2

1 . r
-5 BCi (Y a—— 5

3 i +4 Sl
52 cos— COS——
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Fig. 2 Effect of rate of change of mode-I stress intensity factor on contours of constant out-of-plane dis-
placement around the crack tip for opening mode loading in an FGM [6=20, ¢=0°, Kp(t)=1 MPam?,

Kyp(t)=0, c=300m/s, dc/dt=0, dKp(t)/dt=0 and »=0.3]

Assuming uniform strain in the out-of-plane direction for plane 0 -
stress conditions, the out-of-plane displacement and their gra__ | _:_ I::::gs
ents can be determined by substitutihgn Egs.(52). g o Thetao 90°

44 . = 0
My 0w vty JA ow nt, A B - v Thew o 1
W= — _— _— - .
) R (1—v) ox' ay (1—v) gy g 67 A .
(52) § 8 - \'\\ e
wheret,, is the thickness of the specimen in the out-of-plang 101 \,\
direction. These displacement fields and their gradients are usef | A o« '>\_., —u
in extracting the fracture parameters by analyzing full-field dalg .12 \T"';l/ —a ~.
around the crack tip obtained through experimental techniqu2 ./'// S~ v
CGS|[22]. g 14 i -
= -~
. . . S ~~
3 Discussion on Solutions 16 “

Equation(52) was used to study the effect of transient terms o~ -18 — T T T T T

the structure of crack-tip out-of-plane displacement fields. Tr 00 20045 405 60e+5  BlexS  10ex6  12et5

contours of constant out-of-plane displacement around the cre
tip were generated for both opening and mixed mode loading

conditions. In an experimental investigation, the constaq($),  rig 3 Effect of transient mode-I stress intensity factor on out-
Bn(t), Cy(t), andD,(t) of the various terms in the expansion ofpf-plane displacement at various positions around the crack tip
the out-of-plane displacements are determined from experimeng@eta is measured in a counterclockwise direction from posi-
data. The constaniy(t), By(t), Co(t), andDy(t) are related to tive x-axis)

dKyp(t)/dt (MPa-m/Z"sec 1)
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Fig. 4 Effect of rate of change of mode-| stress intensity factor and mode-Il stress intensity factor on
contours of constant out-of-plane displacement around the crack tip for mixed mode loading in an FGM
[6=20, ¢=45°, Kp()=1 MPam¥?, K,p(t)=1 MPam¥2, ¢=300 m/s, dc/dt=0, and »=0.3]

mode-I and -1l stress intensity factdr& p(t) andKp(t) respec- origin is at the crack tip. It can be noticed from the figure that as
tively] as given in Eqs(28) and (29). The contours were drawn the dKp(t)/dt increases, the size and shape of the contours
for a fixed value ofp(t) andK;p(t). The remaining constants change. The contours ahead of the crack tip become compressed
were assigned a value of zero. towards the crack tip and become elongated inytuirection as

The typical values of material properties and material thiCknea?(D(t)/dt increases. The values of out-of-plane displacement as

used in generating contours are as follows: Poisson’s i@afio : . . .
=0.3, shear modulus at the crack tip =1 GPa, density at the a function ofdKp(t)/dt at various positions around the crack tip

crack tip (o;) =2000 kg/ni, and thicknesstj=0.01m. Figure 2 for radial distance of half the material thickness are shown in Fig.
shows the effect of rate of change of mode-I stress intensity factr This plot is made from the data obtained in the Fig. 2. The
[dKp(t)/dt] on contours of constant out-of-plane displacememlues of the out of plane displacement decrease by 56% along the
(in wm) for opening mode loading around the crack tip corresrack line as the dKp(t)/dt increases from zero to
sponding t06=20 ande=0°, K p(t)=1.0 MPant?, K,p(t)=0, 10°MPant?s 1. However the out of plane displacement value
dKp(t)/dt=0, c=300m/s, anddc/dt=0. The value of decrease by only 24% for a point at angle of 45° to the positive
dKp(t)/dt was varied over six orders of magnitude. Dally ang.axis. As the angle increase to 90°, the out of plane displacement
S_hukla[23] showed that the rate of ck/12arlgle}0,ﬁ3 at crack initia-  creases by 53% for the increase @Ko(t)/dt from zero to
tion could be of the order of f_CMPa m2s %, The yalue 016=20 106 Mpam?s 1. Further increase in angle to 135°, increases the
corresponds to a 7.4 times increase of Young’s modulus over a . .
placement values by 134% for the same increase in

distance of 0.1 m along the gradient. In this figure and the figurg . .
discussed later, the crack occupies the negatieeis and the OKio(t)/dt. It can be inferred from these changes in value of
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Fig. 5 Effect of crack-tip acceleration on contours of constant out-of-plane displacement around the
crack tip for opening mode loading in an FGM (6=20, ¢=0° Kp(t)=1MPam¥?, K(t)=0, dKp(1)/dt
=10° MPam¥?s™!, dK p(t)/dt=0, c=300 m/s, and »=0.3)

out-of-plane displacements around the crack tip that the transiel = -4
terms have major effect on the crack-tip field for rapid change ir @ Theta=0"
. . —& - Theta =45

stress intensity factor. o Them o0
Figure 4 shows the effect of rate of change of mode-I stresy - —¥— Theta=135°

intensity factor[dKp(t)/dt] and mode-Il stress intensity factor =

[dKp(t)/dt] on contours of constant out-of-plane displacementg N \

(in um) for mixed mode loading around the crack tip correspond-8

ing to 6=20 and ¢=45°, Kp(t)=1.0MPan? Kp(t)

=1 MPant2 c¢c=300m/s, andlc/dt=0. Similar to mode-I load-

ing as shown in Fig. 2, in case of mixed mode loading also, th

(um)

a

of plane displ

—

variation of dKp(t)/dt and dK,p(t)/dt from zero to e e ®

10° MPam’?s™1 has significant effect on the size and shape ofz "2 g T

the contours. Similar to mode-I loading as shown in Fig. 3, the :——g——-‘““”

out-of-plane displacement values also undergo a spatial variatic ~_, . : ‘ : . .

as thedKp(t)/dt anddK,p(t)/dt values increase. Therefore the 00  20e+7 40647 60047 80e+7 10048 1248
transient terms also have considerable effect on crack-tip field fc de/dt (mfsec)

mixed mode loading.
The effect of crack-tip acceleration on contours of constant O%‘g. 6 Effect of acceleration on out-of-plane displacement at

of-plane displacement around the crack tip for opening MoQgrious positions around the crack tip  (theta is measured in a
loading, corresponding ta5=20, ¢=0° K;(t)=1 MPant? counterclockwise direction from positive X-axis)
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Fig. 7 Effect of crack-tip acceleration on contours of constant out-of-plane displacement around the crack
tip for mixed mode loading in a FGM  [6=20, ¢=45°, Kp()=K,p(t)=1 MPam¥2, dK p(t)/dt=dK p(t)/dt
=10° MPam¥?s~%, ¢=300 m/s, and »=0.3]

dK|D(t)/dt:10‘3 MPa rﬁuzs_l, K||D(t):O, dK"D(t)/dt:O, and K,D(t):lO MPa rﬁlz, K||D(t):10 MPa rﬁlz, dK|D(t)/dt
c=300m/s is shown in Fig. 5. The value dit/dt was varied =10° MPant?s™!, dK;p(t)/dt=10* MPant?s™%, and c
over eight orders of magnitude. Dally and ShuK23] also =300m/s. Similar to mode-I loading as shown in Fig. 5, in case
showed that the rate of change of velocity at crack initiation coulgf mixed mode loading also, the variation @€/dt has consider-
be of the order of 10m/<*. Similar to Fig. 2, the transient effect able effect on the size and shape of the contours.

because of crack-tip acceleration also compressed the contours

ahead of the crack tip as the acceleration increased. The valueg of Concluding Remarks

out-of-plane displacement as a functiondaf/dt at various posi- . . . '
tions around the crack tip for radial distance of half the plate ASYmptotic expansion of out-of-plane displacement field and

thickness are shown in Fig. 6. This plot is made from the dati gradients for a transient crack propagating at an angle to the
obtained in the Fig. 5. The values of the out-of-plane displacemd#operty gradient were obtained. These displacement fields are
decrease by 15% along the crack line asdb&dt increases from required for extracting the fracture parameters by analyzing full-
zero to 16 m/s2. However, the out-of-plane displacement valudield data around the crack tip obtained through experimental
decrease by only 6% for a point at angle of 45° to the positit&chniques, such as CGS. Using these displacement fields, the
x-axis for the same variation of acceleration. As the angle igffect of transient stress intensity factor and acceleration on syn-
creases to 90°, the out-of-plane displacement increases by 13%itf@tic contours of constant out-of-plane displacement under both
the increase ofic/dt from zero to 186 m/<?. Further increase in opening and mixed mode loading has been shown. These contours
angle to 135°, increases the displacement values by 30% for #f®w that the transient effects cause significant spatial variation in
same increase idc/dt. out-of-plane displacements around the crack tip. Therefore, in
Figure 7 shows the effect of crack-tip acceleration on contoustudying dynamic fracture of FGMs, it is appropriate to include

of constant out-of-plane displacemeimt wm) around the crack the transient terms in the field equations for the situations of sud-
tip for mixed mode loading, corresponding & 20 and¢=45°, den variation of stress intensity factor or crack-tip velocity.
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Damage Modeling in Random
Short Glass Fiber Reinforced
Composites Including Permanent
Strain and Unilateral Effect

This paper presents the development of a theoretical damage mechanics model applicable
to random short glass fiber reinforced composites. This model is based on a macroscopic
approach using internal variables together with a thermodynamic potential expressed in
the stress space. Induced anisotropic damage, nonsymmetric tensile/compressive behavior
(unilateral effect) and residual effects (permanent strain) are taken into account. The
anisotropic damage is represented with second-order tensorial internal vari@bl@e
unilateral effect due to microcrack closure in compression is introduced by generalizing
the hypothesis of the complementary elastic energy equivalence. In the case of the per-
manent strain, a new term related to frozen energy, which is a function of the damage
variable, the stress tensor, and some materials constants to be identified, is added to the

basic thermodynamic potential. Using laboratory test results, parameter identification has
been performed to illustrate the applicability of the proposed model.
[DOI: 10.1115/1.1839593

1 Introduction elastic modulus decrease with progressive repeated tensile loading
tests. Permanent strains have been also observed in these tests.

The |ndu§try of.utlllty and recreative vehicles uses r"‘md(."lT-]owever, loading and unloading in compression show that there
short glass fiber reinforced composites to construct a wide variety o/ ctifness loss nor permanent strain due to damage, indi-

of parts due to its I'ght weight and the ease with V\.'h'Ch complg ting that the material behavior is linear elastic. Complementary
shapes can be achieved. For example, it is used in the manuiagis™have been performed: they are the pseudo-biaxial tensile
turing of seats for subway trains, shells for watercraft and electfsqg]. After damage has been induced in one direction, denoted
cal vehicles, side panels of buses, etc. To optimize those paf§jirection in Fig. 1, the material has been loaded in an elastic
both the elastic properties of the material and its behavior undgsmain in some other selected directi@® and 90 deyin order
heavy loads inducing progressive damage up to failure have tofgestimate Young's modulus, Poisson’s ratio, and the shear modu-
characterized. _ lus. These tests have been performed for different damage levels.
For two decades, many papers have been published on the mResults show clearly that the transverse Young’s mod(hedu-
eling of damage mechanics using a thermodynamic approach Wiig in the 2-directionis reduced by the damage induced in the
internal variableg1-5|. Although those models were developed -direction.
using a macroscopic formulation, microscopic considerations andThis paper presents a new model based on TIP with internal
observations were used to justify them. The framework of theariables to take into account the unilateral effect of the composite
thermodynamic of irreversible process@$P) using internal vari- and permanent strafi®]. The data published if7,8] and an iden-
ables is probably one of the best approaches to model daméifieation procedure were used to determine the parameters of the
mechanics. However, there still remain many open questions fmoposed model and the tensile and shear tests were simulated.
the modeling of induced anisotrogin particular, in the case of
nonproportional loading desactivation of damage due to micro-, —
crack closurdunilateral effect, and residual effects. 2 Description of the Proposed Model

The aim of this paper is to present a theoretical damage modeb 1 \odified Hypothesis of Complementary Elastic En-
able to predict the behavior of glass fiber reinforced compositggyy Equivalence. In the case of an isotropic material, the
and the progressive degradation preceding failure. The materiatimplementary elastic energy is defined as
made of polyester resin and short glass fibers distributed randomly
in the plane of the part using a robotized technology. In R&f. Ue:ia'a— v (
some results about the characterization of the tensile behavior of 0 2ET 2E
this material have been published. Those tests results also pro- . . . .
vided some information pertaining to the different damage mecﬁ%’z‘erelz Is a second-order unit tensar, is the Stress tensok, is

nisms. In Refs[7,8], detailed information related to the charac- ung's modulus, and is Poisson's ratio. After a tensile loading

o > ) . ausing damage, when the material is loaded in compression, as
terization of this material can be found. Damage is revealed by tﬁﬁserved on test specimens, the damage ofgfreared cracks

Comributed by the Abpiied Mechanics Division ofiE A . seem to disappear. The explanation is relatively simple. In the
ontrioute Yy the Applie echanics Division ol MERICAN CIETY OF H 3

MECHANICAL ENGINEERSfor publication in the ASME OURNAL OF APPLIED ME- general Ca.se’ a Cra.Ck is closed p_art or totally when a stress
CHANICS. Manuscript received by the Applied Mechanics Division, October 30[1()_rma| to its plane_ IS a compres_swe stress. To take into ac_count
2003; final revision, August 12, 2004. Associate Editor: K. M. Liechti. Discussion othiS phenomenon in the expression of complementary elastic en-
the paper should be addressed to the Editor, Prof. Robert M. McMeeking, Journakqyy of the damage material, a new hypothesis is introduced that

Applied Mechanics, Department of Mechanics and Environmental Engineering, Unis i : R i _
versity of California—Santa Barbara, Santa Barbara, CA 93106-5070, and will rgéé a mOd.Iflcatlon of the hypOthe.SIS of Complementary elastic en
accepted until four months after final publication in the paper itself in the ASMEIQY equivalence proposed by SidorfD]. It is assumed that the

JOURNAL OF APPLIED MECHANICS. complementary elastic energy of the damaged material has the

o1’ — o0) (1)
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Fig. 1 Tensile testing on rectangular plates and specimens cut from it along specific

directions
same form as an equivalent undamaged material by replacing the Sud:
usual stress variable by an effective one, except for the energy M(D)= *ni(@nj@nk@ n
linked to the compression that is responsible for the crack closure. V(1-D;)(1-Dy)
In the principal coordinate system of damage and using a clas-
sical indicial notation, the complementary elastic energy using the _ 1 N@N @M ®n: ©6)
postulate described previously can be written as /(l_Di)(l_Dj) A
1 1
USo, D)_ TTITTI ZEUIIUII 2E O-I]O-I] . . . L . .
i#] whereD; is the damage eigenvalue in the principal direction
The canonical form is used because the fourth-order tdvig)
_ L(?&'-Tr- T F) ) is a real symmetric tensor and its second-order eigentensors asso-
27" T ciated with the real positive eigenvalues|{I-D;)(1-D;) are

nen;.
where; is the tensile stresgositive), anda;; is the compres- Using Egs.(3), (5), and(6), Eq. (2) becomes
sive stresgnegative normal to the plane of the microcrack sys- R T

tem. In other words, the compressive stressis defined as

0'_:H(_niﬂ'ni)(niﬂ'ni)ni®ni:E)(leD)_:O', e(a_D>_ia_(P(rD M(D)M(D)Pa—DJr) p
PP~ =H(—njon)(m@n@nen;) (3)
1
wheren; are the principal directions of the damage ahds the + == o (PoD) ~:pleD) 7y
Heaviside function defined by 2E
1
1, x>0
T + —=0:(E;; :M(D):M(D):Ejji )i=i: 0o
H = 4 =ijij -1 v =ijij Ji#]
() 0, x<0 4 2E
The quantityP(”P)~ is a fourth-order tensor corresponding to a [(tr (D):))2— o:(M(D):M (D)) o]
negative projection operator. In the same way, the positive projec-
tion operator can be defined as @)
PP =H(n;on) (ni@n@nen;) (5)
The fourth-order damage operathf(D) has a canonical form whereE; =n;®n;®n;®n;. The second term of E¢7) can also
[11] be written as
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1 1
5 T (PO R0 ) g AU(a,D)= 5= i PP (MM ~L):P P Lo (10)

_ %UZ(E’(”'D)TM M PO ) Substituting Eqs(5) and (6) in Eq. (10), one obtains
1 o

1 AU®(o,D)=—= oM (D):o 11

P MM L) RO T (8) (D)= 2g 7M®) )

where I, is a fourth order unit tensor. Using E¢g), Eq. (7) The fourth-order operatdvl(D) is defined as
becomes
Di(2—Dy)

> Ni®N;®N; @ N; (12)

M(D):H(—niﬂ'ﬂi)(l_—D_)

U%(oD)= %ai(M:M):a— é[(tr(M: )2~ :(M:M): 0]

and thus, the complementary elastic energy defined by gan

— o TPeD=- (MM =1,)PleD—7: now be written as
SE C[BD I (MM — 1) R0 e )
The first two terms of Eq(9) are identical to the one obtained by e _ 3 S i N7 -
Sidoroff [10] when applying the original postulate of complemen- UH(e:D) 2 ot e 2E oMo (13)

tary elastic energy equivalence. The last term represents the res-
toration of the system rigidity due to crack closure. In that casehereC~ *=M:C~1:M is the fourth-order elastic compliance ten-

the microcrack system is said to become inactive. The definiti@or of the damaged material which could be written in the princi-

corresponding to the last term of E@®) is written as follows: pal coordinate system of damage as
|
. n
1 —v -V
5 0 0 0
E(1-Dy) E(1-Dy)(1-D3) E(1-Dy)(1-Dy)
—v 1 -V
5 0 0 0
E(1-D3)(1-Dy) E(1-Dy) E(1-D3)(1-Dy)
—v -V 1
> 0 0 0
&1 E(1-D3)(1-Dy) E(1-D3)(1-Dyp) E(1-Dy)
- 1
0 0 0 _— 0 0
G(1-D2)(1-Dy)
0 0 0 0 ! 0
G(1-Dy)(1-Dy)
1
0 0 0 0 0 —_—
I G(1-D;)(1-Dy),

(14)

It can be observed from Ed13) that if all components of the material constants to be identified. This energy can be viewed as
stress tensor are positive, the telh{D) is inactive(microcracks frozen by the microcracks. The thermodynamic potential can be
opening, and the classical form defined by Sidordff0] is rewritten as

obtained.

2.2 Residual Effect. When loadgtensile stregsare applied
on a composite structure, cracks and thus damage are induced i8 3  siate Laws
the material. The level of degradation is quantified through the
second-order damage tenddr On the contrary, during the un-  Elastic Constitutive Law. The elastic constitutive law of the
loading phase, the microcracks progressively close up to a certda@maged material is obtained by differentiating the dual potential
extent(at the end of the process, the microcracks are not nec#@gth respect to the stress tensor. The strain is defined in two parts
sarily entirely closel This phenomenon has microscopic justifidue the Heaviside function in the potential expression:
cations related to the nature and geometry of the crack, which fall _ 1.
beyond the scope of this paper. Explanations of the phenomenon e=C Lo- EM :o+A:D 17)
can be found in Refd4,11]. In the present paper, this residual
effect(residual straipis attributed to the state of damage, and thé b
existence of a potential, notedP®, which is a function of the Nentpart €"):

1 . 1 .
U(a,D):Eazgfl:o—ﬁa:M:HmA:D (16)

he total strain is composed of an elastic paf)(and a perma-

damage tensdd and the stress tensor is postulated as o, 1.
= C - E M|:o (18&)
UP(o,D)=0:A:D (15) e=A:D (180)

The elastic compliance tensor of the damaged material taking into
whereA is a symmetric fourth-order tensor whose coefficients asccount the unilateral effect has the following form:
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In the case of a compressive stress normal to the mean surface
the microcrack system , the elastic modulu€; 1nininini becomes

nenenen (19)

~-1 _ ~-1.
CT nininini_ni®ni -C’T nien,

Axial Tensile Stress (MPa)

1 1Dy(2-D;) 1 20
"E(1-D)? E (1-D)? E (20)
This way, the elastic modulus in the direction normal to the mi
crocrack system loaded in compression is restored. In additio
the strain—stress relation defined in E4j7) is continuous and the
elastic compliance tensor is symmetric and positive definite. Tt 10 15
thermodynamic model is thus physically consistent. Axail and Transverse Strains

x10°

Associated Damage ForcesThe thermodynamic force, which , ) ) )
is known as the damage strain energy release rate, must be asso- Fig- 2 Cyclic tensile stress—strain curves  (Test [8])
ciated with the damage tensor. In the case wherein the principal
directions of the damage should not change during loa¢ng-
portional loading, for each eigenvalue of the damae, there is an estimation process using a calibrating technique. It is necessary

an associated thermodynamic forég, defined as in the course of the test to load and unload the specimen in order
to estimate the damage internal varialles D, and to measure
Y,zﬂza:[i(%:c—l:l\ﬂ +MZC_lZﬁ”ZU the elastic and permanent strains’,g"). For further details on
' dD; 2\9D;"= 77 77T 4D, the experimental procedure, the reader is referred to R&f3].

Essentially, the results of the uniaxial cyclic tensile té§ig. 2)
o are used here for parameter identification purposes.
Uniaxial tensile testg§6-8], have shown, if one neglects
the permanent strain, that the following relationship between the

1
—g-:{H(—nio-ni)mni@mi@ni@ni
i

toAmen (213) principal damage function and the thermodynamic force is
M 1 appropriate:
vimo o 50 4 o) f(¥9=a(*- Yo 29)
whereY*® is the thermodynamic force defined in EB5), Y, is the
@nenen ot oAmnen (21b)  initial value at which damage begins, aads a material param-

eter. These two parameters must be identified.

In fact, to take into account the possibility of interaction between |n the principal coordinate system of damageD casg, the A
two principal damage directiongwo-dimensional2-D) casg, a operator(Eq. (15)) is reduced to the following expression using
correction must be done to the expression of the thermodynamisigt's notation(due to symmetry obr, D, andA):

forces. A weighted sum of the two thermodynamic forces is thus

. a —pB
used: B A [ ) 27)
Vi=Yi4bY,, ij=12, i#] (22) _ B _
where the parametdr is a material constant bounded between I?livzzs(lg:al((fgbr)r;anem strains due to damage are obtained as
and 1. ) )
i i ; e11=aD;,—pD,
Damage Evolution Law. The thermodynamic forces drive the o (28)
evolution of the internal variable characterizing the damage up to 82,= —BD1+aD;

failure. Those forces must satisfy tausius-Duheminequality ~where « and 8 are unknown material parameters to be identified

due to damage: using loading tests results.

" Equations(21) and (22) can also be simplified in the case of

Y.D=0 @3) uniaxial loading:

The evolution(quasi-statit law satisfying this inequality is cho- 2
sen to be of the following form: V. — 1 _

o Y1 E(l—D1)3+(a bB)oy,

Di=f(Y}), i=1.2 (24) , (29)
— — (o]
Y(t)=maxXY,,sug Y;(7))} (25) Yz=(ba—ﬁ)vl+b—E(1_Dl)3
<t

whereY, designates the initial damage threshold arisl one of |aPle 1 summarizes the unknown parameters to be identified us-
the principal direction. The functiofiis a growing positive func- "9 @n appropriate technique together with test results. In Table 2,

tion intrinsic to the material. the test results_ to be used for the iqlenti_fication are displayed. A
loading/unloading test allows the estimation of the secant damage
3 Model Identification Young’s modulus. The damage value can thus be estimated using
Eq. (14):
To identify the parameters of the proposed model, progressivg ‘ 5
repeated tensile loading tests must be performed and followed by Ei=E(1-Dy) (30)
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Table 1 Definition of the unknown parameters

Unknown
parameters a Yo b a, B
Mathematical Scalar Scalar Scalar Fourth-order
nature tensor
Definition Material Thermodynamic Parameter Parameters to
coefficient force beyond necessary to take estimate
necessary to which damage into account cross permanent strains
estimate the begins effects in the due to damage
damage level thermodynamic
force
and then: NC
2, leh=edil?
=
E, ERR_STR= —x¢
Di=1-\/—= (31)
E 2, ekl
=
In this unique test, it is difficult to estimate the damage parameter Ne 5 5
in the transverse directiorD(,). Information about the damaged 2 [(ehi—efi)i +(ehoo—ebo)i]
material Poisson'’s rati@,, allows us to estimate its values using _=t (35)
Eq. (14): NC , ,
z [(emuDi+ (8o
=1
1-D v : : P
V1=V ——=Dy=1— —(1—D,) (32) Subject to the following constraint:
1— D2 Vi2 NC
H i t thi i t gi liabl 21 (DT_DIl)iZ
owever, in most cases, this expression may not give reliable =
damage values because the damaged Poisson’siratineasure- ERR_EVO=—c <Tol (36)
ment is not very precise. Instedd, is evaluated using Eq&24)— 2 (Dlm)i2
(26) and(29): i=1

wherei is the cycle indexNC is the total number of cycles in
o o2 axial cyclic tensile test£6, Fig. 2 andep, ande are the mea-
D,=a(Y,—Yg) =a (ba—ﬂ)oﬁbm—\(o (33) sured and predicte@Eqg. (34)) permanent strains, respectivel)'
! andD] are the measured and predictesing Eqs(24)—(26) and
(29)) damage variable values, respectively, in the tensile stress
Now, Eg.(28) can be used to express the permanent strain agjifection. A value of 6.% 10 * was chosen for the constraint

function of the five unknown parameteYg, a, b, «, andg: parametefTol. The parameters have been calibrated by means of
the Lagrangian operator and the Uzawa’s methid].
o2 Table 3 gives the values obtained from the calibration proce-
e’,=aD,— Ba(ba—B)a,—b 1 + gay, dure. The precision obtained with Eq®4) and (35 was 7.7
" 17F Rloy BE(l— Dy)* hato x 1073 and 6.89% 10™*, respectively. Table 4 gives a compari-
o2 son between the measured and the calculated values of permanent
eb,=—pBD,+ca(ba—B)o,+ baﬁf aaY, strain apd damag®;. A very gooq correlatlion between those
( 1 (34) values is observed except for the first two lines of the table cor-

responding to applied stresses of 24.50 and 39.43 MPa. The per-
manent strain and damage parameters generally have low values,
Parameter identification is done using a constrained optimizatigarticularly in the first few cycle€ to 3 cycles, see Table 4t is
technique. The following equation is used as the objective fungot easy to obtain reliable measured values and consequently, it
tion to be optimized: may be an error source for correlation and fitting. However, in the
last three cycles, the percentage differences of the expected and
the measured values of strain and damage parameters are within
the ranges of —5.6%, 9.2% and[ —0.5%, 0.8%, respectively.

Table 2 Experimental results from Ref.  [7] Therefore, the proposed model with the values of parameters
listed in Table 3 is applicable in representing the damage mechan-
Maximum Permanent axial Permanent Damage in the  ics behavior of random short glass fiber reinforced composites
stress level  straingqq transverse strain,, direction of loading under relatively large strain.
(MPg (um/m) (pm/m) Dy
24.50 72.24 —126.7 0.0134649
39.43 240.8 —267.6 0.025708 Table 3 Numerical values of the unknown parameters
51.41 337.1 —352.1 0.043811
61.34 550.7 —450.6 0.066579 Y, a b o B
70.27 722.4 —549.2 0.091765
77.30 987.2 —647.8 0.115231 0.06819 0.07884 0.5878 0.010071 0.008371
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Table 4 Comparison between estimated and measured values

D, (10°%) Permanent straia;; (wm/m) Permanent straig,, (um/m)
Measured Calculated Error % Measured Calculated Error % Measured Calculated Error %
13.47 10.98 18.5 72.24 135.7 —87.8 —126.7 —-112.7 11.0
25.71 27.85 -83 240.8 258.9 -75 —267.6 —215.2 9.6
43.81 46.46 —6.0 337.1 417.1 —-23.7 —352.1 —337.7 4.1
66.58 66.91 -0.5 550.7 581.7 —5.6 —450.6 —450.4 0.0
91.77 90.65 1.2 722.4 750.8 -39 —549.2 —559.6 -1.9
115.2 114.4 0.8 987.2 895.9 9.2 —647.8 —646.2 0.2

4 Numerical Simulation

Figure 5 illustrates the result for monotonic tensile loading. A
very good agreement between numerical and test results is ob-

4.1 Numerical Implementation. The proposed model hastained. Monotonic and cyclic loading have been simulated in
been implemented in thesaQus finite-element code using the shear. Figures 6 and 7 illustrate both the numerical and the experi-

UMAT functionality. The numerical integration is done by dismental results, which again are very close. Referefitgs give
cretizing the loading using load increments and thus strain incrgt the information on the test procedure.

ments. From the mechanical statg, o,, D,, at timet,, an
estimation is made of the mechanical statg ;, D,,,;, at time

The evolution of the degradation of the elastic properties in
function of tensile stress level in three different directiéds45,

tn. 1 corresponding to the strain incremeXd. This local integra- gnd 90 dey is presented in Figs. 8-10. In Figs. 8 and 9, the

tion is done using an implicit integration algorithm and

redicted damaged Young’s modulus and Poisson’s ratio can be

Newton—Raphson technique to estimate the mechanical state. For
this purpose, a consistent tangential matrix has been derived. The

reader can find more information in Mig].

4.2 Simulation and Model Validation.

level.

First, to verify how
consistent the identified set of parameters is, the uniaxial cycl
tensile test has been simulated using the numerical model ir
planted inABAQus. Figures 3 and 4 illustrate, respectively, the _
numerical cyclic tensile test results obtained from finite-elemerg
simulation and the corresponding experimental results superpos=
to the predicted curves. A good agreement is found. Now, to vaIE
date the model, different experimental tests8] have been simu- #
lated: monotonic tensile tests, monotonic and cyclic shear tes
and tensile tests on rectangular plates and specimens cut fron=
(Fig. 1). In these last tests, the tensile and shear specimens weg
cut from the plates pre-loaded in tension to produce different de*
grees of damage by uniaxial tensiph8]. Afterwards, the speci-
mens were tested to measure their damaged-material elastic cc
ficients: Young’s modulus and Poisson’s ratio along thre
directions (0, 45, and 90 deg with respect to the initial loading i i A | i
direction and the shear modulu§ig. 1). The objective was to 5 o 5 10 15
predict their evolution and degradation versus the tensile stre

a0r
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a0p

a0F

4of

30F
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Axial and Transverse Strains

10
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Fig. 3 Predicted cyclic tensile stress—strain curves
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strain curves with corresponding experimental data
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Fig. 6 Comparison of predicted shear stress—strain curves
with the corresponding experimental data

compared to the test results reported by Dano €t83l.The pre-

diction of Young's modulus and Poisson’s ratio is relatively good
in the 1- and 2-directions. In the 45 deg direction, the discrepanc
is more accentuated, though the numerical prediction still remain

fair.

Test [8]
In the case of the shear modulus presented in Fig. 10, itcan b | | ¢ Model
observed that the numerical results are in good agreement with tr
experimental data. |
4.3 Simulation of a Uniaxial Tensile-Compressive Load- . . i |
ing Test. In this simulation, we show how reversing a tensile 0 20 a0 &0 80

Yeoung's Modulbus E, (MPu}

3000} t
& Tesl [B]
2000t =y
1000
o . / i .
0 20 40 B0 50

Axinl Tensile Stress (WPaj
&)

- 8 88888 ¢

load to compressive load restores the apparent elastic modult Axinl Tenslle Stress (MPa)

(degraded by tensile loadh the direction parallel to the compres-
sive load and how it may still cause damage evolutioracks
extension in the transverse direction. These two directions corre-
spond to the two principal damage directions in this load case. W =
denote by 1 and 2 the directions that are parallel and transverse &

the loading direction, respectively.

Figure 11 illustrates the stress versus strain curve during i
tensile—compressive loading test. The specimen is first loaded i
tension up to 60 MPa, which induces damage and causes Young
modulusE; to decrease. The specimen is then, unloaded and sut

T0F T T T T T T 3

Shear Stress (MPa)

0005 0 0015 002 0025 003 0035
Shear Distortion

Fig. 7 Comparison of cyclic shear stress—strain curves with
the corresponding experimental data
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Fig. 8 (a) Comparison of predicted Young’s modulus evolu-
tion vs stress with the corresponding experimental data (]
=0 deg). (b) Comparison of predicted Young's modulus
evolution vs stress with the corresponding experimental data
(=45 deg). (c) Comparison of predicted Young’'s modulus
evolution vs stress with the corresponding experimental data
(6=90 deg).

jected to a compressive stress. The change of slope indicates that
the apparent modulus is restored when the damaged material is in
compression. Figures (@ and 12b) present the evolution of the

applied stress and the damage variables during the tension—
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oask . Fig. 10 Comparison of predicted Shear modulus evolution vs
] . stress with the corresponding experimental data
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o0.3f - '
'_f 0.25k stress has reached a certain level78 MPa), which depends on
E the tensile load level applied previously, the degree of damage in
- the 2-direction D,) increases again, as shown in Fig(l)2 The
§ Oap T compressive load may transmit damage and induce its evolution
& — Model in the transverse direction. The cracks nucleated initially due to
pigf———m—— e 1 previous tensile load are not always perpendicular to the loading
direction, but also may be along individual fiber directions and
oi1f thus be inclined or parallel to the loading direction. This set of
cracks becomes active under compressive load applied in the pre-
i k { ! ; vious tensile load direction.
[+ 20 40 &0 &0 100
Axinl Tensile Stress (MPa) 5 Conclusion
(B) In this paper, a damage model for random short glass fiber
0.4 - . - . . - - . . . )
. reinforced composites based on the fundamental principle of ther-
nasl . - . 1 modynamics of irreversible process was presented. The model
. takes into account the unilateral effdcrack closure effegtand
ok * 2 * * | the permanent strains after unloadimngsidual effect Using tests
. results and an appropriate identification procedure, all unknown
& D.ast 1 parameters have been identified. After implementation of the
2 model in a finite-element code, simulations are obtained and are
= 02 found to be in good agreement with experimental results. It can
g thus be concluded that the proposed model is appropriate to simu-
PR
o » Tt [8]
— Nodel
1
. 80
005k sol E_f - ...- i
E=ENI-BY &
% 0 20 0 0 50 & T 8 @ el § i
Axial Tensile Stress (WPaj 1o} ]
lch -
£ o} ]
Fig. 9 (@) Comparison of predicted Poisson ratio evolution vs 2
stress with the corresponding experimental data (=0 deg). ¥ ol ]
(b) Comparison of predicted Poisson’s ratio evolution vs stress ;
with the corresponding experimental data (0=45 deg). (©) 3 o
Comparison of predicted Poisson’s ratio evolution vs stress i
with the corresponding experimental data ~ (#=90 deg). 10} E
20} -
compressive test simulation, respectively. First, up to 60 MPa, t  -30f 1
tensile load causes material damage, and consequently, incre: i : i ;
principal damage variable®; and D,, as shown in Fig. 1®). e 4 3 o 3 4 & a 10
During unloading and until starting the compressive load, tr Strain w10’

damage variables stop increasing. As demonstrated by(Zey.
and shown in Fig. 11, the compressive load restores the appaneigt 11 Stress—strain curve in tensile—compressive load
elastic modulus in the 1-direction. However, once the compressifi@odel )
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60 ERR_EVO = damage relative error in the 1-direction
G = shear modulus of the undamaged material
40 L h
/ \ H(x) = Heaviside function
20 I, = second-order unit tensor
\ I, = fourth-order unit tensor
0 M(D) = fourth-order damage operator
§ \ M(D) = fourth-order tensor to take into account the uni-
3 20 lateral effect
F \ P(@D)* = fourth-order tensor corresponding to a positive
§ -40 projection operator
% PP~ = fourth-order tensor corresponding to a negative
projection operator
-80 Tol = tolerance on the evolution law of damage
\ Ug = complementary elastic energy
-100 UP = energy blocked by the microcracks inducing per-
manent strain
1205 1 2 3 4 Y; = thermodynamic force associated wiih
Increment Y; = weighed thermodynamic force associatedto
(a) Y, = initial damage threshold
a = material parameter
0.07 b = material constant bounded between 0 and 1
n; = normal vector to the crack
0.06 a, B = unknown material parameters of the fourth-order
/ tensorA
w 005 Six = Kronecker delta s_ymbol
% / — D, &€ = second-order strain tensor
H -e= D, &® = second-order elastic strain tensor
o 004 €” = second-order permanent strain tensor
§ / €h = measured second-order permanent strain tensor
3 0 £P = predicted second-order permanent strain tensor
g / eh,e5, = permanent strain in the 1- and 2-directions
a 002 ; v = Poisson’s ratio of the undamaged material
/ ’,.»"’ v1, = Poisson’s ratio of damaged material
0.01 e o = second-order Cauchy stress tensor
/ K T = tensile stresgpositive) tensor normal to the
0 4 plane of the microcrack system
0 05 1 15 2 25 3 35 4 T, = compressive streggegativé tensor normal to
Increment the plane of the microcrack system
(b) ® = dyadic or tensor product
Fig. 12 Tensile—compressive load simulation:  (a) Incremental |-l = Euclidean norm
axial stress level and (b) predicted damage variables evolution
(Model)
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Micromechanics and
Homogenization of SMA-Wire-
Reinforced Materials

S. Marfia The aim of the paper is to develop a micromechanical model for the evaluation of the
overall constitutive behavior of a composite material obtained embedding SMA wires into
E. Sacco an elastic matrix. A simplified thermomechanical model for the SMA inclusion, able to
reproduce the superelastic as well as the shape memory effect, is proposed. It is based on
University of Cassino, two assumptions: the martensite volume fraction depends on the wire temperature and on
Via G. Di Biasio 43, only the normal stress acting in the fiber direction; the inelastic strain due to the phase
Cassino, Frosinone 03043, Italy transformations occurs along the fiber direction. The two introduced hypotheses can be

justified by the fact that the normal stress in the fiber direction represents the main stress
in the composite. The overall nonlinear behavior of long-fiber SMA composites is deter-
mined developing two homogenization procedures: one is based on the Eshelby dilute
distribution theory, the other considers the periodicity conditions. Numerical applications
are developed in order to study the thermomechanical behavior of the composite, influ-
enced by the superelastic and shape memory effects occurring in the SMA wires. Com-
parisons of the results obtained adopting the two homogenization procedures are re-
ported. The influence of the matrix stiffness and of a prestrain in the SMA wires on the
overall behavior of the composites is investigatgdOl: 10.1115/1.1839186

1 Introduction In fact, the integration of SMA in composites offers important

Smart composites, obtained including a smart material in a m?aq\xfrr;‘;l%e:trlgin(gjm‘t)ggsoznhtiohoég?; ?ﬁtuggngcfte cT:rolggzleevse:r:_lgh
trix, are very special composite materials, which exhibit a desir P - 9 ping capacity, 1arg

behavior under certain conditions. In particular, the shape memony, changes of mechanical and physical characteristics, commer-

alloys (SMA) appear ver suitablé fo? the dev’elo men? of smaf}p‘{il availability as thin flexible wires that can be directly embed-
ys (S pp y P . ed in a polymer matrix, and ability to generate extremely high

composites. In fact, SMA are able to undergo reversible Iar%éh

def i der loadina/th | | dt te hi ressegup to 800 MPa The main disadvantage of SMA is their
elormations under loadingithermal cycies and 1o generate nigly,, o4 cooling rate which can be a limiting factor in applications

values of the thermomechanical driving forces. This very spec at require heating and cooling of the SMA wires to generate

behavior of SMA is due to their native capability to undergo r€yclic stresses and strains

versible changes of the crystallographic structure, depending MA composites can be used for different potential applica-

_the temperature and on the state .Of stress. Thesf-‘ changes Cafly §, including the control of external shape, stiffness, damage,

interpreted as reversible martensitic transformations betweeq/is

. . ration, buckling, and damping properties of the structural ele-
crystallographic more-ordered parent phase, the austenite, t Ents. It can be emphasized that the mechanical response of the
crystallographic less-ordered product phase, the martensite.

o . 8mA depends upon several different factors, e.g., the cure pro-
general, the austenite is stable at high temperatures and |

hile th S bl | 0 s, the prestrain level, the volume fraction, and, of course, the
stresses, while the martensite is stable at low temperatures icular adopted materials.

high stresse$1]. Because of their unique mechanical respons - Different studies of the possible use of CSMA integrated within
SMA have been successfully adopted as actuators and sensorsdgdcyral elements have been developed by several researchers
broad set of advanced and innovative applications in aeronauticly pyplished in the literature. These researches are mainly re-
biomedical, mechanical, and civil engineerifg. . lated to the following specific topics: vibration control, buckling
In the last decade, great interest was aroused by the possibilifyy postbuckling effects, shape control, and micromechanics of
to develop new, intelligent SMA composité€SSMA). New, per- ha SMA composite material.
forming materials are obtained embedding SMA wires, filaments, girman et al[3] proved that the use of prestrained SMA fibers
short fibers, particulates, or thin films into different types of Masmpedded within a plate reduces the stresses and the deflection of
tnlces..RecentIy, SMA wires have become com.merually availablgminates subjected to low-velocity impact. Hyo Jik Lee e{4].
with diameters below 0.2 mm. These small diameters allow theformed numerical simulation analyses of the thermal buckling
direct integration of SMA wires into fiber-reinforced polymerhenayior of laminated composite shells with embedded SMA
composites without losing the structural integrity of the matrix;ires demonstrating that the critical buckling temperature can be
material. The aim is to realize smart composites by a suitaljg:reased and the thermal buckling deformation can be decreased
distribution of SMA within the matrix material and to control theby using the activation force of embedded SMA wire actuators.
thermomechanical behavior of SMA through heating and COO"”ﬁnalogously Jung Ju Lee and Sup CF&j developed an analyti-
- cal investigation of the thermal buckling and postbuckling behav-
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF  jqrg of g composite beam with embedded SMA wires; the pres-
MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- . g ) ’
CHANICS, Manuscript received by the Applied Mechanics Division, December 16M1C€ of SMA wires enhanc'es the critical buckling te_mperature and
2003; final revision; August 31, 2004. Associate Editor: D. Kouris. Discussion on ti€duces the lateral deflection for the thermal buckling. Moreover,
paper should be addressed to the Editor, Prof. Robert M. McMeeking, Journal @ip Choi et al[6] presented the results of an experimental analy-

Applied Mechanics, Department of Mechanical and Environmental Engineering; i R ; R _
University of California—Santa Barbara, Santa Barbara, CA 93106-5070, and will eIS on the active buckling control behavior of a laminated com

accepted until four months after final publication in the paper itself in the ASME’OSite _beam with embedded sh_ape memory alloy wires, suggest-
JOURNAL OF APPLIED MECHANICS. ing a simple formula for evaluating the improvement of the SMA
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wires in the buckling behavior. Thompson and LougHlahdem-
onstrated by numerical simulations the effectiveness of SMA fi-
bers to reduce the out-of-plane displacement of postbuckled lami
nates, emphasizing that the stability of the adaptive response i
very much dependent upon the laminate stacking sequence. E;
perimental and further numerical investigations were conducted ir
Ref. [8], to determine the postbuckling response of composite
SMA also characterized by reduced values of actuator fractior.
volume. Ostachowicz et a[9] illustrated the influence of the Xl
SMA fibers upon changes in natural frequencies and therma
buckling of a composite multilayer plate with the SMA compo-
nents, developing finite-element analyses.

Micromechanical studies, devoted to the understanding and t
the modeling of the constitutive behavior of SMA composite with
elastic matrix, were developed. These studies can be framed in th
general problem of the homogenization of composites character
ized by nonlinear constitutive behavior, which is a very active
research field. In this framework, rigorous bounds for the nonlin-
ear effective properties of composites have been derived since the Fig. 1 SMA composite material
early 1990s; Ponte Castkeata[10], and Willis[11], among others,
have developed such bounds based on the so-called “average
variational principle.” Moreover, Suqueftl2] proved that the .
variational procedure can be interpreted as a secant method. SYStém adopted throughout the paper. The unit cell of the compos-

More specifically, it was found for SMA composites that thdt® material is indicated by, while () andM represent the inclu-
interaction between the embedded SMA and the matrix was onen and the matrix, respectively.
the critical factors in the microstructure design of the compositess 1 gMA Model. Several mathematical models able to re-

[13-15. A quantitative micromechanics-based analysis on thg,qyce the SMA constitutive behavior have been proposed in the
role of microstructure and constituent properties in the overgfierature. Boyd and Lagoudd48] proposed a thermomechani-
behavior of a SMA composite was carried out in Réf6]. In ¢a)ly consistent model that takes into account the phase transfor-
particular, the self-consistent homogenization technique Wagation and the martensite reorientation process. Raniecki and
adopted to evaluate the overall SMA composite behavior. A sifiaxcellent [19] developed a pseudoelastic thermodynamically
plified analysis was developed, considering the internal stress aghsistent model. Souza et #20] proposed a computationally
strain and their evolution as function of externally applied thegyjitaple three-dimensional SMA model, as illustrated also in Ref.
momechanical loading. Briggs and Ponte Castta{17] esti- [21].
mated the effective behavior of active composites, obtained eM-erein, a simple model, based on the approach proposed in
bedding aligned SMA fibers in a linear elastic matrix, using thRefs [22,23, is presented:; it considers the superelastic behavior,
homogenization technique proposed by Ponte Casta{ii0]. as well as the shape memory effect. Moreover, the model pro-
This paper aims to establish a micromechanical-based modelfigseq in the following is able to reproduce the experimentally
of the constitutive behavior of the SMA composites, CharaCte”Z‘%‘sterved[24,zﬂ asymmetric tension—compression behavior of
by an elastic matrix. The overall behavior of long-fiber SMA comge SMmA. Only austenite—single variant martensite phase transfor-
posites is determined developing suitable homogenization pro¢gations are considered in the following. The austenite and the

dures. In particular, two homogenization procedures are proposglgle variant martensite volume fractions are denotegjasnd
in this paper. The first one, based on the use of the Eshelby inchl-"regpectively. Since,+&s=1, we have

sion solution, is developed for dilute distribution composites; the
homogenization technique can be very effective for SMA compos- Ea=1-¢&s (1)
ites as they are usually characterized by low values of the fibgpce the single variant martensite volume fraction is chosen as

volume fraction—less than 10%. The second technique considgts;njependent variable governing the phase transformations.
the problem of periodic composites, which is solved using th

. ; h The elastic stress—strain relationship in the SMA inclugibis
finite-element methodFEM). The thermomechanical behavior Ofd?fined as P

the composite is governed by the martensite volume fraction o
the SMA wires. In particular, it is assumed that the martensite o'=Ex" 2)

volume fraction depends on the wire temperature and on the nor- ) ) . o
mal stress acting in the fiber direction. In fact, smart structuryhere‘r{ and 5" are the stress and the elastic strain in the SMA

. . Q . .
elements are designed orienting the fibers in the direction alo lusion, respectlvgly, and™ is the fourth-order glast|c tensor Of.
SMA, assumed independent of the martensite volume fraction

which the actuation has to be performed, i.e., where the m
stress occurs. A possible prestrain of the fibers is taken into
count in the model. A backward-Euler technique is used to inte-
grate the evolutive constitutive equations governing the SMA be- el= 0+ (6+EB)m+ (T—To) 7 (3)
havior. Finally, numerical applications are performed to 33 o ) . .
investigate the thermomechanical behavior of SMA composite¥herem=k”®k*, Jis the prestrain acting along the SMA fiber
and some comparisons between the results obtained by the fi¢ction, 3 is an internal variable describing the change of mar-
proposed homogenization procedures are developed. tensite reorientation, and®= "l is the thermal strain induced
by a unit temperature change, wiitf the expansion coefficienit,
the identity tensorT, the reference temperature, ahdhe actual
. . temperature.
2 Material Models for Composite SMA From Eq.(3) it can be noted that the inelastic strain due to the
The CSMA is a material obtained embedding SMA fibers into martensite transformation is assumed acting only along the fiber
matrix material, which is generally a composite material, such d&rection. This hypothesis, which greatly simplifies the model, can
glass or carbon epoxy plastic. In Fig. 1, the CSMA material ise considered justified by the fact that the SMA wires are aligned
schematically represented, specifying the Cartesian coordinateng the direction in which the actuation is desired.

The total strain is obtained as
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A further simplifying hypothesis is introduced in the evolution- A !
ary equation of the single variant martensite fraction volujgye ) i

In fact, it is assumed that the SMA phase transformations ar (S) single-variant
governed by the normal stress in the fiber directidn martensite

The following evolutive equation, with respect to the evolution c*

parametet, is assumed for the internal variakte

SM-MS
dp [ole sono—BllloH -0, when |off>05° o e o
dt |0, otherwise ™) 5 AMIMA
4 altivariant SMiMA (A) austenite
. . . martensite ‘
whereg, is the recoverable strain representing a measure of th ™ 1~
maximum deformation obtainable aligning all the single variant ! *
martensite in one direction, witlk, =&{*) in tension ande, v
=8(L’) in compressionw is a material parameter measuring the A
reorientation process rateSS is a limit stress that activates the o A :
reorientation process, withrSS=¢SY") in tension and oSS o —y :
=597 in compression)s| is the absolute value. MS- ?M i
The evolution of the martensite fractiofy depends on the (S)f]'ﬂ';ﬂi':s"i:r“'
stress state and on the temperature, and it is governed by tl !
equation |
dés dloy 1 dT
a (178 | —GASH) dt T_TAS®) dt |’
when '&?at)$|gg)3|s'&¢3t) (5) Fig. 2 Scheme of the phase transformations in uniaxial ten-

. L . sion and compression versus temperature
for the conversion of austenite into martengile—S) and by the

equation
d 1 dlog 1 dT
ds_ S — 733 = —|, + o4% and £ are the starting and final stress for the-S
dt |oly —FPA=)  dt T—TSA=) dt . AM .
33 f f phase transformation at temperatire Tg " ; they are set as
when 3345 < | g% <GSA) ©6) o25= b3 and o5= 07" in tension andohS= A%

and 5= ¢#<7) in compression;
« T3" and T7 are the starting and final temperature for the
S—A phase transformation at stress equal to zero.

for the conversion of martensite into austeriiie~A). The quan-

tities TAS(H) | GAS(H) GSA®) GSAH) GAS) GAS() FSA-)

’a.fSA(*), T':S(Jr), T'fAS(*)’ TSN*)] '|'f5'°(+)l T?S(*), TfAS(*)’ ‘ . . o .
2.2 Matrix Model. A linear elastic constitutive law is con-

TSA-) TSA-) initi i
TS , T5 represent the initial and final values of the stresgsrig_ered for the matrix materidll. In particular, it is assumed that

at a prescribed temperature, and of the temperatures, at a

scribed stress, for the transformation of austenite into martensite oM=EMyM (8)

and for the transformation of martensite into austenite, respec-

tively. The superscripté+) and(—) indicate the cases of tensionwhereEM is the fourth-order elastic tensor of the matrix am

and compression, respectively. and »" are the stress and the elastic strain in the matrix, respec-
With the help of Fig. 2, the transformation stresses and tertively. The total strain is given by

peratures are given by the following equations:

eM=yM+(T-Ty) 9)
~AS(=)_/ AS(E) | ~AS(E) T TAMy +
Is (o +C (T=T5)" with = aM| the thermal strain induced by a unit temperature
TSI = (ghSE) L CASE) (T TAM)y+ change andr™ the expansion coefficient of the matrix.

E?Ni):<CsNt)(T_T§A)>+’ ‘a_fSA{i):<CSP{i)(T_TfSA)>+
<o_s3)3_ Ué\at>+CAs<+>Tém> + 3 Overall CSMA Response

The average stress and strain in the composite SMA material,

CAS(t) . .
respectively, are defined as

Q _ _AS(x) ~AS(H)TAM| *
Tase) | T8 9 e E:E oldv+ | oMdVv|=1e+iMe™M  (10)
f CAS(t) \% [0 M
O, ~SA=)TSA| * Q | ~SA=)TSA| + 1
oy | T OIS sone)_ [ ST, 1 fsﬂd\”f MdV | = U4 MM (11)
S oA )0 T CSA®) ViJa M

Q) with f2=Q/V andfM=M/V the volume fractions, while®, ¢
where ande", ¢ are the average strain and stress in the inclusion and

. CAS SA _— in the matrix, respectively.
C™* and C* " are the Clausius-Clapeyron c.onstgnts for the The CSMA presents a constitutive overall stress—strain rela-
phase transformations-AS and S-A, respectively; they are tionship, which can be written in the following form:

set asCAS=CAS*) and CSA=CSA") in tension andCAS
=CA¥) andCA=C3A") in compression; o=Ee (12)
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Overall behavior Elastic effect Phase transformation Thermal effect

_ _ and prestrain effects
average strain: € average strain: ¢ average strain:( +&;8)p average strain: (
average stress: O average stress: O average stress: 0 average stress: 0

e* L I:t !S*HfI(T T,)

Fig. 3 Scheme of the homogenization procedure

Whe@E is the overall fourth-order elastic tensor of the CSMA The stress and the strain tensors in the composite material can
and e is the average elastic strain. The total average strain be represented in the following forfi26,27]
obtained as — _
_ _ _ o=0+0% e=g+¢ (15)
e=et+(6+ +(T—=Tyt 13
I ( $sBIp 0)_ ) ) (13) whereo” and e are the disturbances with respect to the average
with p the average strain tensor due to the inelastic stzaimthe  stress and strain tensor, respectively, due to the presence of the
SMA inclusion andt the average strain tensor due to the unihclusion(). Moreover, the elastic strain in the inclusion is:
temperature change effect. 0 o
The homogenization procedure is performed in the following o= & Y (16)

three phases, schematically illustrated in Fig. 3: The effect of the heterogeneity of the CSMA cell, i.e., the varia-

« homogenization of the elastic moduli to get the overall elastfton of elastic moduli from the matrix to the inclusion, can be
tensorE; in this phase only the average elastic strain is corgimulated introducing an eigenstradfi in a homogeneous mate-
sidered, while the inelastic deformations are not taken infé@l characterized by the matrix elastic properties, as schematically
account; shown in Fig. 3. This inelastic strain should be able to reproduce

« determination of the overall second-order strain tensor the stress state in the inclusiél thus, taking into account Egs.
when a constant inelastic strainis present in the inclusion (15) and(16), the following classical consistency equation can be
Q, under the condition of null average stress; written

« evaluation of the tensdrdue to the inelastic thermal defor- Q= .d _ M d *

mation, under the condition of null average stress. El(erei—y) =B (e+e—y—£") 17

In order to derive a model that is simple and in the meanwhlf:rom Eq.(17) the strain in the inclusion is derived as

effective, a fundamental hypothesis can be introduced regarding el=¢g+el=y+ Alg* (18)

the evolution of the martensite—austenite phase transformation. In

fact, it is assumed that the stress governing the phase transfortff 5

tions is the average normal stresg; in the SMA wire. Thus, Al=(EM—E®)~1EM (19)

evolutive Eqs (4)~(6) are simply mod|f|ed substituting the aVer‘The solution of the Eshelby problem proves that the eigenstrain in

age stresey, to the normal stress$;

To compute the average stress in the inclusion, itis necessar)?té'ngle ellipsoidal volumeé) leads to a constant straif in €,
given by the algebraic equation
evaluate the average elastic strajfi in the inclusion, which is

obtained as a linear combination of the elastic strafhsp,, and e9=5%¢e* + y) (20)
pus) P Ul
tei, due to the overall deformatiores p, andt, respectively: whereS® is the fourth-order Eshelby tensor. Substituting the Es-
7=+ (5+EB)PR+(T-To)td (14) helby formula(20) into Eq. (18) and solving with respect to the
eigenstraine® yields
Summarizing, the proposed homogenization procedure is based on

the two fundamental simplifying hypotheses presented above; £*=Pe+Qy (21)
specifically, they are with

¢ the inelastic strain due to the martensite transformation is (A0 _c0y-1 (A0 _QO\-1/c0_
assumed acting only along the fiber direction; P=(AT=ST)"% Q=(AT=ST) 1(S"-1) (22)

* the stress governing the phase transformations is the averdge total and the elastic strains in the inclusion are constant and
normal stres§§3 in the SMA wire. can be evaluated from Eggl6), (18), and(21) as

Q_70_ ey Q_70_ A0 pa
) o e'=g'=y+ A% (PetQy), ¢£,=¢5=A"(PetQvy)
4 Dilute Distribution °oe 23)
Let us consider the homogenization problem of a composite
characterized by a low value of the SMA volume fraction. Thg
average strain in the cell is denotedzasvhile a prescribed strain o
y is considered in the inclusion. =e, =0 (24)

4.1 Overall Elastic TensorE. The average strain in the cell
nd the prescribed strain in the inclusion are set as
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From the average strain E€lL1), we get * In the second step, the effect of the thermal coefficient

fMeM =g g (25 = a®— aM in the inclusion alone is studied; this second case cor-
responds to the problem solved in the previous subsection. In fact,
¥he inclusion results subjected to an inelastic stesinl. Taking

into account formulg35), the average strain in the cell is

P=Aaf(FP-1)" 11+ Q)I (38)

which, taking into account the constitutive equation of the matr
material(8), gives

fMoM=fMEMeM = EM (e— f2e?) (26)

Because of the average stress 8d) and of the constitutive Egs. L )
(2) and(12) for the inclusion and for the composite, respectivelyS & consequence, the second-order strain tendoe to the unit

we get temperature change effect is equal to
MM — o 00 = Fe_ fE2ER 7) t=tI4+ 2= aMI+ Aaf 2 (FP—1) " 11+ Q)I (39)
Thus, formulag26) and (27) give The elastic deformations of the cell due to the thermal effect is
- induced only by the average strafh thus, it results that
(EM—E)e=f*EM-E?)&” (28) . _
t2=A%Pt?+ AaQl) (40)

Substitution of expressior&3) and(19) into Eq.(28) leads to the

evaluation of the overall elastic tensor 5 Periodic Composite

E=EM[I-f*A%-s%) 1] (29) A periodic composite is obtained by assembling an infinite
number of repetitive adjacent unit ceNs In the following, par-
l‘§'1I.1:,elepiped unit cells are considered with the total dimensions
along the three coordinate axes, X, X3 denoted by 2, 2a,,
and 223, respectively. Thex; axis is parallel to the SMA fiber
direction, so that the repetitive unit cell is obtained considering
@;:Eﬁ:Aﬂpg (30) any possible value of;. For periodic media, the displacement
field can be represented in the form

wherel is the fourth—order identity tensor.

The average strain in the inclusion, due to the presence of
elastic average strai@in the whole cell, is elastic, and it is ob-
tained taking into account formuldg3), as

4.2 Effect of the Inelastic Strain 7. Let us consider the .
problem of the inclusion subjected to the inelastic strajmhose U(Xq,X7,X3) = &X+U(Xq,X2,X3) (41)

presence is responsible of an average spaifithe whole cell. In where x is the position vector of the typical point of and

the formulas(15)-(23), it is set as G(Xq,X5,X3) is the periodic part of the displacemé@s]. As con-
e=p, y=m (31) sequence of formulédl), the strain tensor is given by

so that the average elastic strain in the inclusiop’is- . Taking £(Xq,Xp,X3) = £+ &(Xq,X2,X3) (42)
into account the relationd0) and(11), and the constitutive equa-

tions of the matrix and the inclusion, the average stress in thfiere the strain tensar(x,,xz,xs) is V-periodic in R with nul

CSMA is average inv.
_ _ _ As the thickness of the unit cell in the fiber direction can as-
oP=f20P2+ fMgPM=fLEY (P — ) + fMEMpM sume any value, the periodicity and continuity conditions along

— FOE(BR— )+ EM (P f2p?) the x5 direction on the displacement field results in
Vx;e[—a,a]

=EMp+ Y E2-EM P - f2E (32) G(Xq1,Xp,83) =U0(X1,Xp,—a3), Ve[ —ay,a] Va,

Substituting the first of the formula®3) into relation(32), and (43)
setting the average stress in the cell subjected only to the i”ela%&iﬁ",
strain 7w equal to zero, it results that

p=—T[EM(1-17P)] U (E"~ EV)(I+ A®Q) ~ E%m

ch leads tal;(X,X5,X3) =U;(X1,X5). Thus, the in-plane peri-
odicity and continuity conditions are

(33) ﬂ(al,X2)=ﬂ(—al,X2), VXZE[_az,az] (44)
As it is, U(xq,8,)=0U(Xy,— @), VXxie[—ay,a]
(E2—EM(I+A%Q)—E?=—-EM(1+ Q) (34) The estimate of the micromechanical behavior of a periodic com-

posite material is derived from the solution of the heterogeneous
medium subjected to the mean strain stateinder the prescribed
p=fP-)"(1+Q)m (35) inelastic strainy in the inclusion. Hence, the elastostatic problem,

. . governed by the following equations, is considered:
so that, because of formul#83), the total and the elastic strains

Eq. (33) becomes

in the inclusion are dive=0, inV
p?=p"=m+A%PP+Qm), pi=pi=A%(Pp+Qm) e=e+Vou, inV
(36) .
. . . o=EMe, in M
4.3 Effect of the Temperature. An average inelastic strain
t can be induced by thermal expansion of the CSMA, character- o=E%e—7y), in Q (45)

ized by different thermal coefficients™ and o of the matrix
and the inclusion, respectively. The effect of the thermal exp
sion is evaluated in two steps.

ubjected to the boundary conditio@g}). In Egs.(45) the symbol
S denotes the symmetric part of the gradient operator.
The problem defined by Eq&44) and (45) is solved consider-
* In the first step it is considered the effect of the thermahg two schemes. In the first scheme the representative cell is
coefficienta™ in the whole cell; in this case, the strain in the celbubjected only to the average stranwith y=0. The strain dis-
assumes the constant value tribution in the unit cell is obtained as

tt=tl=aM (37) £1(X1,%X5,X3) =R(X1,Xp,X3) € (46)
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whereR is the so-called localization tensor, associated with the
assumed average straén The second scheme considers only th

inclusion subjected to the deformatignwith the average straia
equal to zero; thus, the local strain is written in the form

£2(Xq,X2,X3) = R(X1,X2,X3) ¥ (47)

whereR is the localization tensor, associated to the prescribed
inelastic strainy in the inclusion. The elastic strains in the matri

and in the inclusion are
M=Re+Ry, €l=Re+(R-I)y (48)
so that, the average stress in the periodic unit cell results in

1 1
pn— M M Q.0
o= fME eddV+ o LE 2dV

EM1 RdV+EQl RdV|e
M Jy [V P

U (R—1)dV
M M Q )

+ y (49)

The two localization tenso® andR can be computed using the
FEM. In fact, the components & are determined solving the six
elastic problems, each one characterized by only one nonzero el-
ement ofe. Analogously, the component & are computed solv-

t=(aMI+AaT)I (56)
e

The elastic deformation of the cell due to the thermal effect is
induced only by the average strain results in

E}FAaé[(JQRdV JQ(F}—ndv”l (57)

Two numerical procedures based on the proposed homogeniza-
tion techniques are developed. The first, based on the dilute dis-
tribution homogenization presented in Sec. 4, allows us to evalu-
ate the quantities€, A®, P, p, p%, t, andt? for composites
characterized by a low value of the SMA volume fraction. It can
be emphasized again that SMA composites are characterized
mainly by reduced values of the volume fraction; as a conse-
quence the Eshelby solution can lead to satisfactory solutions. For
the dilute distribution technique the following components of the
Eshelby tensor, suitable for a long-fiber composite, are adopted
for the computations:

5—-4yp
S(1)111= §222=mr

T+

X6 Numerical Results

1-4v
Stio= Sto1r= 8(1=0)

v 3—4v
3?133: §233: m ) 5?212: m

ing the six elastic problems obtained by setting to nonzero only 1

one element ofy.

5.1 Overall Elastic TensorE. The overall elastic response

S?313: S121323: R 32333: Sgsnz Sg322= 0 (58)

of the heterogeneous composite material is determined setting T he seécond numerical procedure, developed for periodic compos-

e=e, =0 (50)

ites, allows us to evaluate the quantitesR®, p, p2, t, andty,
once the components & andR are computed, solving 12 elas-

In this case, the average elastic strain in the inclusion results ifpstatic problems of the repetitive unit cell using the FEM; in this

1 _
E?l:ﬁ JQRdVe (51)

Taking into account the positior{§0), from the formula(49) it is
possible to evaluate overall elastic tensor as

— 1 1
E=EM—f RdV+ E“—f RdV (52)
M Ju Q Jq
5.2 Effect of the Inelastic Strain#. Set
e=p, vy=m (53)

Substituting positiong53) into the average stress E@L9), and
taking into account formulé52), the conditiono=0 gives

— ) 1 - 1 -
p=Tm, with T=—E? EM—J RAV+E®~ | (R—DHdV
M Jwm Q Jg
(54)
The average elastic strain in the inclusion is
1 1 -
—0 _
== | RdV|p+|= | (R=DHdV|=m
Pel (Q fn P Q Jo
1 .
=— (J RAV|T+ J(R—I)dv T (55)
Q Q Q

framework, a new suitable linear elastic finite element, described
in detail in Ref.[29], is developed on the base of the kinematical
hypotheses introduced in Sec. 5. A backward-Euler algorithm is
used to integrate the evolutive constitutive equations of the SMA
material for both the homogenization procedures.

Next, numerical applications are developed to assess the ability
of the two proposed homogenization techniques to reproduce the
thermo-mechanical behavior of the SMA composites and to study
their superelastic and shape memory effects. Fibers of Ni-Ti alloy,
embedded in a polymeric matrix characterized by low stiffness,
are considered. In particular, the material properties of the elastic
matrix and of the SMA are

e matrix:
EM=3600 MPa »M=0.305 oM=0.0°C*!
* SMA fiber:

E®=70,000 MPa, »%=0.33, ®=0.00001°C*
TiM=5°C, TiM=10°C, TZ%=30°C, T{"=31°C
bS5 =140 MPa, of¥*)=200 MPa,
059)=30 MPa, &{*'=0.07
CAS=)=8.0 MPa/°C, CSA*)=8.0 MPa/°C, w=0.5

whereEM, »M, E®, and»® are the Young modulus and the Pois-

5.3 Effect of the Temperature. As in the case of dilute son coefficient for the matrix and for the SMA, respectively.
distribution, the effect of the thermal expansion is evaluated in _ - )
two steps, the first one characterized by a constant thermal coef6.1 Overall Elastic TensorE. _ Initially, a comparison of the

ficient o™

in the whole cell, and the second one by a thermafalues of the overall elastic tens&rcomponents, obtained by the

coefficientAa=a"—a™ in the inclusion. Following the proce- two proposed procedures, is performed for a composite character-
dure proposed in subsection 4.3 and taking into account formiited by the SMA volume fractiorf®=0.036. The periodic cell
(54), the average strain tensodue to the unit temperature changeproblem is solved adopting a quite fine mesh characterized by 660

effect results in
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Table 1 Elastic constants of the overall constitutive tensor, expressed in

[MPa]

E11117 Eozo Easaz E1315= Eos23 Ei122 E1135= Eoz33 E1212
Dilute 5153.32 7378.87 1541.94 2251.93 2267.29 1511.56
composites (1450.70
Periodic 5165.20 7377.75 1472.78 2254.18 2271.64 1456.22
composites (1455.51

As the composite material is obtained by isotropic long fibers With reference to the diagranas;—s 43, 03533 and to Fig. 2,

embedded in an isotropic matrix, the constitutive ters@ trans-  the

mechanical response of the composite can be divided in the

versely isotropic, so that it is characterized by five independefaflowing steps:

elastic constants.

_ In Table 1, the values of the average elastic moduli of the tensor’
E obtained with the two homogenization procedures are reported.
It can be emphasized that the values of the sixth elastic constant
E,1»depends orEq111 andE 15,; thus, the values oE;,;, com-
puted by the two procedures are given and compared with the,
ones determined applying the classical formula for transversely
isotropic materialsE 1= (E1111— E1129/2, reported between .
brackets. The values obtained using the dilute distribution and the
periodic cell approaches are in good accord. This very satisfactory
result is due to the reduced, but realistic, value of the inclusion

Lines AB and AB’, A—S phase transformation in the SMA
at the constant temperatufg until the value of the average
straine33=0.025 is reached. It corresponds to a partial phase
transformation with the final value of martensite volume frac-
tion £,=0.3.

Lines BC and BC’, unloading phase at constant temperature
with no phase transformation.

Lines CD and CD’, reorientation process in the SMA fiber at
a constant temperature.

Lines DE and DE’, increasing of the temperature until the
starting of the S+A phase transformation.

fraction volume. Furthermore, the computed value& gf;, dem-

onstrate the very good accuracy of the FEM solution for the pe-

riodic cell problem.

6.2 Shape Memory Effect. The shape memory effect is in-
vestigated. The volume fraction of the inclusionf{é=0.1. The

* Lines EF and B', S—A phase transformation controlling
the value ofég with o33=0 until the strain and the stress in
the SMA are equal to zero.

This last step is computed introducing a control of the martensite
volume fraction in the algorithm. In particular, taking constant and

following loading—unloading history is considered, setting the repqual to zero the average stress in the composite, when-the S

erence temperaturg,=20°C:

t[s] 0 1 2 3 4
£33 0 0.025 0.0063 0.000 0.000
T[°C] 20 20 20 55 20

with the other components of the overall strain equal to zero. N

initial prestrain of the SMA wires is considered.
In Fig. 4 the overall stress; and the stress in the SM&L are
plotted versus the overall straing;. The results obtained by the

phase transformation occurs, the inelastic strain decreases and the
stress in the SMA fibers changes. Increasing the temperature, a
sudden total S»A phase transformation occurs. In order to follow
the stress—temperature equilibrium path, a control on the value of
the martensite volume fraction is necessary. Enforcing a gradual
decrease of, a reduction of temperature is induced, as reported
@ Fig. 2 with line EF'.

6.3 SMA Volume Fraction. The superelastic mechanical
response of composites characterized by different values of the
SMA volume fraction is studied. In particular, comparisons be-

dilute and periodic cell homogenization techniques are in vetyween the results obtained by the two numerical procedures are

good accord, so that only one curve has been plotted. It can

dwried out, considering the following loading—unloading history

noted that the response of the composite is significantly influenc@ith no initial prestrain of the SMA wires, under constant tem-

by the shape memory effects in the SMA.

L 1 T v 1
0.015 0.020 0.025 0.020

s

Fig. 4 Shape memory effect in the mechanical response of the
SMA composite

Journal of Applied Mechanics

peratureT=Ty=60°C:

t[s]

€33

1
0.08

2
0

with all the other components of the overall strain equal to zero.
_In Tables 2, 3 and 4, the values of the overall elastic modulus
Eaass, the startingsr3s, and the finalogs; transformation average
stresses, for four values of the SMA volume fraction are reported.
It can be emphasized that the values of the overall elastic
modulus E3333 and of the starting and the final transformation
average stressjs, and s, computed by the two homogeniza-

Table 2 Elastic constant E 73333[MPa] for different values of the
volume fraction

f2=0.01 £2=0.036 f2=0.05 f2=0.1
Dilute 5733.84 7378.87 8557.53 11977.65
composites
Periodic 5734.23 7377.75 8563.39 12000.24
composites
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Table 3 Starting transformation average stress o555 [MPa] for 4504
different values of the volume fraction 4004 EY=4000 MPa
f2=0.01 2=0.036 2=0.05 f2=0.1 350
Dilute 43.10 55.41 64.28 89.93 301 E"=3000 MPa
composites 2504
Periodic 43.00 55.31 64.18 89.74 o [MPa]
composites 3 200 E"=2000 MPa
150 4
100 E¥=1000 MPa
Table 4 Final transformation average stress Eﬁff [MPa] for 50 E4=500 MPa
different values of the volume fraction
£2-0.01 £2-0.036 22005 0201 000 001 02 003 004 005 008 007 008
E,
Dilute 381.14 386.60 390.52 401.88 ®
composites Fig. 6 Superelastic mechanical response of the SMA compos-
cpgr:;?ncc])gites 381.15 386.61 390.55 401.97 ites with different values of the matrix Young modulus

tion techniques, are in very good agreement for all the consider@@0d accord for both the considered volume fraction values. As a
values of the inclusion volume fraction. Quite negligible differconsequence, it can be deduced that the simplifying assumption of

ences appear only fd*=0.1, being equal to 0.19% for the elag-governing the phase transformations by the average stress instead

tic modulusEgzzz;and to 0.22% for the starting and final transfor® the local stress is validated.

mation average stresgss, andojs; . Finally, it can be concluded 6.4 Young Modulus of the Matrix. The superelastic me-
that the results reported in the tables can be considered in vehanical responses of long-fiber SMA composites characterized
good accord as these differences are negligible in the evaluatlndifferent values of the matrix Young modulus are investigated
of the overall mechanical response of the composite. for £%=0.036. The loading—unloading history under constant
Furthermore, the mechanical responses of composites chartaeaperaturél =T,=60°C, adopted in the subsection 6.3 to study
terized by the SMA volume fractions?=0.05 andf®=0.1 are the superelastic effects, is considered. The analyses are performed
reported in Fig. 5, in terms of the overall stresg; versus the using only the homogenization procedure based on Eshelby inclu-
overall strainez3. The results obtained by the dilute and periodision method. No prestrain is assumed in the SMA fibers.
cell homogenization techniques are denoted by “Dilute Compos-In Fig. 6, the mechanical responses of the SMA composites,
ite” and “Periodic Composite,” respectively, and reported withcharacterized by four different values of the matrix Young modu-
dashed line and dashed-dotted line, respectively. Both th&SA lus, are represented in terms of overall streggversus the over-
and S—A phase transformations occur in the SMA, and at end aill straine,;. It can be noted that the startir@g?s and the final

the isothermal loading—unloading cycle the deformation is cora%? transformation average stresses increase with the stiffness of
pletely recovered. The response of the composite is significantye 'matrix. Moreover, the overall responses, obtained embedding

influenced by the superelastic effects in the SMA. As underlinesiviA fibers in stiffer matrices, appear less influenced by the non-
above regarding the comparisons reported in Tables 2, 3, andidear behavior of shape memory alloys.

the results are in very good accord for the examined values of
inclusion volume fractions. 6.5 Prestrain in the SMA Fibers. In the following analy-

In the same figure, a further comparison is carried out with tH€s, the SMA volume fraction is set equal to 0.036. A prestrain
results obtained by the numerical homogenization technique p&=—0.008 is applied to the SMA fibers before performing a
posed in(Marfia [29]); this latter procedure is based on nonlinealoading—unloading cycle at constant temperatlireT,=60°C.
finite-element analyses performed considering the phase transfrparticular, the following overall strain history is considered:
mations governed by the local normal str@ in the SMA
wires. The results carried out by this procedure are reported in tls] 0 1 2
Fig. 5 with solid line and are denoted as “Periodic Compdsite £33 0 0.075 —0.008

The results obtained for the periodic cell problem, evaluated
considering the phase transformations depending on the averaggh the other strain components equal to zero.
normal stress and the local normal stress in the fiber, are in veryThe loading—unloading history induces the complete austenite—

450 450

400 @ /'=0.05 400 ®) =01
350 350
300 300
250 _ 2504
o, [MPa) o,, [MPa]
o ]zuu 4 . 3 a1 ]zno 4 " -
= = == Dilute Composite - - - - Dilute Composite
5] == Periodic Composite 150 == Periodic Composite
Periodic Composite* Periodic Composite*
1004 1004
504 50
o T T T T T v T ¥ 1 T T T T T T T 1
000 001 002 003 004 005 006 007 008 000 001 002 003 004 005 006 007 008
£ =

Fig. 5 Superelastic effect in the mechanical response of the SMA for composites with dif-
ferent values of the SMA volume fraction:  (a) f¢=0.05; (b) f*=0.1
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-0.01  0.00

001 0@ 0 004 005 006 007 o008 Fig. 8 Effectof a high value of the prestrain in the SMA fibers
— on the mechanical response of the SMA composite
3

5

Fig. 7 Effect of a low value of the prestrain in the SMA fibers

on the mechanical response of the SMA composite (line DE). Comparing this plateau with the one, obtained without

prestrain, it can be pointed out that it has shifted in the stress—
strain space towards to negative values of the overall strain with-

. . . . . oHt altering its shape.
martensite and martensite—austenite phase transformations in the
SMA matgrlal. The analysis is perfqrmed using the homogenlz?- Conclusions
tion technique based on the periodic cell. o )

In Fig. 7, the overall stress,; and the stress in the SM&Y, The two proposed homogenization techniques, one based on the
are plotted versus the overall strain,. With reference to the EShelby inclusion solution and the other considering the periodic
diagramo -z 44, it can be noted that: composites, are proved to be able_to model and to reproduce the

gramosg—ess behavior of long-fiber SMA composites. The procedures are based

« when the prestrain is applied to the fibéise AB), the over- on two reasonable assumptions: the phase transformations are
all stresso3; remains equal to zero, a negative overall stiajp  governed by the average normal stress in the fibers and the inelas-
occurs in the composites, while the stress in the SMA fiﬁs%gs tic strain, due to the SMA phase transformations, occurs along the
positive. At the end of the prestrain phase, the process of reoriéier direction. . _ _
tation has completely occurred, while the austenite—martensite"rom the numerical results, the following considerations can be
phase transformation has not started as yet; made:

 during the loading(line BCDE) and the unloading(line The behavior of the composi :
. . posites results strongly influenced by
EFGH), the A—S and S-A phase transformations occur. the superelastic and shape memory effects in the SMA.

Comparing the results in Fig. 7 with the ones, regarding the su-* The results obtained using the proposed homogenization pro-
perelastic effects without prestrain in the SMA fibers, it can bgedures are in very good accordance for all the considered values
noted that the loading—unloading cycle, during which the® of the SMA volume fraction. The dilute distribution procedure is
and S—A phase transformations occur in the SMA fibers, haglso reliable for value of the inclusion volume fraction equal to
shifted in the stress—strain space towards to lower values of . the fiber volume fractions in SMA composites are usually
overall strain but without altering its shape. very low, since a low quantity of shape memory alloy significantly
A higher value of the prestrain equal & —0.09 is considered influences the composite behavior. _

in order to achieve a complete-AS phase transformation during * The simplified assumption of governing the phase transfor-
the prestrain; a loading—unloading history is then applied in ord8iations by the average stress instead of the local stress is vali-

to obtain the martensite—austenite phase transformation at a céated. o )
stant temperatur&=T,=60°C. In particular, the following over- * The influence of the matrix stiffness on the mechanical re-

all strain history is studied: sponse of the SMA composite is investigated. It results that in-
creasing the matrix stiffness the initial and final transformation
t[s] 0 1 2 average stresses become higher.

» The influence of a prestrain state in the SMA fibers is studied.
Increasing the value of the prestrain, the average activation stress
of the A—S phase transformation decrease and for a prestrain

with the other strain components equal to zero. . higher enough the complete phase transformation occurs with null
In Fig. 8 the overall stresssz and the stress in the SMé; are average stress.

plotted versus the overall straiy;. With reference to the dia-
gramos—g43, it can be pointed out that From a computational point of view, the procedure based on the
o Eshelby method is more efficient and faster than the periodic cell
* in the prestrain phaséine AB) the diagranﬁg—a% is linear, technique. In fact, the homogenization parameters that character-
although the austenite—martensite phase transformation cdmed the composites’ behavior are evaluated directly in a single

£33 0 0.01 ~0.09

pletely occurs; preanalysis, for the dilute distribution technique, and performing
« during the loadingline BC) the SMA composites is charac- 12 linear elastic finite-element preanalyses that require more com-
terized by a linear elastic response; putational efforts, for the periodic cell.

e during the unloadindline CDEB, the S—A phase transfor-  Finally, the proposed procedures, able to determine the overall
mation occurs in the SMA fibers in correspondence of the platebghavior for the SMA composite, can be implemented at the
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Gauss point level in a finite-element code in order to perform
structural analyses and to design actuators made of SMA compoé‘-‘]
ites able to control the displacements and vibrations of structures.

Acknowledgments

Low-Velocity Impact,” Composites, Part 7B, pp. 439—446.

Hyo Jik Lee, Jung Ju Lee, and Jeung Soo Huh, 1999, “A Simulation Study on

the Thermal Buckling Behavior of Laminated Composite Shells With Embed-

ded Shape Memory AlloySMA) Wires,” Compos. Struct.47, pp. 463—469.

[5] Jung Ju Lee and Sup Choi, 1999, “Thermal Buckling and Postbuckling Analy-
sis of a Laminated Composite Beam With Embedded SMA Actuators,” Com-
pos. Struct.47, pp. 695-703.

The present Work has been par’“a"y developed W|’[h|n the joint[ﬁ] Sup Choi, Jung Ju Lee, Dae Cheol Seo, and Sun Woo Choi, 1999, “The Active

French-ltalian “Lagrangian laboratory” with the financial support
of the Italian Ministry of Education, University and Research
(MIUR) in the framework of the PRIN project.

Nomenclature

Buckling Control of Laminated Composite Beams With Embedded Shape

Memory Alloy Wires,” Compos. Struct47, pp. 679—-686.

Thompson, S. P,, and Loughlan, J., 1997, “Adaptive Post-Buckling Response

of Carbon Fibre Composite Plates Employing SMA,” Compos. Str@&.pp.

667—-678.

[8] Thompson, S. P., and Loughlan, J., 2000, “The Control of the Post-Buckling
Response in Thin Plates Using Smart Technology,” Thin-Walled Str@6t.,

(7]

[9] Ostachowicz, W., Krawczuk, M., and Zak, A., 2000, “Dynamics and Buckling
of a Multilayer Composite Plate With Embedded SMA Wires,” Compos.
Struct.,48, pp. 163—167.

[10] Ponte Castarda, P., 1991, “The Effective Mechanical Properties of Nonlinear
Isotropic Composites,” J. Mech. Phys. Solic$, pp. 45-71.

[11] Willis, J., 1991, “On Methods for Bounding the Overall Properties of Nonlin-
ear Composites,” J. Mech. Phys. Soli@&9, pp. 73—-86.

[12] Suquet, P., 1997, “Effective Properties of Nonlinear Composites,"at8M
Lecture Notes, Vol. 377, Continuum Micromechaniedited by P. Suquet,
Springer-Verlag, New York, pp. 197-264.

[13] Boyd, J., Lagoudas, D., and Bo, Z., 1994, “Micromechanics of Active Com-
posites With SMA Fibers,” J. Eng. Mater. Techndl16, pp. 1337—-1347.

average strain tensor due to the unit temperaturgi4] sottos, N. R., and Kline, G. E., 1996, “Analysis of Phase Transformation

Fronts in SMA Composites,” Proc. SPIB715 pp. 427-438.

[15] Stalmans, R., Delaey, L., and Van Humbeeck, J., 1997, “Modelling of Adap-
tive Composite Materials With Embedded Shape Memory Alloy Wires,”
Mater. Res. Soc. Symp. Prod59, pp. 119-130.

[16] Cherkaoui, M., Sun, Q. P., and Song, G. Q., 2000, “Micromechanics Modeling
of Composite With Ductile Matrix and Shape Memory Alloy Reinforcement,”
Int. J. Solids Struct.37, pp. 1577-1594.

[17] Briggs, P. J., and Ponte Castaia, P., 2002, “Variational Estimates for the
Effective Response of Shape Memory Alloy Actuated Fiber Composites,” J.
Appl. Mech.,69, pp. 470-480.

[18] Boyd, J., and Lagoudas, D., 1996, “A Thermodynamical Constitutive Model
for Shape-Memory Materials. Part I. The Monolithic Shape-Memory Alloy,”
Int. J. Plast.12, pp. 805—-842.

[19] Raniecki, B., and Lexcellent, Ch., 1998, “Thermodynamics of Isotropic Pseu-
doelasticity in Shape-Memory Alloys,” Eur. J. Mech. A/Solids/, pp. 185—

[20] Souza, A., Mamiya, E., and Zouain, N., 1998, “Three-Dimensional Model for
Solids Undergoing Stress-Induced Phase Transformation,” Eur. J. Mech.
A/Solids, 17, pp. 789—-805.

[21] Auricchio, F., and Petrini, L., 2002, “Improvements and Algorithmical Con-
siderations on a Recent Three-Dimensional Model Describing Stress-Induced
Solid Phase Transformations,” Int. J. Numer. Methods EB§,,pp. 1255—

[22] Auricchio, F., and Sacco, E., 1999, “A Temperature-Dependent Beam for
Shape-Memory Alloys: Constitutive Modelling, Finite-Element Implementa-
tion and Numerical Simulations,” Comput. Methods Appl. Mech. Erig4

[23] Marfia, S., Sacco, E., and Reddy, J. N., 2003, “Superelastic and Shape
Memory Effects for Laminated SMA Beams,” AIAA J41, pp. 100—109.

[24] Orgess, L., and Favier, D., 1995, “Non-Symmetric Tension-Compression Be-
havior of NiTi Alloy,” J. Phys. 1V, C8, pp. 605-610.

[25] Gall, K., Sehitoglu, H., Chumlyakov, Y. I., and Kireeva, I. V., 1999, “Tension-
Compression Asymmetry of the Stress-Strain Response in Aged Single Crystal
and Polycrystalline NiTi.” Acta Mater.47, pp. 1203—-1217.

E = overall fourth-order elastic tensor of the compos-  pp. 231-263.
ite
E®EM = fourth-order elastic tensor of the SMA inclusion
and of the matrix
Ty = reference temperature
T = actual temperature
e = average elastic strain in the composite
A 52' Fe), = elastic strains in the inclusion due to the overall
__ deformationse, p, t
p_= average strain tensor due to the inelastic strain
t =
change effect
a® o™ = thermal expansion coefficient of the inclusion
and of the matrix
B = internal variable describing the change of mar-
tensite reorientation
0 = prestrain acting along the SMA fiber direction
€ = overall average total strain in the composite
£ eM = total strain in the SMA inclusion and in the ma-
trix
€ €™ = average total strain in the inclusion and in the
matrix
g = recoverable strain of the SMA
7* g = elastic strain in the SMA inclusion and in the 205.
matrix
&és = single variant martensite volume fraction
m=k30k® = k3 unit vector in the fiber direction
o = average stress in the composite
o o™ = stress in the SMA inclusion and in the matrix 1284.
o oM = average stress in the inclusion and in the matrix
oSS = limit stress that activates the reorientation pro-
cess in the SMA pp. 171-190.
7 M = strain due to a unit temperature change in the
inclusion and in the matrix
o = material parameter measuring the reorientation
process rate of the SMA
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~ 1 Monte Carlo Simulation of
Wei-Chau Xie
=0 | [Vloment Lyapunov Exponents

Solid Mechanics Division,
Faculty of Engineering,
University of Waterloo, A Monte Carlo simulation method for determining thita moment Lyapunov exponents of
Waterloo, ON stochastic systems, which governs thb moment stability, is developed. Numerical re-
sults of two-dimensional systems under bounded noise and real noise excitations are
presented to illustrate the approacfDOI: 10.1115/1.1839592

1 Introduction On the other hand, the stability of timth momentE[ || X||P] of
Qg solution of systen(1.1) is governed by thepth moment

Stochastic differential equations are encountered in various d .
punov exponent defined by

ciplines, among which are engineering, science, and mathemati
In many engineering structures, such as buildings, bridges, heat 1

exchangers, and aircrafts, the loadings applied, such as those aris- & p

ing from winds, earthquakes, or flows, often fluctuate in a random Ax(p)—tlmt log E[[IX]°], 13)
fashion. These loadings can only be described satisfactorily in

probabilistic terms. The dynamic responses of these engineerin . .
structures are governed in general bydimensional stochastic WHereE[ -] denotes the expected value A (p) is negative, then

X : ; the pth moment is stable; otherwise, it is unstable.
differential equations of the form The relationship between the sample stability and the moment

X=f(t,X,8, j=12,...n, (1.1) stability was formulated in Ref4]. A systematic study of moment
o - Lyapunov exponents is presented in Ré&f.for linear Itosystems
where X={X;,X;, ... Xy} is the state vector of the systemand in Ref.[6] for linear stochastic systems under real-noise ex-

and £ is a vector of stochastic processes, such as bounded-noiggtions. The connection between moment Lyapunov exponents
Ornstein—Uhlenbeck, or other filtered white-noise processes thafd the large deviation theory was studied in RET3, [8], and
characterize the randomness of the loadings. _[9]. A systematic presentation of the theory of random dynamical

One of the most important dynamical properties of the solutiogystems and a comprehensive list of references can be found in
of system(1.1) is its dynamic stability. The sample or almost sureef, [10].

stability of system(1.1) is governed by the Lyapunov exponents The pth moment Lyapunov exponerty(p) is a convex ana-

defined as lytic function in p that passes through the origin and the slope at
1 the origin is equal to the largest Lyapunov exponegt i.e.,
Ax= IimT log| X, 1.2)
e . Ax(p)
where |X|=(XTX)¥? is the Euclidean norm. If the largest )\X_J)ITO ' (2.4)

Lyapunov exponent is negative, the trivial solution of systéri)
is stable with probability 1; otherwise, it is almost surely unstabl
The theory of Lyapunov exponents was placed on a solid ma
ematical footing in the celebratédultiplicative Ergodic Theorem
by Oseleded1]. For then-dimensional systen(l.l), depending
on the initial conditions, there are Lyapunov exponents. Al-
though the dynamic stability of the trivial solution of systéinl)
is governed by the largest Lyapunov exponent, there are situati
in which other Lyapunov exponents are of interest. For examp
when studying the localization behavior of a one-dimension
multicoupled, randomly disordered periodic structure, the loc
ization factor is given by the smallest positive Lyapunov exponeq
of the corresponding discrete dynamical syst&ee, e.g., Ref.
[2]).

It is well known that almost all samples grow in the direction o

‘he nontrivial zerody of Ay(p), i.e., Ax(8x)=0, is called the
ability index.

To have a complete picture of the dynamical stability of a sto-
chastic system, it is important to study both the sample and mo-
ment stability and to determine both the Lyapunov exponents and
the moment Lyapunov exponents. Despite the importance of the
Sment Lyapunov exponents, publications are limited because of
re difficulties in their actual determination. Furthermore, almost
Il of the research on the moment Lyapunov exponents is on the
etermination of approximate results of a single oscillator or two
Bupled oscillators under weak-noise excitations using perturba-
tion methods. Using the analytic property of the moment

yapunov exponents, Arnold et dl11] obtained weak-noise ex-

; ansions of the moment Lyapunov exponents of a two-
the largest Lyapunov exponent. In order to determine themop gimensjonal system in terms ep, wheres is a small parameter,

Lyapunov exponents, the evolution of orthogonal basis vectors e hoth white-noise and real-noise excitations. Khasminskii
of dimensionn is followed and Gram—Schmidt orthornormaliza-, 4 MoshchuK12] obtained an asymptotic expansion of the mo-

tion is performed after each iteration. This is the essence of the, . Lyapunov exponent of a two-dimensional system under
numerical algorithm proposed by Wolf et £8] for evaluating the \\hite_noise parametric excitation in terms of the small fluctuation

Lyapunov exponents of a dynamical system. parametere, from which the stability index was obtained. Sri
Cormibuted by the Abolied Mechanics Division offE A © Namachchivaya and Vedu[43] obtained general asymptotic ap-
ontributed by the Applied Mechanics Division o MERICAN SOCIETY OF ; ;
MECHANICAL ENGINEERSfor publication in the ASME OURNAL OF APPLIED ME- proximation of the moment L'yapunov expon_ent and th.e. Lyapunov
CHANICS. Manuscript received by the Applied Mechanics Division, January 3, 2008Xponent for a four-dl_mensmnal system W_|th one critical r_nOde
final revision, September 17, 2004. Associate: N. Sri Namachchivaya. Discussionand another asymptotically stable mode driven by a small inten-
the paper should be addressed to the Editor, Prof. Robert M. McMeeking, Journagpfy stochastic process. Sri Namachchivaya and Van Rogbkékl
Appl_led Mechamcs_, Department of Mechanics and Environmental Englneermg,'Urgtudied the moment Lyapunov exponents of two Coupled oscilla-
versity of California—Santa Barbara, Santa Barbara, CA 93106-5070, and will be ; - . ; - .
accepted until four months after final publication in the paper itself in the ASMEOTS driven by real noise. Xie obtained weak-noise expansions of
JOURNAL OF APPLIED MECHANICS. the moment Lyapunov exponent, the Lyapunov exponent, and the
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stability index of a two-dimensional system under real-noise eraerical approximation of theth moment of the solution of sys-
citation [15] and bounded-noise excitatidd6] in terms of the tem(1.1) or (2.1) is of interest in the Monte Carlo simulation. As
small fluctuation parameter. a result, pathwise approximations of the solutions of the stochastic
Numerical determination of theth moment Lyapunov expo- differential equationsl.1) or (2.1) are not necessary. Only a much
nents is important for at least four reasons. Firstly, numerica:é)‘?agder ng:nt]hgfnﬁgqngr?égleggleutligngrg??ﬁgltgto%ﬁggt)iléugi?‘felrsergfiél
accurate r_esults of th'e_moment Lyapunov exponents are esse eg’{uations(zl), weak Taylor approximations may be applied. To
in assessing the validity and the ranges of applicability of thé luate theoth E[X[7], S | f th uti f
approximate analytical results. Secondly, in many engineering V—‘i Lz; i) arge) gengfend LIX[I’], S samples of the solutions o
plications, the amplitudes of noise excitations are not small a if the functions m(Y) and oy(Y), j=12,...N, |

the approximate analytical methods, such as the method of pertgri 2,...d, are six times continuously differentiable, the simpli-

bation or the method of stochastic averaging, cannot be appli?l_g.d’ order 2.0 weak Taylor scheme of thi realization of Egs.
Numerical approaches have to be employed to evaluate the 1) at thekth iteration witht,—t, ;=A, whereA is the time

ment Lyapunov exponents. Thirdly, for systems of large dimen: : L

sions, it is very difficult, if not impossible, to obtain analytical tep of integration, is given b9
results. Fourthly, for systems under noise excitations that cannot 1

be described in elegant analytical forms, or if only the time series Y}(S:Ylk;l—‘,- m}:1~ A+ _go(mjf;l) LA2
of the response of the system is known, numerical approaches ’ ' 2 '
have to be resorted to.

Xie [17] evaluated numerically thpth moment Lyapunov ex- + E
ponents of a near-nilpotent system under white-noise parametric =1
excitation. The second-order ordinary differential eigenvalue
problem governing th@gth moment Lyapunov exponent is con-
verted to a two-point boundary-value problem, which is solved
numerically by the method of relaxation.

Recently, Xie and Sq18] presented the first numerical ap- j=1,2 N 2.2)
proach in literature for the determination of tipgh moment ety '
Lyapunov exponents of a two-dimensional system under nofhere the subscript & stands for the sth sample, s
white-noise, i.e., bounded-noise or real-noise, parametric excitaq 2, ... S: the superscript k” stands for the value at timég, ;
tions. The partial differential eigenvalue problems governing thgg the operator£?, £' are defined as
pth moment Lyapunov exponents are established using the theory

1
ol &+ 5[£°(a“*)+£ (M h - AWK

jl,s

d d
1 _ _ _ _
52 2 Ll AW AW TR VIG),

=11=1

of stochastic dynamical systems. By expanding the eigenfunctions N N N d 2
. ) 2 X ! . g 1 d
in double Fourier series in the bounded-noise case and in Fourier £°=2 m,— + —Z 2 Z T rvarval
series and series involving Hermite polynomials in the real-noise = A S L e IY;dY,
case, the partial differential eigenvalue problems are transformed
to linear algebraic eigenvalue problems. The resulting linear alge- | d
braic eigenvalue problems are then solved numerically using the L= 21 Til 5y 1=12,...4d,
= I

“eigs” function in maTLAB for determining a few eigenvalues of a
large sparse matrix. This numerical approach fuffills the first twg \which the functionsn. anda, are evaluated at timg_, of the

and par_ti.ally the third purposes mentioned above. .The metho. ﬁm sample. In Eq(2.2), AW'k;l’ I=1,2,...d, are independent

very efflc_:lent_for lower dimensional systems, fqr which t_he parti Lndom numbers satisfying'the moment condition

differential eigenvalue problems can be easily established. For

systems of larger dimensions, the conversion from partial differ- |E[AW]|+ |E[ (AW)3]|+|E[(AW)®]| + |E[ (AW)?]

ential eigenvalue problems to linear algebraic eigenvalue prob-

lems using series expansions of the eigenfunctions could be very —A|+]|E[(AW)*]—3A2|<CAS3,

involved and the dimensions of the resulting linear algebraic ei- ] ) )

genvalue problems could be very large, which may not be handid some constar, in which the scripts fod W are dropped for

efficiently even by using a capable algorithm for sparse matricegimplicity of presentationAWIfgl can be taken as a normally
Monte Carlo simulation methods are usually more versatildjstributed random number with mean 0 and standard deviation

especially when the noise excitations cannot be described in su@h

a form that can be treated easily using analytical tools. In this

paper, a Monte Carlo simulation approach is presented for deter- A ,V;lznhgl A, (2.3)
mining the pth moment Lyapunov exponents of stochastic
systems. wherenf; ! is a standard normal random numidéfo,1). AW} *

can also be taken as a random number satisfying the following
2 Formulation three-point distribution:
2.1 Determination of thepth Moment. The state vector of PAWS'=%\30)=§, PAWS'=0)=5 (24
system (1.1) is augmented to rewri}e systerfil.1) as an
N-dimensional system of autonomous ktochastic differential Vlkal,s are independent random numbers with the following two-

equations point distribution, forl,=1,2, ... d;

d

k-1 _ _1 -
dyj=m,(Y)dt+ >, op(Y)dW,, j=12,...N, (2.1) P(V{,s=*A)=3 for 1,=12...],-1,
=1
k=1 _ -

where Y={Y;,Y,,....Y\}T, in which Y;=X;, for j Vi,s=—A, for 1=ly, (2.9)
=1,2,...n. In the remainder of this paper, vect¥r and the
vector containing the first elements of vectoy are interchange- Vflel’s: —V:;Tll,s, for I,=1.+1, I1+2,...4d.

able for ease of presentation.
Since the moment Lyapunov exponent is related to the expo-For the special case wheth=1, the order 2.0 weak Taylor
nential rate of growth or decay of the#h moment, only the nu- scheme is, fos=1,2,... S,

270 / Vol. 72, MARCH 2005 Transactions of the ASME



Y]kvszy}ﬁ;u mf;l~A+ajk;1~Avv‘;*1+%Eo(m}‘;l).Az Take the initial condition ofXs(0) such thatHXS(O)H:l_, s
=1,2,... S Note thatY; ;=X g, for j=1,2, ... n. Normaliza-

+3L 1(a}<’;1)[(AW'§‘ H2—A] tion of the firstd elements of the state vect¥ is applied after
_ _ B B B every time period KA).
+ LK HAWE A= AZE ]+ LM AZEY At the time instancem(KA), m=1,2,... M, the following

ratio is determined for all values @f of interest:
(5= — ELIX(m(KA))IF]
PP B (m=D) (KA PT”

i=1,2,...N, (2.6)

where AWX™! and AZ5~! are a pair of correlated normally dis-
tributed random numbers generated as

m=1,2,... M.
(2.10)

1 nsst Fors=1,2 S, the state vectol is then normalized in the
k—1_ k-1 k=1_ 32| k-1 25 1649 e 1 s
AW =nig VA, AZg "=5A (nl,s + 7 ) (2.7)  sense thafxJ|=1 using
wherent .t andn " are two independent standard normally dis- Y. (MmKA)= S 2 s 0 (211
hereni " andnj independ dard lly di . s(M(KA)) GAMKS) 1o e
tributed random numbers. ' IXs(m(KA))

_Having obtainedS samples of the solutions of the stochastiqfter the normalization, numerical solution of the stochastic dif-
differential equations, thepth moment can be determined aserential equations is continued.

follows: From Eq.(2.10, it can be easily shown that
S
1 E[[X(M(KA))|]
ElIX(t0IP1= g 2, IXEP, IXS=VOO™E  (28) pA(P)- P2(P) PP = T oy ]
whereX¥ =Y, forj=1.2,...n. =E[IX(M(KAN[T]. - (212)

From Eq.(1.3), it is clearly seen that the difficulty in the Monte Using Egs.(1.3 and(2.12), the pth moment Lyapunov exponent
Carlo simulation of thepth moment Lyapunov exponent lies injs given by, for all values op of interest,
the two large quantities: a large number of samples are required to 1
evaluate the momerE[||X||P] at any time instance, and a large _ p
time periodt is needed to determine the exponential rate of Ax(p) M(KA) logEL[X(M(KA))I]
growth of thepth moment. Hence, in order to be able to perform
the Monte Carlo simulation efficiently, it is important that a higher
order weak scheme is employed to solve the stochastic differential
equationg2.1) so that a larger time step can be taken to reduce
the number of iterations in time. 1 E

There are order 3.0 and order 4.0 weak Taylor scheh@k “MKa) & logpm(p), for large M. (2.13)
however, they are of mainly theoretical value because of the dif-
ficulties in implementation. The extrapolation method may be aghe purpose of using the ratigs,(p) is to avoid numerical data
plied to obtain the order 4.0 weak extrapolat{d9]: overflow or underflow because thh moment of the system
grows exponentially if it is unstable or decays exponentially if it is
stable.

1
= m log[ p1(P) - p2(P): - pm(P)]

M

1
ELIX(t[P1= 2—1{32E[||XA’4(tk)||p]— L2E[ [ X22(t) [P
A 0 2.3 Monte Carlo Simulation of the pth Moment Lyapunov
+E[[X2(tllPT}, (2.9) Exponents. The results presented in Secs. 2.1 and 2.2 are sum-
where X4 X472 and X2 stand for the state vectors obtainedr.narized in the following procedure for the Monte Carlo simula-
using Eq.(2.8), in which the stochastic differential equatiofesy) uon of thepth moment Lyapunov exponent.

are solved using the order 2.0 weak sche@@) with the time I. Setting the Initial Conditions

steps being\/4, A/2, andA, respectively. For thesth samples=1,2, . .. S, set the initial conditions of
However, it has been found in the numerical experiments that the firstn elements of the state vectyr, as

the order 4.0 weak extrapolatid®.9) does not offer any advan- 1

tages in terms of numerical efficiency and accuracy than the order Y 0)=—, i=12,...n

2.0 weak Taylor schem@.2) or (2.6) with a smaller time steps ' \/ﬁ

when studying the dynamic stability of a stochastic system. The Y;(0), j=n+1n+2,... N, can be set to any values; for

reason is that, when the systéfnl) is unstable, a larger time step simplicity of implementation, they may also be set tqQril/

A may lead to the value of E@2.9) to be negative at some time I. Conducting the Monte Carlo Simulation

instances, since the solutions of the stochastic system are growing For time iterationsm=12,... M. conduct the Monte

exponentially. On the other hand, if a small enough time step Carlo simulation. For each increment in, the increase in

used, Eq.(2.9) requires the evaluation of three sets of sample time is KA .

realizations, at time stepA, A/2, and A/4, respectively. It has

been found that it is numerically more efficient and accurate to1. Fork=1,2,... K, and samples=1,2,... S, perform the

use Eq.(2.2) or (2.6) with a small time step. numerical integration of the stochastic differential equations.
For each increment ik, the increment in time iq.

o 1.1. Generate @ standard normally distributed random
2.2 Determination of the pth Moment Lyapunov Expo- numbers to evaluatAW}f;l, AWK L AWK L for |, 1,

. . . ly,s7 l,,81
nents. Having obtained thepth momentE[|X||P] at any time _ : o 2
instancet using Eq.(2.8), the moment Lyapunov exponefi(p) 2=1,2,... d, using Eq.(?.s). .
can be determined using E€L.3. However, since thgth mo- 1.2. Generatgd(d—1) uniformly distributed random num-
ment grows or decays exponentially in time, periodic normaliza-  bers in (0,1 to evaluate Vi, s, for 1,=1,2,...4,

tion of the pth moment must be applied in order to avoid numeri- l,=1,+1],+2,...d, using Eq.(2.5).
cal overflow or underflow and to correctly determine the moment  1.3. EvaluateY 4([(m—1)K+k]A) in time stepA using the
Lyapunov exponent. iterative equation(2.2).
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For the special case when &1, the following simplified de(t) = — al(t)dt+ odW(t),

steps are taken

1.1. Generate two standard normally distributed randodiheres=eq/w, a=aglw, o=0q/Jo.

numbers to evaluatAWX ! andAz¥~ ! using Eq.(2.7). Because of the transformatiay{ ) =x(7)e #", one obtains
1.2. Evaluatey (([ (m— 1)K +k]A) in time stepA using the

iterative equatior(2.6). da(m) _| (=) —Bx(7)|e #7,
2. For all values ofp of interest and sample=1,2,... S, dr dr
determine the pth norms ||Xy(m(KA))[P using X4 ang
=(XIXo)Y2 whereX; =Y, j=12,...n. , ;
3. Determine thepth momentsE[|X(m(KA))|P] using Eq. B \/ ) dg(7) _\/ ) dx(7) s
(2.8) for all values ofp of interest. la(n)=\/a*(7)+ 4 | = VX D+ = —Bx(7)| P
4. Evaluate the ratip(p) using Eqg.(2.10 for all values ofp ~
of interest. =[x(7)le”#,
5. Normalize the state vectdfs(m(KA)) using Eq.(2.11). since the norms defined as
Ill. Determining the p th Moment Lyapunov Exponent ERCIE
Determine thepth moment Lyapunov exponerity(p) using Ix(7)[|= \/x3(7)+ O
Eq. (2.13 for all values ofp of interest.
and
) ) dax(7) 2
3 Numerical Results Ix()[= X (7)+ | === Bx(7)

In this section, numerical results of Monte Carlo simulation of . .
the pth moment Lyapunov exponents of a two-dimensional sy&'€ €quivalent. This leads to
tem under real-noise excitation and under bounded-noise excita- la(n)||P=|x(7)||Pe™ P~
tion are presented. '
and

3.1 Two-Dimensional System Under Real-Noise Excitation Agn(P)=—pB+ Ay»(P)-
Consider a two-dimensional system under real-noise excitatiQq§y, the other hand. since
which is modeled by an Ornstein—Uhlenbeck process, as '

dx(t)]? 1 [dx(7)]?
Fa(r) _ da(n) :\/ 24| XD e ()
S 2B+ [wf—sot(7]d(7) =0, X=X+ =] = VT 2| =g
(3.2) )
dE(T) = — ap(7)dr+ ogdW( 7). and the vector norms of(7) defined as
Equationg3.1) can be written as a three-dimensional autonomous ()] = \/XE(7)+ dx(7)|*
[t stochastic system as dr
dY]_:deT, and
dY2=[_ZBY2_(1_80Y3)Y1]d7', (32) 1 dX(T) 5
dY;=—agY3d7+ ogdW, [x(7)||= \/x2(7)+ =l

whereY,=q(7), Y,=dq(7)/dr, Y;=¢&(7), andY, andY, are ) o ]
used to calculated theth norm of the state vector of the systenre equivalent for finites, hence|x(t)[| and|x(7)|| are equivalent.
[YIP=[(Y )2+ (Y2) 2P Furthermore, since

Using Eq.(2.6), the order 2.0 weak Taylor scheme is given by E[|x(D)]|P]~ eM0®) 1= e A® 7 as t—soo,

k k=1 k-1 1pok—1 A2
Yis=Yis + Yo -A+3R5 A%

and
Y5 = Y5 IR At eqaoYh t-AZET? E[|Ix(D)|P]~ P 7 as 7o,
+ 3 - wdY5 - 2BRE T e YE HYE T - aYE D] A%, which leads to
(3.3) Ayn(P)= 0 Ayy(p).
Y= Y5 —agYhst At o  AWET? Therefore, the moment Lyapunov exponents of systé and
3.4) are related b
+%agY§;l-A2—aooo-AZ§71, (34 y
where Aqn(P)=—pB+ oAy w(p). (3.5)
k—1_ k-1_, 2 K—1vk—1 The sixth-order approximation of thgth moment Lyapunov ex-
Ry 7= =2BY55 —(wo—e0Yas ) Va5 - ponent obtained in Ref15] is given by
For small values oky>0, a sixth-order approximation of the s 4 6 8
pth moment Lyapunov exponent was obtained in IRES] using a Axy(P)=e“Ayt e Ay+e”Ag+0(e”), (3.6)
method of regular perturbation. where
System(3.1) may be simplified by removing the damping using 5
the transformatiom(7) =x(7)e #7 and applying the time scaling _p(p+2)o
t=or1, 0’=wi— B to yield 27 16(a’+4)"’
d?x(t) (p+2)o*(a*+22a%+48)
— el =0, B e}
(3.4) 32a(a+1)(at+4)
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Fig. 1 Moment Lyapunov exponent

1 A g(»(p) under real-noise
excitation, ay=2.0

Fig. 3 Moment Lyapunov exponent
excitation, ay=1.0

A g(n(p) under real-noise

Ag=p(p+2) o p?(99a**+ 42740 %+ 70,370+ 499,596:°
+15,47,568°+ 2,119,232+ 1,267,200+ 262,144

o d
37(27) +zﬁ¥ +[w0§— o cosé(7)]q(7)=0,

(3.7)
dé=vod7+ oodW( 7).

In the absence of noise, i.e., wheg=0, system(3.7) reduces
to Mathieu’s equation, a two-dimensional system under harmonic
parametric excitation. It is well known that Mathieu’s equation is
in the primary parametric resonance wheyis in the vicinity of
2wq and in the secondary parametric resonance whgis close
tO wq -

Equations(3.7) can be converted to a three-dimensional au-
tonomous stochastic system as

le: deT,

+ p(198a**+ 85482+ 140,758+ 999,192+°
+3,095,13@°+ 4,238,464+ 2,534,402+ 524,288
+(—1080x1*— 42,960v*?— 650,680 1°— 3,903,840
—2,981,76@°+27,553,28@* + 60,641,282
+31,457,280]/[ 8192¢%( >+ 16)(9a’+ 4) (a’+ 1)%(a?
+4)5].

The pth moment Lyapunov exponents of systésnl) obtained
using Monte Carlo simulation and the results given by &96) dyzz[legyzf(wgfsoCOSY3)Yl]dTI
are presented in Figs. 1 and 24=2.0), Figs. 3 and 4 ¢, AY = vodr+ ondW
=1.0), and Fig. 5 ¢,=0.5), 8=0.01, wy,=1.0, 0p=1.0, and 3o o=
various values of,. It is seen that the approximate analyticahereY;=q(7), Y,=dq(7)/d7, andYz=§(7). Y, andY, are
results agree quite well with the numerical resultsdge=2.0 and related to the state variables of the original sys(@&m) and are
1.0. Large discrepancy exist far,=0.5. used to calculated theth norm||Y|P=[(Y1)?+ (Y,)?]?2

The order 2.0 weak Taylor scheme is given by, from &06),

(38)

3.2 Two-Dimensional System Under Bounded-Noise Exci-
tation. Consider the following two-dimensional system under
bounded-noise excitation:

1
k _yk—1 k—1 k—1
Yie=Yis i+ Y5 A+ SR AZ

Thick line—Perturbation

Thin line with dots—Simulation
-0.01 T T T T T -U. T

-4 3 2 -1 0 1 2 3 4 5 -4 -3 2 -1 0 1 2 3 4
P P

Fig. 2 Moment Lyapunov exponent
excitation, a,=2.0

A g(»(p) under real-noise Fig. 4 Moment Lyapunov exponent

excitation, ay=1.0

A g(»(p) under real-noise
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Fig. 5 Moment Lyapunov exponent
excitation, ay=0.5

A g(»(p) under real-noise

k k-1 k—1 1 2 k-1 k-1 k-1
Yos=Yas TRg ~A—5[(11)0—socosY3'S )Yos +2BRg
—eo(vpSinYss '+ 305 cosYs YA 1] A2
—eoooYistsinYE tAZETT (3.9)
Y5= Y51+ vg- A+ g AWKTL,
where

R T=—(wi—eqcosYs YA —28Y5 . .

Under weak-noise excitation, i.e., fep>0, a fourth-order ap-
proximation of thepth moment Lyapunov exponent has been de-

termined using a method of regular perturbation in Re8). Sys-
tem (3.7) can be simplified using the transformatiogy7)
=x(7)e #” and time scalind= w7, w?=wj— B2, to yield

d?x(t)
Gz +[1—ecos{(t)]x(t)=0,
dZ(t)= vdt+ odW(t), (3.10)
0.40 / A 7
035 7] 620'01 I ""’ ,/ .// //
— I I ’/ ’/

030 w=1.0 p Ve -

| V9=0.5 og=10 J ;o )
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Fig. 6 Moment Lyapunov exponent
noise excitation, »y=0.5

A g(»(p) under bounded-
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Fig. 7 Moment Lyapunov exponent
noise excitation, »y=1.0

A g(»(p) under bounded-

where e=g¢/0?, v=vylw, and o=0y/Jw. The moment
Lyapunov exponent of syste(B.7) is related to that of Eq.3.10
by

Ag(n(P)==PB+ wAyy(P). 3.11)
The fourth-order approximation of theth moment Lyapunov ex-
ponent is

Ay (P)=&?Ap+e?A +0(e%), (3.12)
in which
p(p+2)S(2)

16 ’

=

where S(2) is the power spectral density functi®{w) of the
bounded-noise ca4t) at =2 given by

a?(4+ 2+ % o)

2):2[ 2,1 4 N2 1 4]
2+v)°+z70")[(2—v)°+ 707]

The expression foA , is quite lengthy and will not be repeated
here.

e

Thick line—Perturbation
Thin line with dots—Simulation

32 A 0 1 2 3 4 5 6 7
I

Fig. 8 Moment Lyapunov exponent
noise excitation, »y=2.0

Ag(»(p) under bounded-
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Numerical results of thepth moment Lyapunov exponentshigher dimensional systems, the amount of analytical work in-
Aqn(7) from Monte Carlo simulation, along with those given byolved and the dimension of the resulting linear algebraic eigen-
equations(3.11) and (3.12, are plotted in Figures 6—8 for, value problem increase dramatically.
=0.5, 1.0, and 2.0, respectivel§=0.01, w,=1.0, 0(=1.0, and The Monte Carlo simulation presented in this paper is a pure
various values of. It is observed that the approximate analytinumerical method and is more general than the analytical-

cal results agree well with the numerical results. numerical approachi18]. The method can be easily applied for
] ) ) higher dimensional systems and any noise excitations, even for
4 Discussion and Conclusions those with only time series available.

In this paper, a Monte Carlo simulation procedure is develop%i
to numerically determine thpth moment Lyapunov exponents. cknowledgment
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Elastic-plastic wrinkling of compression loaded sandwich panels made with layered cores

Mikael Danielsson was studied analytically and experimentally. A core with a stiff layer near the sandwich
Albany International AB, skins can improve various properties, including wrinkling and impact strengths, with only

Box 510, a minor weight penalty. The 2D plane stress and plane strain bifurcation problems were

SF 301 80 Halmstad, Sweden solved analytically, save for a determinantal equation which was solved numerically.

Experiments were performed on aluminum skin/foam core sandwich panels with different
combinations of stiff and soft core materials. Good correlation between experiments and
theory was obtained.DOI: 10.1115/1.1828063

g-mail: mikael.danielsson@albint.com

Introduction ant and contravariant components of tensors are denoted by sub-

Polymeric foams are frequently used as core materials in Io?%?“pts and superscripts, respectively. The Lagrangian strain tensor

bearing sandwich structures. Many of the requirements of a sand-

wich core can be better fulfilled using a core material with me- 1 1 K

chanical properties varying through the thickness. For example, 7= 2 (Ui )+ 3 Uil @

high stiffness and strength of a core layer next to the skins prgpere y, are components of the displacement vector referred to
mote wrinkling and impact strength, and high chemical resistangig, \nqeformed base vectors, and comma denotes covariant dif-
of this core layer reduces chemical degradation of the core Wheleniation with respect to the metric in the undeformed body.

the skins are attached or fabricated. Even better than havingNﬂh V and S denoting volume and surface, respectively, in the

layered core is to grade the core. Danielsson and Grengdfedt, jotormeq body, and! components of the symmetric Kirchhoff

manufactured and tested various graded combinations of Diviny: : -
cell PVC based foams, and showed that a number of bene ress referred to base vectors in the undeformed body, the prin

could be obtained. Ble of virtual work is

In the present paper, wrinkling strength of a sandwich panel - )
made with a layered foam core and aluminum skins was studied. f ™ dv= f T'6u; dS ¥
A layered core prevents standard wrinkling formulas, such as v S

those of Gough et a[2] and Hoff and Mautnef3], to be used. i .

Grenestedt and Olssdd]| solved the present problem when a”whereT are components of surface traction referred 1o unde-
materials remain linearly elastic. Their solution was in many r%}grmed base vectorg) represents differentiation, and body forces
spects similar to that of Shield et d5], but with a different ave been omitted. The incremental form of the principle is
application. At present, 2D plane stress and plane strain bifurca- B B -

tion analyses were performed, assuming that the face skins fulfill f {1 6m;+ UK, 8u, jrav= f T'su; dS (3)
eitherJ, flow or deformation theory, and a Ramberg-Osgood non- v S

linear uniaxial relation. Specimens as depicted in Fig. 1 were care- _ L
fully prepared and experimentally tested to failure under uniaxi ith rates of change denoted by a dot. The constitutive behavior is

compression assumed to be of the form
=LK = (LM = ag™mImi) 7 @

. _ _ wherea=1 for m'7,,=0 and the stress is on the yield surface,
Bifurcation Analysis and a=0 otherwiseyg is related to strain hardening and depends

The following bifurcation theory was presented by Hil,7] On the deformation historyn" are components of the unit tensor
and the formalism presently used was given by Hutchif&n normal to the elastic domain in strain-rate space, BHfd is the
for details and further applications these papers are recommendgdstic stiffness tensor.
An outline of the theory is provided below. The elastic wrinkling Dead loads are applied to the body. Assume that at some stage
analysis of Grenestedt and Olsdah is here extended to include of the deformation, characterized m? 7 , bifurcation is pos-
elastic-plastic material behavior. _ ~ sible such that at least two solutiohdanduP exist. Let quantities

The summation convention will be used with Latin indicegyith an overhead tilde denote differences between the two solu-
ranging from 1 to 3 and Greek from 1 to 2. A finite strain Lations; for exampIeTJi=U!°—U-a. Since tractions are the same for
grangian formulation with convected coordinates is used. Covagiaih solutions on the part of the surface of the body where trac-

Cormibuted by the Abolied Mechanics Division offE A © tions are prescribed, and the same holds for displacements, the
ontributed by the Applied Mechanics Division o MERICAN SOCIETY OF PR ;
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dropped. Subsequently, subscripts will be used for all tensor com-
ponents. The equations above can then be simplified to

(1) . (SR EY)
77|J:§(Ui tj+ujti) (12)
(1) . (1)
;= Liji 7 (13)
(1) (1)
O'ij ,j+0'kjui ,kj=0 (14)
1 @ 1)
T|:(Uij+0'kjui,k)nj:0 on ST (15)
(1)
u;=0 on S, (16)

in Cartesian coordinatésthe un-deformed body now equals the
deformed body immediately prior to bifurcatipon

Two different material models are employet}, flow theory
andJ, deformation theory. Fod, flow theory, the instantaneous
moduli in Cartesian coordinates are

E afl']_SijSk|
Lij= 1+v (5'k51'+5" k)+1 2v 5'15klim

(17

where the stress deviatorsg = o — 0y 6;;/3 andJ,=s;;s;;/2, E
is Young's modulus, and is Poisson’s ratio; fod,=(J2) max, @

Fig. 1 Specimen under consideration, consisting of two alu- =1 if J,=0 anda=0 if J,<0, whereasa=0 if J,<(Jz)max. .

minum skins (material #1, dark gray ), attached to two layers of The functionr(J,) is determined fror_n a tensile stress-strain

high density foam (material #2, light gray ), sandwiching a low ~ Curve as;=3[E/E;—1]/(4J,) whereE, is the tangent modulus.

density foam (material #3, white ) For J, deformation theory, the instantaneous moduli in Cartesian
coordinates are

E 1 3v+
elastic comparison solid such that equals the modulL ob- Liik':1+ VT, E(aik51'+5i'51k)+ 3(1-2 )5'1 Sk
tained whenm*'7,,>0, independent of the actual deformation
increment. Hill introduced the functional _ I 2SijSi (18)
14+ v4r,+2ryd,

F(U)= | {LUN% F+ T8, Ty, dV=H>0 6 _ _
@ fv{ e himat 70U i} ©) wherer ,(J,) = 3[ E/Es— 1]/2 whereEy is the secant modulus in a

tensile stress-strain curve, ang=dr,/dJ,.
In the following the material is assumed to have a Ramberg-
sgood-type uniaxial relation with

where the first inequality is valid for positivg and arbitrary
loading, and the last inequality is the sufficiency condition fob
unlqueness Assume that the first bifurcation occurs with the

(1)
eigenmodeu; such thatF(u ) 0. Minimizing the functionalF Ee _ T R T " (19)
leads to the eigenvalue equations 0o7 007 007
(1) ) 1 @) Lo (i) . (ﬁ) where o 7 is the stress where the stress-strain curve intercepts a
7= 7 (U +Up ) + 3 (U, Uk +up k) (7)  line with the slope 70% of Young's modulus, andt®= 3. This

relation is plotted in Fig. 2 for 7075-T6 aluminum. The tangent

(1) (1) . .
A= LK ®) and secant moduli are, respectively,
1 @ (1) E a
(71 + A0 k+7_k1u 4, =0 9) Y14+ aR%m(alog )™t (20)
o oo (1 £ E
Ti= ( A+ 7_kJuOI wF TOJU ,k)n] on ST (10) ST 1+ aRO( 0_/0_0.7)m—1
(1) The functionsr,(J,) andr,(J,) then become
u=0 on 11
.I SU - - ( ) QaROm o
For the presently considered problem, wrinkling of a flat sand- ry(Js)= TomT (33,)(M=3) (22)
wich, strains are negligible compared to 1 prior to bifurcation To7
when, as presently assumed, moduli of skin materials are much 34RO
. h . . o
higher than moduli of core materials, and rotations are nonpresent. rz(Jz)_ o —=1(33,) (M1 (22)

Prior to bifurcation, components of Kirchhoff stres$ then co-
incide with components of Cauchy stresd, etc. A Cartesian
coordinate system will from now on be used and the distinction !since a Cartesian coordinate system now is employfg, is used in Eq(13)
between covariant and contravariant components of tensand subsequently rather tha*' as used in Eqg4), (6) and(8).
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with the present sandwich structure in mind, it is preferred to

600 5

/ / reduce the number of parameters by letting the core thickness
o [MPa] | / = increase without bounds. With this assumption some bifurcation
500 // modes, such as globé&Euler-like) buckling and shear buckling,
& Y, - 0 also disappear while wrinkling remlains. Planelstrain deformation
400 A is assumed during bifurcation, i.nggzo and u(i ,)3=O. Prior to
/ . bifurcation, the stress and deformation state will be considered to
300 = be either plane strain or plane stress. In the latter case the possible
- / . - Ramberg-Osgood incompatibility of deformati_on bgtwee_n core and skin due to dif-
200 _ . ferent transverse deformations is tacitly ignofedwever, defor-
3 / -~ -E'eps mation rate compatibility is enforced during bifurcatioBefore
1 S e 0.7 E*eps bifurcation in the former caser,;#0, o33#0 in general, and
100 —7= —o-—eps=0.62% otheraj;=0, whereas in the latter case alsg;=0. The stresses
v —o—E*0.62% will differ between the different materials but the strajg, is the
0 b same. These assumptions lead to the equations
0 0.005 0ot . 0.015
. (1) (1)
Fig. 2 Stress-strain relation of the aluminum skins according Lapysty st o1la 11=0 (25)

to the Ramberg-Osgood relation and the parameters in Table 1. and the boundary conditions
The “yield” strain £=0.62% is also plotted. y

@ @ 1)
Ti=(ojj+o13U;,161)n;=0 on S (26)
Pre-Bifurcation Stress State
In the plane strain case, whens= &,3= £33=0, the stress state (lji)=0 on S, 27)
prior to bifurcation is obtained by integrating the equations
(L1129? and continuity of deformations and tractions between different
('Tllz(le_ L)én materials. Note thatiﬁyﬁ depends on the stress state prior to
L2222 (23) bifurcation and thus differs between the plane strain and plane
Ly1od ooss stress situations. In the present setlirjg, 3 =0, L ;353=0 prior to
033= ( Li1as 3 )'sll bifurcation.
2222 An ansatz of the form
whereas in the plane stress case the stress equals in Eq.
(19). Other stresses are zero. Presently, integration was used also @) .
in the plane stress case, integrating Uy ="F1(Xz)sinwx, (28)

(1)

LaodLisootLissa)) .
— 7 |tu (24) Uy=f,(X,)COSwX;

L222ot Looss
in order to obtain an estimate of integration accuracy for the platads to two coupled ordinary differential equationsffpandf,.
strain case. The integration scheme presently ufeder's ex- Itis assumed that the extension of the structure inhdirection

plicit forward method was accurate to five or six digits. HigheriS such that it will always be an integer times the wave length
accuracy could easily be obtained using a smaller time step bugff/@- For a structure which is long compared to the wave length

0117 | Ligar—

was presently not considered necessary. in the x,-direction, this is always fulfilled with reasonable accu-
racy. The functiond; andf, are of the form
Solution of the Differential Equations in Plane Strain f=eMe (29)

The partial differential equations and boundary conditions frorln ding to the fourth d h teristi i
which the bifurcation load is determined are given by HG8)— eading lo the fourth degree characteristic equation
(16). _Asolution is present_ly sough_t ina rgg_ion a_ccording to Fig. 3, CoM+ CLw?\2+ Co0=0 (30)
consisting of three materials: a sKifl), a finite thickness layer of
core material#2), and a semi-infinite core with a different stiff- where
ness(#3). The analytical model is not limited to a semi-infinite ¢ e
core sandwich per se, but is applicable to any layered structure Co=~Lizid 5222

with arbitrarily many layers of arbitrary thicknesses. However,
1= 011(L 915t L5000 + LS 111 Sop5— (LS 100 = 205104 $215

(31)
A2 Co=~ (011t L1119 (011+ Lip1)
X1 If \ is a root to the characteristic equation, then se s, and the
\ #1 \ . solution is

) #2 ) fi=A M2+ Ao M4 AgehXe+ A e N2 (32)

#3 f,=B,e’*2+ B,e M2+ Byet2¥e+ B,e M2

for real and unique.,

fi= ALt Aje et A eMRet Aje M2
1 1 2 1 2 (33)

Fig. 3 Geometry of the analytically analyzed structure f,=B,eM*2+ B,e M¥2+ B,eM¥2+ B,e M2
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for complex, etc. Above, an overhead bar indicates a complepable 1 Material data for core and skin materials.  @R%=2 for
conjugate A; are constants to be determined from the boundatye aluminum.
conditions, andB; are related tdA; through Eq.(25). Necessary

but not sufficient conditions for real are Young's Poisson’s Ramberg-Osgood )
modulus  ratio stress Hardening
) .
ommad — LS. L 2L 3104 1010t (L1120 "~ Linadb 5000 Material E (MP3) v o7 (MP3) m
w ty LS+ Loonn 7075-T6 aluminum 72000 0.3 550 13
(34) H30 foam 325 0.25 L
H100 foam 99 0.2375

Collecting the boundary conditions leads to ten homogeneaotis
linear equations for thé; in the different materialsA,=A,=0
in material #3 is required for finite stressesxat —«), thus a
determinantal equation is obtained. The wave numband the
strain #,, are parameters in this equation. The smallegt for ~assuming that the two skins carry all load. For the H30 and H100
which the determinant is zero for someis the wrinkling strain, cores, this strain is 0.58% and 1.8%, respectively, using the prop-
7er- This was solved numerically by incrementally integratingrties in Table 1. These are higher than the wrinkling strains of
Eq. (23) or (24) by Euler’s explicit forward method, and in eachthese specimen, which are on the order of 0.4% and 0.7%, respec-
increment scanning a large rangewto find a root of the deter- tively; see Fig. 4. Shear buckling should thus not occur before
minant. As soon as a root was found, it was bracketed inathe skin wrinkling.
— 711 Space, and the solutidiw and 7,;) was determined with at ~ Wrinkling strength is known to be sensitive to geometric im-
least five-digit precision using a simple bisection algorithm.  perfections as well as imperfections in load introduction and

therefore a major effort was made in preparing the specimens and
Experimental Tests and Comparison With Analytical the test procedure. Effects of initial imperfection on wrinkling in
Predictions sandwich structures have been reviewed by Ley dual, which
is recommended for further details. A very stiff test machine was

Symmetric sandwich specimens as depicted in Fig. 1 weiged. Each specimen was molded directly into steel shoes in the
manufactured and experimentally tested under uniaxial comprésst machine in order to obtain uniform load introduction. Strains
sion loads. The skins were made fof=1.57 mm thick 7075-T6 were recorded using strain gages, and loads using a calibrated
aluminum. This was material #1 in Fig. 1. Two different densitiemad cell. Four specimens of each configuration were tested. The
of Divinycell H-grade[9] expanded PVC based structural foamsest specimens remained flat until they suddenly failed cata-
were used: Divinycell H10Gmaterial #2 in Fig. L which is a strophically. No prebuckling out-of-plane deformation was no-
medium density foam, and Divinycell H3@naterial #3, which is  ticed. The specimens that wrinkled in the linear elastic range of
the lowest density foam in the Divinycell H-grade family. Thehe skins, i.e., configurations 1, 2, 3, failed dramatically with
nominal densities of the foams were 100 and 36 Kg/nespec- loud bangs and foam core fragments flying. There were large
tively. The specimens were manufactured by bonding the coceacks in these specimens after the tests. The specimens of con-
layers and skins using a two component polyurethane adhesifiguration 4 failed with a soft “thug” and no visible cracks. How-
The skins were attached by spreading the adhesive onto the skiner, the skins developed large permanent plastic wrinkles. The
rather than onto the foam cores in order to not fill the cells in thesults of the tests are summarized in Fig. 4, where the normalized
foam core and thereby creating an overly stiff bond line. The joiRrinkling stress in the Skimﬁin/Eskin, is plotted versus, /h; .
between the H30 and H100 foam core layers was made by spreadn Fig. 4, the 2D analytical predictions using the theory outlined
ing the adhesive on the H100 foam, which has smaller cells thgnprevious sections are also plotted. The material data used for
the H30 foam. Four different specimen configurations were madg@ie calculations are given in Table 1. The Divinycell cores are

1. a 100 mm thick H30 core sandwiched between to linear elastic to strains above 1%, and thus remained elastic up

—1.57 mm thick aluminum skins. No H100 foam was useHwough the wrinkling initiation. The aluminum was modeled with
in this specimen, and thus,=0 ' a Ramberg-Osgood constitutive relation, as depicted in Fig. 2. The

2. an 88 mm thick H30 core between two=6 mm thick yield strain of the aluminum skins is approximately 0.62%. The
layers of H100 core, sandwiched between twg
=1.57 mm thick aluminum skins,

3. a 76 mm thick H30 core between twg =12 mm thick

layers of H100 core, sandwiched between twg Ulj;: [%]
=1.57 mm thick aluminum skins, E 0.9
4. a 100 mm thick H100 core, sandwiched between two 0.8 -
=1.57 mm thick aluminum skins. No H30 was used in this 07 T :
specimen. 0'6 L,
The total thickness of the core was=100 mm in all configura- 05
tions. These specimens were believed to be sufficiently thick to be ’
treated as infinitely thick regarding skin wrinkling. The width of 04— | elastic
the specimens was= 140 mm, and the total height was 150 mm. 0.3 1 — plastic
The specimens had to be very thick also in order to not shear 02 X_experiments
buckle. The shear buckling load of a specimen with a homoge- 041 1
neous corda single core materipis approximately 0 . .
Fere?~G.dw (35) 0 5 10 15 20 25

halh,
whereG. is the shear modulus of the core. If the skins were linear

elastic, with Young’s moduluEs", then the strain in the skins atFi9- 4 Comparison between experimental and theoretical
shear buckling would be wrinkling stress for a sandwich with a layered core. Elastic

analysis (dotted line ), elastic-plastic analysis  (solid line ), and

shear G.d experiments (X). The experimental configuration with hy/hy
shear_ S v (36) == is plotted near the right end of the graph and marked with
e 2hywES™  2E%"h, an arrow.
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results plotted in Fig. 4 were obtained assuming plane stress o2 (E*"h?) [%]
(033=0) in all materials prior to wrinkling, and plane strain
(£33=0) in all materials during wrinkling. 0.6
Both plane stress and plane strain analyses, using both flow and
deformation theory, were performed. The results consistently 05 . ..

showed that the wrinkling stresses obtained by flow theory pre- P
dictions were slightly higher than those obtained by deformation /\
theory. A discussion of this phenomenon as seen in other applica- g4

tions is given by Hutchinsofi8]. However, for the present case, _—
the difference between the flow and deformation theory predic-

tions was very slight, and not even noticeable in a plot such as 0.3
Fig. 4.

The analytical analyses assumed that the total core thickness g2 - - - - elastic |_|
was semi-infinite as in Fig. 3, whereas in the tests it was always plastic
100 mm, and that the length of the specimens was such that the
wavelength that minimizes the wrinkling straiy; could be ob- 0.1
tained. The analytical model could have been used for the finite
length and finite core thickness sandwich by incorporating equa- 0 : : : :
tions like (32) and(33) for each layer and limitingy,, to values 0 5 10 15 20 25
compatible with the boundary conditions in the length direction.

However, instead finite elemerEE) bifurcation analyses were IR
performed and the predictions compared with the analytical re- ’

sults. Only linear elastic material properties were used for the R, 5 Normalized load carrying capability oSk h8/ (£ h4) of
analyses. Two-dimensioné&2D) FE models were made using thea sandwich with given mass and thickness, as a function of
geometries of the experimental specimens. Three different sp&malized thickness ~ hZ/h? of a layer of high density core

men lengths were used: 150, 200 and 250 mm. Analyses were
performed using either plane stress during both pre-bifurcation
and bifurcation, or using plane strain during both pre-bifurcation
and bifurcation. The difference in wrinkling stress between the
three lengths was less than 2%. The difference in wrinkling stress
between the plane stress and the plane strain cases varied bet

2% and 5%, with the plane strain case always being stronger.

analytical results fell between the plane strain and the plane strd&@tient. It may be mentioned that layered and graded foam cores
FE results forh,=0 and for h,/h;—. For h,/h,=6/1.57 have been produced by co-expansion, resulting in foam cores with
=3.82 andh,/h,=12/1.57=7.64, the wrinkling stresses pre_unh‘orm transitions between different grades and densities and no

dicted by both the plane stress and the plane strain FE analyQS_?d lines(Danielsson and Grenesteldt)). . .
were higher than the analytically predicted wrinkling stresses. | € advantage of a layered core over a conventional core in
There are a few reasons the resuits from the FE and the analyti&§["S Of load carrying capability before wrinkling may be dem-
analyses differ slightly: the difference in geometfinite versus onstrated with a simple example using the data in Fig. 4. Two
infinite thickness and lengthdifferent plane stress/strain assumpSandwich panels with the same total thickness and the same mass
tions, discretization errors in FE, etc. The difference in wrinkling/ill 0 compared. Each sandwich has two aluminum skins and a
stress between the analytical elastic analysis and any elastic '[BgM core. One sand/:/vm(mzonflguranonA) has a thicker alumi-
analysis was less than 4%. The elastic FE analyses naturally oM skin (thicknessh?) and only H30 core, whereas the other
estimated the wrinkling stress when the skins approached the éf@nfigurationB) has a slightly thinner aluminum skithickness

of the linear elastic limit. This certainly occurred for the speci}), an intermediate layer of H100 coféhicknessh3) and an
mens with only high densityH100) core. However, also the skins H30 core in the middle. In order for the two sandwiches to have

in the specimens with the thick high density core layé, ( the same mass and total thickness, the skin thicknesses have to be
=12 mm) reached stresses approaching the linear elastic lini@lated by

This can be seen in Fig. 4, where the results from the elastic

analysis slightly deviate from those of the elastic-plastic analysis h® 1

already ath,/h;=12/1.57=7.64.

of relatively high stiffness. Any additional stiffness increases
rcation load, a fact which is easily shown using a Rayleigh

hA = hB (37)
1 1+(pH100_pH30) 2
_ B
Discussion and Conclusions Pai— Przo | hy

The bifurcation loads of compression loaded sandwich pan(#
were calculated and compared to results from carefully prepargy
and executed experlmenta_l tests. The scatter in th_e experimegy g stress of the skins times the thickness of the skins. Using
tests was less than what is usually encountered in CompresSi™, o oximation and the data presented in Fig. 4, the normal-
loaded imperfection sensitive structures. We attribute this to the d load carrving capabilit Sk‘“hB/(ESk‘”hA) is plotted versus
careful preparation of the specimens and the fact that the sps‘h%ée- B ying cap .yrwr 1 ! .p
mens were bonded to loading shoes inside the test machine pHefh1 in Fig. 5 for a sandwich with constant thickness and mass.
to testing. The correlation between analytical elastic-plastic préonfigurationA is obtained fo5/hf=0. As can be seen in this
dictions and experimentally measured wrinkling stresses was éigure, the load carrying capability of configurati@nis approxi-
ceptionally good for the two specimen configurations with onlynately 33% higher than for configuratidn whenh5/hS~12 and
one foam coregeither H30 or H10D For the two specimen con- the plastic data is used. The aluminum skins of this sandwich are
figurations with layered foam cores, the experimental wrinkling2% thinner than those of configuratién In conclusion, without
stresses were higher than those analytically predictedh; changing the total thickness or the mass of the sandwich, the load
=3.82 anch,/h;=7.64 in Fig. 4. The conjecture is that this was carrying capability could in this particular example be increased
a result of added stiffness of the bond line between the low abg more than 30% by changing from a homogeneous to a layered
high density foam cores. The bond line added a thin intermediaandwich core.

he weight of a possible bond line is neglected. The load carry-
capability of a sandwich is approximately equal to the wrin-
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Green’s Functions for
Holes/Cracks in Laminates With
Stretching-Bending Coupling

Consider an infinite composite laminate containing a traction-free elliptical hole sub-

jected to concentrated forces and moments at an arbitrary point outside the hole. This
Chyanhin Hwu prqblem for two-dimensional defprmation has begn solved ana]ytically in th_e Iiteratur_e,

while for the general unsymmetric composite laminates stretching and bending coupling
may occur and due to the mathematical complexity the associated Green’s functions have
never been found for complete loading cases. Recently, by employing Stroh-like formalism
for coupled stretching-bending analysis, the Green’s functions for the infinite laminates
(without holes) were obtained in closed-form. Based upon the nonhole Green’s functions,
through the use of analytical continuation method the Green’s functions for holes are now
obtained in explicit closed-form for complete loading cases and are valid for the full
fields. The Green’s functions for cracks are then obtained by letting the minor axis of
ellipse be zero. By proper differentiation, the stress resultants and moments along the hole
boundary and the stress intensity factors of cracks are also solved explicitly. Like the
Green’s functions for the infinite laminates, only the solutions associated with the in-plane

concentrated force%lf, ?2 and out-of-plane concentrated moments, nm, have exactly

the same form as those of the corresponding two-dimensional problems. For the cases
under the concentrated force find torsion g, new types of solutions are obtained.

[DOI: 10.1115/1.1839589

Institute of Aeronautics and Astronautics,
National Cheng Kung University,

Tainan, Taiwan, ROC

g-mail: chwu@mail.ncku.edu.tw

1 Introduction addition to the above books, which present most of the analytical

%olutions, there are also many papers dealing with these kinds of

h“o-dimensional problems. However, because of anisotropy and
ﬁymmetry of lay-up, pure two-dimensional or pure bending for-

Due to the stress concentration induced by the existence of hol glatlon is not enough to describe the mechanical behavior of

and pre-existing flaws, the cracks may initiate, propagate, aganeral asymmetric composite laminates. Due to mathematical

fracture. From a micromechanical viewpoint of composite mat&OMPplexity relatively few Green's functions have been found in
sed-form for the coupled stretching-bending analysis.

rials, microcracks and voids always exist in the materials due . - ; . . .
imperfect composite fabrication. Thus, understanding holes and'© deal with the laminates with stretching-bending coupling,
cracks is of importance due to the increased utilization of cor§®Me complex variable formulations have been proposed in the
posites in recent aerospace and commercial applications. Becdl{ggature such as Refg5—11]. By these formulations, some prob-
of its importance, many analytical, numerical, and experiment@ms related to holes and cracks have been solved su[;qu(s
studies have been published in journals and books. Among thehf]- However, most of the solutions are for the case of uniform
the study of Green’s function attracts many researchers’ attenti®adings. Although Chen and Sh¢5] have provided Green's
because analytically it may provide solutions for arbitrary loadinfgnctions for hole problems, the loading cases they considered are
through superposition, and numerically it can be employed as thet complete enough to cover all the possible loading conditions,
fundamental solutions for the boundary element method and @gpecially the transverse forces and bending moments that play
the kernel functions of integral equations to consider interactioffsportant roles in the laminate plate theory. Moreover, their solu-
between holes and cracks. tions left a system of linear algebraic equations to be solved by
Although many Green’s functions have been presented in themerical algorithm. This is inconvenient when we employ the
literature, due to mathematical infeasibility most of them are r&reen’s function as a fundamental solution of the boundary ele-
stricted to two-dimensional problems. For two-dimensional isotrenent formulation to solve more practical engineering problems.
pic elasticity, most of the analytical solutions concerning holes From our recent studigd6,18, we see that without consider-
and cracks can be found in the books of Muskhelistdiliand ing the transverse loading and in-plane torsion, many solutions
Savin [2]. In the case of monoclinic materials subjected to inkeep the same mathematical forms as their corresponding two-
plane forces or out-of-plane pure bending moments, solutions cgifhensional problems. Thus, by simple analogy, many stretching-
be found in the books of LekhnitsKi8,4]. For general anisotropic pending coupling problems can be solved directly from their cor-
materials considering the coupling of in-plane and anti-plane dgssponding two-dimensional problems. However, the key loading
formations, solutions can be found in the book of TH®. In  that distinguishes the in-plane problefor axially loaded bas
- from the plate bending problefor transversely loaded beajrs
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF  the transverse loading. Therefore, inclusion of the complete load-

MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- . h i loadi in-ol loadi t-of
CHANICS. Manuscript received by the Applied Mechanics Division, March 9, 2004l,ng cases such as transverse loading, In-plane loading, out-of-

final revision, August 27, 2004. Editor: R. M. McMeeking. Discussion on the papglane bending moment and in-plane torsion into the study of
should be addressed to the Editor, Prof. Robert M. McMeeking, Journal of Appli€@reen’s function for hole problems is an important task for the

Mechanics, Department of Mechanical and Environmental Engineering, Umverspafuesem paper.

of California—Santa Barbara, Santa Barbara, CA 93106-5070, and will be accep . . .
until four months after final publication in the paper itself in the ASMEJRNAL OF Recently, by our newly established Stroh-like formalig],

APPLIED MECHANICS. we obtain the Green'’s function of the infinite composite laminates

The problems of holes and cracks are important not only
macromechanics but also in micromechanics. From the viewpo
of macromechanics, holes are usually parts of the structure desi
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(or called nonhole problem$18] for the complete loading cases. Nii=—di2, Ni=di1,
As in the two-dimensional problems, by the method of analytical ' '

continuation it seems that use of Green’s functions for nonhole Mii=—=Wio—Niim,  Mipp=d¢i1—Npm, 1=1.2, (2.3)
problems may help us to obtain Green’s functions for hole prob-
lems. As in the Green’s function for the nonhole problEt8], Qi==7m2 Qx=m1, Vi=—d22, Vo=i111,

there are three different loading cases that should be of concgjRere

for the present problem, and two of them have different outlooks

from that of two-dimensional problems. Careful derivation, such 1

as the selection of the unperturbed functions for the method of 7= 5 k=5 (gt 2.2, (2.3)
analytical continuation, becomes important for the present study.

All the works that are different from the two-dimensional mathand\;; is the permutation tensor defined as

ematical routine derivations will be discussed in detail in this A=Ap=0, Aip=—Apm=1. 2.3)

paper.
fo(za), @=1, 2, 3, 4, are four holomorphic functions of complex

variablesz,, which will be determined by the boundary condi-

. . . tions set for each particular problem,, and @, ,b,) are, respec-

2 St_roh-lee Formallsm for Coupled  Stretching- tively, the material eigenvalues and eigenvectors, which can be

Bending Analysis determined by the following eigenrelation:

Based upon the Kirchhoff's assumptions for thin plate, the ki- Né= g (2.49)
nematic relations, constitutive laws, and equilibrium equations for Ks: '
the coupled stretching-bending analysis of composite laminatghere N is a 8<8 real matrix andé is a 8<x1 column vector

can be written in tensor notation fkl] defined by
1 1 N; N a
8ij_E(Ui,j+Uj,i)y Kij_i(ﬁi,jJrﬁj,i)v N= N, NI :[b . (2.4o)
Nij = Aijkieki+ Bijki ks Mij=Bij e+ Diji ki » The superscripT denotes the transpose of a matrix. The subma-
(2.12)  tricesN;, N, and N5 are the fundamental matrices of elasticity
Ni =0, M. +q=0, =M k=12, related Fo the extensmnal, coupl]ng., and bending stiffness tensors,

i i 4 Q=M l respectively. The detailed definitions df; for the coupled

where stretching-bending problems have been given in Réfs], [18]

Bi=—w Bo=—w (2.1b) which are little different from those of two-dimensional problems
1 A P2 2° ' [5]. Moreover, the explicit expressions b, N, andN; as well

In the above, the subscript comma stands for differentiatign: as their associated eigenvectarandb have been found in Refs.
u,, andw are the middle surface displacements inxthex,, and [11], [20].
X5 directions, respectivelys;, i=1, 2 are the negative of the By using the relations given in E@2.3), the stress resultants
slope of the middle surface;; andx;; denote the midplane strain N,, Ns, N,,s, bending momentd1,, Mg, M5, shear force®,,
and plate curvatureNlj; , M;; , andQ; denote the stress resultantsQs, and effective shear forceg,, Vs in the tangent—normal
bending moments, and shear forces, respectivgly;, B, , and (s—n) coordinate system, can be obtained directly from the stress
Dij are, respectively, the extensional, coupling, and bendirignctions aq16]
stiffness tensorsg is the lateral distributed load applied on the
laminates. Repeated indices imply summation. No=n"dhs, Nps=s'¢ps=-n"¢h,, Ny=—s'¢py,

A general solution satisfying all the basic equations stated i, _ T Ty T __J
Egs. (2.1) has been obtaingd1] and purposely arranged in the Mo=nTyrs, Mos=s'grs=n=—n"gntn. M=-syy,
form of a Stroh formalisni5,19] of two-dimensional anisotropic (2.53)
elasticity, and hence is called $troh-like formalism With this
formalism, the solution fields of displacements and stresses ar@,=7s, Qs=—7n, Va=(s'¥os, Ve=—(n"¢,) ,,
expressed agl1]

where
us=2 RAf(2)}, ¢q=2 ReBf(2)}, (2.29) 1
where n= E(STl!/,er N,
(2.5)
ud:[;}, ¢d:{$], u=[z;] B:[g;] s'=(cos#f,sinf), n'=(—sing,cosh).

and 6 is the angle directed clockwise from the positieaxis to
¢:{¢1] l/,:[lﬂl] 2.2) the tangential directios (Fig. 1).
bo)’ )’ ) By using the relation$2.3), from A to B of the boundary sur-
face the resultant forcds and momentsn, about the coordinate

and oo X :
origin can also be expressed in terms of the stress functions as
f1(z1) [18]
fa(z2) B
f(z)= , Zy=Xt Xy, @=1234, (2.2 -
@ fa(z3) Za=Xa T pader @ 22 t1:J —NydX+Nydx; = 1] 3,
fa(z4) A
_ _ - B
A=[a, a, a; a], B=[b; b, b; by]. (2.d) tz:fA—ledszerzdxl:(pz]E\, (2.6)

Re stands for the real part of a complex number. In ).,

¢1, ¢, and ¢, i, are the stress functions related to the stress B
resul;antsNij , shear forceRQ;, effective shear force¥;, and “fa:j —Qqdx,+ Qudx; = 77]/3,
bending moment#1;; by A
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Case 2:f3

% dr’]:’fsl % dzﬁl:(Xl—f(l)]:S, é dl/fzz(xz_s\(Z)%S'
c c ¢ (3.1b)

é dug =0, fﬁ dug,=0, i18,=i3B;.
c c

Case 3m,

%cd((xl—§<1)¢2—(x2—§(2)¢1—<b)=rh3, %dezol

N =n"i=(s"¢) s=0, along any arbitray surface boundary.

(3.10)
x
’ Through satisfaction of boundary conditiof&1), the unknown
Fig. 1 An elliptic hole in laminates subjected to concentrated complex function vectof(z) of Eg. (2.2) has been determined to
forces and moments be[18]
case 1: f(2)=(log(z,—Z,))0s; (3.20)
case 2: f(2)=((z,=2,)[109(2,~2,)—1])q,; (3.20)
B
m. = — — — 1
my JAMlzdxz Mz0X; —X2(Q1dX; — QodX) case 3 f(z):<z — >q3; (3.0
=~ (o= X2m)]3, where
1 N fs I’Ans
B =—ATp, =——ATi,, =—ATi,, 3.
ﬁzzf —M 10X+ M 10X, +X1(Q10X% — Q20X ) Wi NP BT Ml BT 5.2)
A and
=(¢1_X17])]E, (2.60) 0 0
) 1 ) 0
~ B 1= of" I3= 1 (3%)
m3:f X1(—Ny20X5+ NopdXy) +Xo(NpadXo — Nypdxy) 0 0
A
= (Xyhy—Xgchr— D] The angular bracket stands for the diagonal matrix whose compo-
=(ad2— X261 A nents vary according to the subscrigt a=1, 2, 3, 4; i.e.(f,)

=diad fy,f,,f5,f4].
where® is the Airy stress function related 9, by

4 Green’s Functions for Hole Problems

Consider an infinite composite laminate containing an elliptical
hole under a concentrated force and moment at poifftig. 1).

3 Green’s Functions for Composite Laminates(With- ~ The contour of the hole boundary is represented by
out Holes) X,=acosy, X,=hcosy, (4.1)

In the following sections, we will employ the method of anayhere 21, 2b are the major and minor axes of the ellipse respec-

lytical continuation to find Green’s functions for hole problems. Ijyely, andy is a real parameter related to the tangent aricby
that method, we need to know the unperturbed solutions for non-

hole problems. With this concern, in this section we first consider p cosf=—asinyg, psind=bcosy, (4.22)
an infini}e laminate subjected to a concentrated forfce where
=(f,,f,,f3) and moment m=(m,,Mm,,m3) at point X 2 o 2
=(X,,X,). The elasticity solution of this problem can be used as a p*=a’sir? y+ b’ cos' ¢ (4.20)
fundamental solution of boundary element method and is gend@ihe force equilibrium and single-valued requirement of this prob-
ally called Green’s functionFrom Eq.(2.6), we see that the rela- lem are the same as those shown in EB31) for each different
tions between the resultant forces/moments and the stress fuading case. If the hole is assumed to be traction free, the addi-
tions are different for different loading directions. Therefore, fotional boundary conditions are
the convenience of discussion, the Green’s functions are usually
) ) o . AN T N,=N,s=M,=V,=0, along the hole boundary. (4.3
presented in three different loading conditiof$) f;, f,, my, noonse e .g o y. (43)
M,: (2) f5: and(3) M [18,21). From the relation(2.6) and the Because. in the Stroh-like formalism .the solution fields are ex-
discussions provided in Ref18], the boundary conditions for Pressed in terms of the augmented displacement and stress func-
each loading case can be written as tion vectors (14 and ¢4, respectively, in order to employ this
Case 11 T i formalism it is better to rewrite Eq4.3) in terms of the stress
Stz T T2 functions. With this understanding, by the relati¢?.5a) the
traction-free boundary condition€.3) can now be written in
terms of the augmented stress function veefgras

nN"¢=s'dp=n"=(s"y) =0, along the hole boundary
(3.13) (4.40)

451:_‘1),2: ¢2:q),1- (2.6c)

§d¢d:ﬁ: édudzo, p=(f, f, m, —yT.
c c
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or simply, points at infinity. By Liouville’s theorem we havé({)=constant.
However, the constant function corresponds to rigid body motion,
¢¢=0, along the hole boundary. (4% which may be neglected. Therefor#/)=0. With this result, Eq.

Since the elliptical hole boundary in treplane will map to (4-110): leads to

four different slanted elliptical hole boundaries in theplane, it . e

is not convenient to solve problems with an elliptical boundary by fo(O)=—1, () =B~ Bf, (1/0). (4.12)
using the argumert,, defined in Eq(2.2c). Therefore, to treat the . . . .
problems with an elliptical boundary, most of the solutions show{jCte that when employing the method of analytical continuation,
in the literature are expressed in terms of the transformed compl3g Subscripix of £, has been dropped in E¢4.12 and a re-
variable,,, which can transform all four different slanted ellip-P'acément oy, &5, &3, £, should be made for each component
tical hole boundaries into the same hole boundary in the shapefigiction off,(¢) after the multiplication of matricessee Appen-

a unit circle|Z|=1. The relation between, andZ,, is dix for detailed explanation .
The problem now becomes how to select an appropriate unper-

1 ) . 1 _ turbed solutionf, and split it intof} andf; , and then use Eq.
Za=3 (af'b"‘a)gﬁ(aﬂb“a)z . @=1.2.34, (4.12 to getf,. Following are the discussions based upon the
(4.5a) Green’s functions of nonhole problems provided in Sec. 3, which
are presented in three different loading cases.

or inversely, A A
y Case 1:f4, f,, my, my
z,+\2—a2— b2 In order to save the effort of considering the force equilibrium
a= a—ibu , a=1234. (4.5) and single-valued requirement caused by the concentrated forces
a

and moments, it is appropriate to selégcto be the solution for
Substituting Eq(4.1) and Eq.(2.2c), into Eq. (4.50), we have the nonhole problems; i.e., the solution given in E2j2a). From

{,=cosy+ising=e?=c¢, along the hole boundary. Eq. (4.58) we know that

(4.6)
~ - 1 4 - Ya
Using the method of analytical continuation and understandin ~ Ze=Caf{a™ {at Valla - =ca(le é"a)< 1- ’5—{) ,

that the unknown complex function vectidr) is better expressed
in terms of the arguments,, the general solutioii2.2) for the (4.139)
present problem can now be written as '

Ug=2 REAIF(D+T( DT} =2 Re{B[fume(z)]%L.1 ) where

1 a+ib
wheref, is the function associated with the unperturbed elastic Ca=§(a—ib,ua), %:aiibﬂa
field andf, is the holomorphic function corresponding to the per- Ka
turbed field of the problem and will be determined through satigy order to present, in terms of £, , we substitute Eq(4.13)
faction of the boundary conditions. To solfig, we first need to jniq Eq.(3.23) and get “
have a proper choice fdy,. If some parts of, are holomorphic

(4.1%)

outside the hole $*) while others are holomorphic inside the . Va
hole (S7), we may splitf,, into two functionsf,” andf ; i.e., fu(§)=<|09(§a—5a)+|09 1-~—|+log Ca> s,
fu(O=F0 (D +f, (), (4.8) (4.14)
wheref; is holomorphic inS* andf, is holomorphic inS™. Knowing that |y, /(£.¢.)|<1 when {,eS" and |{,/Z,|<1
Employing the general solutiof#.7) and the relatior{4.8), the when ¢,eS™, we may splitf, of Eq. (4.14 into the following
traction-free boundary conditiof#.4b) now becomes two parts:
BIf () +f; (o) +fy(0) ]+ BLf (o) +F; (o) +fo(0)]=0, v,
(4.9) fu ()= log(l— L. +logc, )d,
which can also be written as “e (4.15)
Bf (o) + Bf () +Bf, (o) = — Bf, () — B, (o)~ Bi,(0r). fu (9)=(10g(£a= L)) -

(4.10) Substituting Eq(4.15 into Eq. (4.12 and understanding that the
One of the important properties of holomorphic functions used Bubscript of¢,, should be dropped before the matrix multiplication
the analytical continuation method is thatfif{) is holomorphic (see Appendix we get
outside the unit circle&s™ thenf(1/7) will be holomorphic inside
the unit circleS™, and vice versa. With this background, Eq (/)= — |Og(1_,7_“
: p
(4.10 can be rewritten as

+log ca> 1B 1B(log({ 1~ Z,))a

a

o' )=o), (4.12) (440
where Using the translating techniqusee Appendix the explicit full-
field solution off,(£) can now be written as
Bfl ({)+Bf,({)+Bf, (1), (€S, .
o= —_ Ya _
—Bf, ({)—Bf) (110)—Bf(1/7), (€S . fo($)=— Iog(l—’— +logc, ).~ >, (log(¢, "
P {aga k=1
(4.11b)
By the holomorphic conditions discussed before this equation, we —Z())B‘la W01 - (4.17)

conclude that this newly defined functia#?) will be holomor-
phic in S* andS™, and is continuous across the unit circle. Thisdding f, andf, obtained in Eqs(4.14) and (4.17) together and
means tha#({) is holomorphic in the wholé-plane, including the using(3.2d;, we have
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1 . u 0c=(Ca)dz, 0 =(Ca(logc,—1))az,
f<;>=fu(g>+fp<z>=m[(Iog(ga—ga»AWkZl (log(z* ’ R

= <Ca7a IOg( - 2a)>q2 .

N petioc H IR Substituting Eq(4.21a) into Eq.(4.12 and understanding that the
—4J)B 1B|kAT] P (4.18) subscript of{, should be dropped before the matrix multiplica-
tion, we get
which is exactly the same as that obtained in Rg%.[22], [23]
for the Green’s function of a hole in two-dimensional problems. In _ Ya 1
Ref.[22], the solution was found by proper selection of the func- fo(£)= <(§ ga)( 1= 7 g)l g( 1= Z, g) >q°_<7“(§
tion form of f({), which is then improved by Ting5] using the “ o
concept of image singularities. The analytical continuation 5 I\n\a* (1 I\ q** _Rp-lp/s—1_ 7
method was first introduced by Hwu and Y§23] for general Laae—((¢ L))" —BTB((L a1

elastic inclusion problems. In R4R23], f, was selected to big of

_ 71 1 We _m-lmi -1 F W%
Eq. (4.15, which means that; =0. By their selectionf,, will be Yala O)l09( £a))de—BB((L {a))0c
different from the one obtained in E@.17), while the final result ey A_71 —
of f=f,+f, still stays the same. FBUB(({ = At (4.22)

Note that the selections 6f given in Ref.[23] and Eq.(4.14  yging the translating techniqueee Appendix the explicit full-

are different only in their arguments. One(lsg(¢,— {a))ql, and field solution off n({) can then be written as
the other is(log(z,—Z,))d;. It appears thaf, can be selected

directly from the nonhole problems, i.e., qug.14), or just by -

replacing the argument of the nonhole problems fpto ¢,.  1p(€)= _<(§a_§a)( 1- I )'09( 1- g ‘ )>qc (valla'
However, in general, the latter way may not be correct, which s s

should depend on the satisfaction of the force equilibrium and . R —
single-valued requirement described in E@&.1). Unlike Eq. —{;1)>q§—((§;1—§;1))q§*—2 (=0
(3.2a), when z, is replaced byZ,, the unperturbed solutions k=1

(3.20) and (3.2c) cannot satisfy their associated boundary condi-

tions (3.1b) and(3.1c). Therefore, in the following two cases one =% o 15 B~ BI.g.— -1
should be very careful about the selectiorf pf Vi €a)l0g(La "= 4 e kZ (¢
Case 24 4
As stated abovd,, cannot be chosen to be the nonhole solution S \p-1m =% S\ p-1n Rk
(3.2b) with z, replaced by, since it does not satisfy the bound- £J)BT Bl +k21 ((£a=&))BTBLA™ - (4.23)

ary conditions given in Eq.3.1b). As in Case 1, to save the effort
of considering the force equilibrium and single-valued requiréddding f, andf, obtained in Eqgs(4.19 and(4.23 together and
ment(3.1b), it is appropriate to seledy, directly from Eq.(3.2b) using Eq.(4.13, we get

without making replacement. In order to presgnn terms of{, ,

4
bsti Eq4.13) i Eq.(3.20 d ~ - ~
e substitute Eqid. 1) into B, (3.20) and get (0 =)+ () =2~ 208~ £~ 2, (622~

fu<z>—<ca<za—2a>(1—’;—z) log(£,— ) +log| 1— ) L -
aba aba X (1= Yl L)I0g({ 0 = L))B T BI(C U+ (L4
4 _
+'°gc“_1}>q2' (419) L - 3 (€ B B (4

Knowing that

4 J—
-~ % 1 " k " _Z;l) q** + (ga_zfl) B—lBI E\‘* ) (424)
100(£,~ ) =10g(~ £,) - 2;(5—), for |22 <1, A"+ 2 (L= GBTBG,
k=1 @ P ~
(4.20) case 3m;
1 Vo k " Similar to Case 2f, is selected to be trle unperturbed solution
Iog(l— 1 ) 2 ?(g 7 ) . for v <1, (3.20), in whichz,—z,, is related toz,, and¢,, by Eq.(4.13, and

hence
and carrying out the multiplication of E¢4.19 into series expan- - -
sion and then check the holomorphic condition of each term, we f(0)= 1 Lo Yalla q

may splitf, of Eq. (4.19 into two functionsf; andf, wheref; u Callu—Vall) | Ca=C0 Camvalla) |

is holomorphic inS™ (outside the holeandf, is holomorphic in (4.25)
S~ (inside the holg They are

SinceZa andy,/ Zﬂ are located ir8* andS™, respectivelyf, can

e )_<( ) ( >> (v be split into the following two parts:
N v .0, |t et D < -1 > o e < 1 > X
~ u =(——)a3*, f, ——= /)03,
G- Y)Y 21 L= Yallal {a=la 3(426a)
fu(4)—<<§Q—ZQ)(1—Zy—;)Iog(ga—2a>>qc+<(§a—2a>>qt where
~ o 205 *% L\{/z(l
(L =LA o = e

ColZa—valla) Calla—valla)
where (4.260)
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Substituting Eq.(4.26) into Eq. (4.12 and using the translating along the hole boundary.
technique described in the Appendix, the full field solution of (4.34)
fo(¢£) can be obtained as

f _ 1 Kk _é 1 B—la e
p(O)= L. L) — kd3 -

Substituting these results into E¢.29 and carefully performing
the summation such as

4
~ o0 — —
Lot B L)_ BBl ATH
(4.27) =1\ eiv—p,
Adding f, andf, obtained in Eqs(4.25 and (4.27) together we 4 .
get =B(1,(0))BBY, (67"~ M AT
4 k=1
1 — _
f(O)=f(O)+(D=( ——) a5 — — ) B BI,qj . — ==
({) u(g) p(g) <§a_§a> QB kzl < §1_2k> qu :B<Ma(0)>B—1B<(ef|(/;_ ga)fl>ATp (435)
(4.28) we obtain
Stress Resultants and Moments Along the Hole Boundary. = T .
In engineering applications, one is usually interested in the stress ¢dv"_7-,_pG3( OIm{B(hi(¥)A P, =123,

resultants and moments along the hole boundary. Since the hole (4.369)
considered in this paper is in the shape of an ellipse, it is better t
calculate the stress resultants and bending moments in

tangent—normal g—n) coordinate instead of the Cartesian hl(qp):e‘*”(e“*—g“a)*l,

(x;—X,) coordinate. By the relations given in Eq&.5 and

(2.20),, we know that the calculation of stress resultants and mo- h,()=c,[e'”log(c,(e"—{,))— y.e ¥ log(1— ¢, ")

ments relies upon the calculation of the differentighs s and

&4 - Moreover, due to the traction-free boundary condition pre- ~Yalal, (4.360)

scribed in Eq(4.4), along the hole boundargy ¢ should be zero,

which will then be used as a check of our solutions.

e,

From (2.23,, we have ha(ih)=— clZu—yalT)(EY—7)7
ban=2 ReBf 1({)}, (4.29) and
in which each term of ,,({) can be obtained by using chain rule p1=p, 52:f3i3, Ps=Mai,. (4.3&)

for differentiation, such as

of  of 9L, I |dz, Xy Iz, IXs

o oL, o dzu|oxg n T axp an) 430
Along the hole boundary,
I _
—aiv 2% gy
{,=¢€"Y, a0 ie'”,
Iz, . .
W=—aSIn1//+,uab cosy=p(cosf+ u,sing), (4.31)
Xq g Xy ; 9z, 1 9z,
an SInG, Gn ~eost, Xy T Xs Ba>
and hence,

o _1e%ka(0) 9 g the hole bound
Fri—T o along the hole boundary,
(4.32)
wherepn () is the generalized material eigenvalue relateg. o
by
—sinf+ u, cosé

Pl )= oSO+ u,sing - (4.33)

By the relation(4.32, each term off,({) in Egs.(4.18), (4.29),

and(4.28 along the hole boundary can be obtained explicitly. Fci

example,
Ilog(f,—L) e
no o pe=,) #al O
J ~1_% -1 iaiy
e angk) - Ie_ —1a(0), ... etc,
p(1—€'gy)?

Journal of Applied Mechanics

The subscripts =1, 2, 3, denote the loading cases discussed in
this paper. Note that in deriving E¢4.36), an identity converting
complex form into real form has been used, which is

B(ua(0))B™1=G1(0)+iGs(0), (4.37)

where G,(6) and G;(6) are two real matrices defined by the
generalized fundamental matricBs(6#) and Barnett—Lothe ten-
sorsS andL as

G1(0)=Ni(0)—N3(#)SL™, Gs(6)=—Ns(o)L ™.
(4.38)

This identity is just one of several useful identities developed in
Stroh formalism for two-dimensional problerfts]. By deliberate
arrangement it has been proved that these identities are still valid
for Stroh-like formalism of coupled stretching-bending problems
[11].

Discussion and Verification. Although the Green’s functions
for hole problems play important roles in stress analysis, most of
the closed-form solutions presented in the literature are for two-
dimensional problems. As to the holes in laminates with
stretching-bending coupling, as far as | know no analytical closed-
form solution has been presented in complete loading cases with-
out leaving any unsolved coefficients. Since no other analytical
solutions can be used to compare our solutions, detailed discus-
sion and verification are necessary. When we employed the gen-
eral solution(2.2), all the basic equations for the laminates with
§tretching-bending coupling have been satisfied. Thus, all we need
0 do is check the satisfaction of the boundary conditions pre-
scribed in Eqs(3.1a,b,c) and Eq.(4.4). By the method of analyti-
cal continuation, when we selected the nonhole solutions
(3.2a,b,c) as our unperturbed solutiorfg, the boundary condi-
tions (3.1a,b,c) have been satisfied. Moreover, the perturbed solu-
tionsf, obtained in Eqs(4.17), (4.23), and(4.27) are all holomor-
phic in the region outside the hole, and hence will make all the
contour integrals shown in Eq$3.1a,b,c) vanish and let the
boundary condition$3.1a,b,c) be satisfied not only bf;, but also
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by f,+f, . After verifying the force equilibrium and single-valued 2
requirement shown in Eq$3.1a,b,¢, we now check the traction-  lim 27t ¢by .= —
free condition(4.4a). r—0 a2 Vmra
Similar to the derivation given in Eq$4.30—(4.32), the differ-
entiation with respect to the tangential direction can be calculat

G1(0)Im{B(h;(0)AT}p;, i=1,2,3.

Egr Case 1, if the forc@ is applied on the upper crack surface
X=c where 0<c<a, the solution(5.4) can be further reduced to

by
gt iel of . 1 { [a+c ]
o= 7 lim 271 ¢pg ;=—— —1-S"p,
5= p ol along the hole boundary. (4.39) o d,1 2\/% a—c 55
YXi%tngglaﬂon' tby following the steps described in Egs. . ot e 1 . (0)[ a+c| ST]A
.34—(4.36), we ge im \2mr = \/—I- .
g o m d,2 2\/% 1 a—c p
¢4 <=0, along the hole boundary, (4.40)

The mode | and mode Il stress intensity factoks, and K,
which shows that the traction-free boundary conditions are alg@spectively, calculated from E¢5.5); are identical to the solu-
satisfied by our solutions. tions given in Refs[22,24].

In addition to the basic check of the present solutions, from the
boundary conditions shown in E€B.1a) for the first loading case, )
we noticed that they are identical to those of the two-dimension@l Conclusions
problems in their mathematical form. If the mathematical forms of gy ysing Stroh-like formalism and analytical continuation
the general solutiof2.2a) and the boundary conditiori8.1a) are method, the Green's functions for holes/cracks in laminates with
all exactly the same as those of two-dimensional problems, theffetching and bending coupling are obtained in this paper. Like
solutions should also be identical in their mathematical form. Thifie Green's functions for the infinite laminates, the concentrated
can be proved by the solutions shown in E@s18 and(4.36) for  forces and moments will influence the mechanical behavior of the
i=1 and those presented in Ref§,22,23. For Case 1, if the |aminates in different ways when they are applied in different
force p is applied on the hole surface, we may {gt=€'%. With  directions. The results show that the solutions corresponding to

this value, the solutiori4.36 can be further reduced to the in-plane concentrated forcés, f, and out-of-plane concen-
1 sin(¢— i) trated momentsn,, m, _(Case 1h_ave e_xactly the same forr_n as
ban=5—GC3(0) 1+ST}p, (4.41) that of the corresponding two-dimensional problems. While for
2mp 1=cosy= o) the caseqCases 2 and)3under the concentrated fordg and
whose mathematical form is also identical to that shown in RéRrsionms, respectively, new types of solutions are obtained ex-
[5] for two-dimensional problems. plicitly. The Green'’s functions are expressed in complex form and

are valid for the full field. By using the relations between the
stress functions and stress resultants/moments, relatively simple
. solutions are obtained for the stress resultants and moments along
5 Green's Functions for Crack Problems the hole boundary. Furthermore, through the use of some identi-
An elliptic hole can be made into a crack of lengta By ties developed in the literature, real form solutions are obtained
letting the minor axis B be equal to zero. The Green’s functiondor loading Case 1. Similarly, we also get the explicit solutions of
for crack problems can therefore be obtained from Hqsl®, the stress intensity factors for crack problems. _
(4.24), and(4.28 by lettingb=0, in which the mapped variable It should be noticed that unlike the corresponding two-

£, becomes dimensional problems, for the satisfaction of force equilibrium
and single-valued requirement, the unperturbed solutions of Cases
1 —> 2 and 3 cannot be selected from the Green’s functions of nonhole
{a=FlZatVZ,—a%) (5-1)  problems by just replacing the function argument fragnto ¢,, .

The relation between, and ¢, should be used when we change
Substituting Eqgs(4.18), (4.24), and (4.28 with b=0 into EQ. the function argument, and hence the holomorphic conditions of
(2.22),, and using the relation®.3) for x,=0, [xs|>a, we see the complex function may also change. Thus, when we employ
that the stress resultants ahead of the crack tip are singular.tfg analytical continuation method the unperturbed solutions
deal with the stress singularity, the stress intensity factors are usHould be split into two parts: one is holomorphic outside the hole

ally defined as and the other is holomorphic inside the hole.
KII N12
K N
K=1 ' i 2o Mzz , (5.2) Acknowledgments
B r—0 12 The author would like to thank the National Science Council,
Kig M2, Taiwan, R.O.C. for support through Grant No. 92-2212-E-006-
wherer is the distance ahead of the crack tip. By using the reld32-

tions given in Eq(2.3), the definition(5.2) can now be rewritten

in terms of the stress functions as Appendix: Translating Technique

K=1lim V271 (g1~ 7is), 7=(idg1tiss2)/2. (5.3)  When we employ the method of analytical continuation, it is
r—0 quite usual that a new analytical function will be introduced based
on the relation of the boundary condition. For example, the new
nalytical function#(¢) given in Eq.(4.11b) is introduced accord-
ing to the relation(4.10, which comes from the traction-free
boundary condition. If the function arguments, a=1, 2, 3, 4,
have the same value on the bounddeg., {1={,={3={s=0

From this relation, we know that to obtain the stress intensi
factors we need to calculagsy ; and ¢ ,. By the approach simi-
lar to those described in Eq$4.29—(4.38, and lettingx,=0,
X;>a, X;—a=r, andr—0, which will lead to{,— 1, we obtain

2 on the hole surfagethe arguments of the new analytical function
lim v27r ¢pg 1= —=Im{B(h;(0))AT}p; can be any one of, because their introduction is based upon the
r—0 vma (5.4) boundary conditions. Therefore, when we introduce the new ana-
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lytical function, it is better to represent its associated solutions by[6] Becker, W., 1991, “A Complex Potential Method for Plate Problems With

using the function vector without indicating the subscript; for ex-

ample,

) ={01(0) 02(0) 03(0) 0,0} (A1)

With this understanding, the function vecfg({) obtained in Eq.
(4.12 also has the form ofAl) which is not consistent with the
solution form shown in Eq(2.2c) and is valid only on the bound-

Bending Extension Coupling,” Arch. Appl. Mech6l, pp. 318—-326.

[7] Lu, P., and Mahrenholtz, O., 1994, “Extension of the Stroh Formalism to an
Analysis of Bending of Anisotropic Elastic Plates,” J. Mech. Phys. Sol&s,
No. 11, pp. 1725-1741.

[8] Cheng, Z. Q., and Reddy, J. N., 2002, “Octet Formalism for Kirchhoff Aniso-
tropic Plates,” Proc. R. Soc. London, Ser. 468 pp. 1499-1517.

[9] Chen, P., and Shen, Z., 2001, “Extension of Lekhnitskii's Complex Potential
Approach to Unsymmetric Composite Laminates,” Mech. Res. Comn2a@.,
No. 4, pp. 423-428.

ary. TO_ obtain the explicit fU”'dO_main 50|Uti0n,_a mathematical[1g] vin, w. L., 2003, “General Solutions of Anisotropic Laminated Plates,”
operation based upon the following statement is needed: “Once ASME J. Appl. Mech.,70, No. 4, pp. 496-504.
the solution off(z) is obtained from the condition of analytical [11] Hwu, C., 2003, “Stroh-Like Formalism for the Coupled Stretching-Bending

continuation with the understanding that the subscriptzaé
dropped before the matrix product, a replacemert; 0fz,, or z;

Analysis of Composite Laminates,” Int. J. Solids Strud, No. 13-14, pp.
3681-3705.

; 3 [12] Becker, W., 1992, “Closed-Form Analytical Solutions for a Griffith Crack in a
should be made for each component function after the multiplica-

Non-Symmetric Laminate Plate,” Compos. Struél, pp. 49-55.

tion of matrices.” A technique translating the above mathematicdti3] Becker, W., 1993, “Complex Method for the Elliptical Hole in an Unsymmet-

operation was first introduced by HW@5] and is described be-
low.
If a solution with the subscript of dropped is written as

f(2)=C(g.(2))q, (A2)

its associated full-field solution with the form shown in E2.-2c)
can be expressed as

4
f(z)zg1 (9u(2,))Cl 0, (A3)

where
I,=diad 1,0,0,q,
I;=diad 0,0,1,q,

I,=diad0,1,0,0,
1,=diad 0,0,0,1.

(A4)
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Analytical Solution of a Dynamic
System Containing Fractional
Derivative of Order One-Half by
Adomian Decomposition Method

The fractional derivative has been occurring in many physical problems, such as
frequency-dependent damping behavior of materials, motion of a large thin plate in a
Newtonian fluid, creep and relaxation functions for viscoelastic materials, the PIND*
controller for the control of dynamical systems, etc. Phenomena in electromagnetics,
acoustics, viscoelasticity, electrochemistry, and materials science are also described by
differential equations of fractional order. The solution of the differential equation contain-
ing a fractional derivative is much involved. Instead of an application of the existing
methods, an attempt has been made in the present analysis to obtain the solution of an
equation in a dynamic system whose damping behavior is described by a fractional
derivative of order 1/2 by the relatively new Adomian decomposition method. The results
obtained by this method are then graphically represented and compared with those avail-
able in the work of Suarez and Shokooh [Suarez, L. E., and Shokooh, A., 1997, “An
Eigenvector Expansion Method for the Solution of Motion Containing Fraction Deriva-
tives,” ASME J. Appl. Mech., 64, pp. 629-635]. A good agreement of the results is

observed. [DOI: 10.1115/1.1839184]

1 Introduction

The fractional differential equations appear more and more fre-
quently in different research areas and engineering applications.
An effective and easy-to-use method for solving such equations is
needed. It should be mentioned that from the viewpoint of frac-
tional calculus applications in physics, chemistry, and engineer-
ing, it was undoubtedly the book written by K. B. Oldham and J.
Spanier [1] that played an outstanding role in the development of
this subject. Moreover, it was the first book that was entirely de-
voted to a systematic presentation of the ideas, methods, and ap-
plications of the fractional calculus.

Later there appeared several fundamental works on various as-
pects of the fractional calculus including extensive survey on frac-
tional differential equations by Miller and Ross [2], 1. Podlubny
[3], and others. Furthermore, several references to the books by
Oldham and Spanier [1], Miller and Ross [2], and Podlubny [3]
show that applied scientists need first of all an easy introduction to
the theory of fractional derivatives and fractional differential
equations, which could help them in their initial steps to adopting
the fractional calculus as a method of research.

Fractional calculus has been used to model physical and engi-
neering processes that are found to be best described by fractional
differential equations. For that reason we need a reliable and ef-
ficient technique for the solution of fractional differential equa-
tions. In this connection, it is worthwhile to mention that the re-
cent papers on numerical solutions of fractional differential
equations are available from the notable works of Diethelm, Ford,
and Freed [4-8]. Recently, applications have included classes of

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the Applied Mechanics Division, March 12, 2004;
final revision, August 23, 2004. Associate Editor: O. O’Reilly. Discussion on the
paper should be addressed to the Editor, Prof. Robert M. McMeeking, Journal of
Applied Mechanics, Department of Mechanical and Environmental Engineering,
University of California—Santa Barbara, Santa Barbara, CA 93106-5070, and will be
accepted until four months after final publication in the paper itself in the ASME
JOURNAL OF APPLIED MECHANICS.
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nonlinear fractional differential equations [9] and their numerical
solutions have been established by Diethelm and Ford [10].

The fractional derivative models are used for accurate modeling
of those systems that require accurate modeling of damping. It has
been shown that fractional derivative models describe very well
the frequency-dependent damping behavior of materials and sys-
tems [11-13]. Koeller [14] considered a fractional derivative
model to obtain expressions for creep and relaxation functions for
viscoelastic materials. Mbodje et al. [15] presented a linear-
quadratic optimal control of a rod whose damping mechanism was
described in terms of fractional derivatives. Makris and Constan-
tinou [16] presented a fractional-derivative Maxwell model for
viscous dampers and validated their model using experimental
results. They also presented some analytical results for a fraction-
ally damped single-degree-of-freedom system. Techniques based
on fractional derivative to model damping behavior of materials
and systems have also been considered by Shen and Soong [17],
Pritz [18], and Papoulia and Kelly [19].

Several methods have been proposed to find the response of a
fractionally damped system. These methods include Laplace
transform [12,13,20-22], Fourier transform [20,23,24] and nu-
merical methods [25,26]. It has been seen that in the above works,
the Laplace transform method requires the numerical evaluation
of an improper integral and Fourier transform method also re-
quires a numerical implementation, either via an fast Fourier
transform or numerical integration. Although recently Suarez and
Shokooh [27] presented an eigenvector expansion method for the
solution of motion containing fractional derivatives of order 1/2,
in the present analysis an attempt has been made to obtain the
solution by a different method.

In this paper, we use the Adomian decomposition method
[28,29] to obtain a solution for dynamic analysis of a single-
degree-of-freedom spring-mass-damper system whose damping is
described by a fractional derivative of order 1/2. Large classes of
linear and nonlinear differential equations, both ordinary as well
as partial, can be solved by the Adomian decomposition method
[28-35]. A reliable modification of Adomian decomposition
method has been done by Wazwaz [36]. The decomposition
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method provides an effective procedure for analytical solution of a
wide and general class of dynamical systems representing real
physical problems [29-32]. Recently, the implementations of the
Adomian decomposition method for the solutions of generalized
regularized long-wave and Korteweg—de Vries equations have
been well established by the notable researchers [37-40]. This
method efficiently works for initial-value or boundary-value prob-
lems and for linear or nonlinear, ordinary or partial differential
equations, and even for stochastic systems. Moreover, we have the
advantage of a single global method for solving ordinary or partial
differential equations as well as many types of other equations.
Recently, the solution of fractional differential equation has been
obtained through the Adomian decomposition method by the re-
searchers [41-45]. The application of the Adomian decomposition
method for the solution of nonlinear fractional differential equa-
tions has also been established by Shawagfeh [44].

2 Mathematical Aspects

2.1 Mathematical Definition. The mathematical definition
of fractional calculus has been the subject of several different
approaches [1,3]. The most frequently encountered definition of
an integral of fractional order is the Riemann-Liouville integral, in
which the fractional order integral is defined as

a7 1 [ fnde
x4 T(q) o(x—r)'a

@2.1.1)

while the definition of fractional order derivative is

dqf(x)_d“(d_(”—q)f(x))_ 1 a f f(t)dt
dxd  dx"\ dx 0 | T(n—q) gy o(x—r)t nta
(2.1.2)

where ¢ (¢>0 and g € R) is the order of the operation and 7 is an
integer that satisfies n—1<g<n.

2.2 Definition: Mittag-Leffler Function. A two-parameter
function of the Mittag-Leffler type is defined by the series expan-
sion [3]

E, 4 )—i Z—k (a>0,8>0) 2.2.1)
“B 0 T(ak+B) ’ -
2.3 The Decomposition Method. Let us discuss a brief out-

line of the Adomian decomposition method, in general. For this,

let us consider an equation in the form
Lu+Ru+Nu=g (2.3.1)

where L is an easily or trivially invertible linear operator, R is the
remaining linear part, and N represents a nonlinear operator.

The general solution of the given equation is decomposed into
the sum

(2.3.2)

u=2 u,
n=0
where u is the complete solution of Lu=g.
From Eq. (2.3.1), we can write
Lu=g—Ru—Nu
Because L is invertible, an equivalent expression is
L 'Lu=L '¢g—L 'Ru—L " 'Nu
For initial-value problems, we conveniently define L~ for L
=d"/dt" as the n-fold definite integration operator from O to 7. For

the operator L=d?/d1*, for example, we have L™ 'Lu=u—u(0)
—tu'(0), and therefore

u=u(0)+tu'(0)+L 'g—L '"Ru—L"'Nu  (2.3.3)
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For boundary-value problems (and, if desired, for initial-value
problems as well), indefinite integrations are used and the con-
stants are evaluated from the given conditions. Solving for u
yields

u=A+Bt+L '¢g—L '"Ru—L"'Nu (2.3.4)
The first three terms in Eq. (2.3.3) or (2.3.4) are identified as u in
the assumed decomposition u=3_,u,, . Finally, assuming Nu is
analytic, we write Nu=3_(A, (uo,u iy, ...,u,) where A,’s
are special set of polynomials obtained for the particular nonlin-
earity Nu=f(u) and were generated by Adomian [28,29]. These

A, polynomials depend, of course, on the particular nonlinearity.
The A,’s are given as

Ag=f(uop)
Ay=u(dldug)f(ug)
Ar=uy(d/duq) f(uo)+(ui/2))(d*/dug) f(u,)
As=us(dldug)f(ug)+uyuy(d?*ldul) f(ug) + (u3/3!)

X (d*1dug) f(u)

and can be found from the formula (for n=1)

n

An: C(V!n)f(y)(u())

v=1

(2.3.5)

where the c(v,n) are products (or sums of products) of v compo-
nents of u whose subscripts sum to n, divided by the factorial of
the number of repeated subscripts [29].

Recently, the Adomian decomposition method is reviewed and
a mathematical model of Adomian polynomials is introduced
[46,47].

Therefore, the general solution becomes

u=u0—L_1REO u,— L 'Nu
=

(2.3.6)
=ug—L 'R, u,~L" ' A, 2.3.7)
n=0 n=0
where
up=¢p+L7'g and L¢p=0 (2.3.8)
so that
Uy ==L "Ru,~L7'A,, n=0 (2.3.9)
Using the known u, all components u;, u,, ...,u,, ..., etc.

are determinable by using Eq. (2.3.9). Substituting these ug, u;,
Uy, ... Uy, ..., etc. in BEq. (2.3.2), u is obtained.

Convergence of this method has been rigorously established by
Cherruault [48], Abbaoui and Cherruault [49,50], and Himoun,
Abbaoui, and Cherruault [51].

3 Fractional Dynamic Model and the Solution

To develop an analytical scheme for a fractionally damped
model, let us consider a single-degree-of-freedom spring-mass-
damper system whose dynamics is described by the following
fractional differential equation:

mD}x(1)+cD,x(t) + kx(t)=f(t)

where m, ¢, and k represent the mass, damping, and stiffness co-
efficients, respectively, f(¢) is the externally applied force, and
D,”Zx(t) is the fractional derivative of order 1/2 of the displace-
ment x().

It is well known that selection of an appropriate set of initial
conditions for fractional differential equations is a particular issue.

3.1)
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Lorenzo and Hartley have treated the issue of initializations in
several papers wherein they formulated the problem correctly,
analyzed the effect of a wrong initialization, and proposed solu-
tions [52-54].

To follow the previous authors Suarez and Shokooh [27], in the
present analysis, we will assume homogeneous initial conditions
that correspond to the equilibrium state at the beginning of a dy-
namical process:

x(0)=0 and Dx(t)],—o=0 (3.2)
Homogeneous initial conditions have been taken as we are pursu-
ing the paper of Suarez and Shokooh [27] to compare their solu-
tions with those obtained by the Adomian decomposition method.

We adopt the Adomian decomposition method for solving Eq.
(3.1) under homogeneous conditions (3.2). In the light of this

method, we assume that x(7)=xy(t)+x;(¢)+x,(¢)+ ... to be
the solution of Eq. (3.1).
Now, Eq. (3.1) can be written as
&x(t) ¢ d"x(1) k (1)
— +—x(1)=—> .
dr*  m g2 mx(t) m ©3)

Let us suppose that L=d>*/d1?
operator.

Now, comparing Eq. (3.3) and Eq. (2.3.1), we can observe that
d"/dt"” in Eq. (3.3) represents the remaining linear operator, and
the nonlinear part Nx, fortunately linear in this case, is
(kIm)x(t).

Therefore,

, which is an easily invertible linear

k
X)) = e (3.4)

Nx=f(x)=20 A (xg,x1, ...

The Adomian polynomials A, , as discussed in subsection 2.3,
become in the present case

k
A= f(xo)__xo
A= df(xo) :E
1= X1 dx, mxl
df(xo) d’f(xo)  k
Ar=x, dx, (2/2') dx2 sz
0
df(xo) dzf(xo) 3 d3f(x0) k
= ! =_
Az=x3 dxy XXy x(z) +(x7/3!) 3 X3

and so on.
Therefore, by the Adomian decomposition method, we can
write

x(6)=x(0) +tDx(1)] o+ ,%L*'f(t)

0

s iD[m E x,(1) —L712 A, (3.5)
m n=0 n=0
— L f()-—17| D (E )
2k
- (2 —x, ) (3.6)

This implies that
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%

—3/2

d
£_< 20 X,,(l‘))

1 d?
x(f):ZFf(l)—

dr? dr?

m gy 32
kd™? [ <
= (20 xn(t)) (3.7)
where
o 1d?
xo(1)= Eﬁf(t)
o d™xo(t)  k dxy(1)
(== a2 m g2
_c d 3 x, (1) k d%x (1)
(0= moq om g2
o c d xy(1)  k d xy(1)
x3(1)= mo g om g2
and so on.
Therefore, the general solution of Eq. (3.1) is
1 -2 d- 3/2x (l‘) d73/2x1(t) d*3/2x2(t)
x(t)= 5/ )_ m| g-3" 4" A"
d™Px;(1) ke {d () N d ™ 2x,(1)
dr=¥? mi dr? dt™?
d x,(1)  d 2xs(t
p a0 4 )+-~} (3.8)

4 Step Function Response

At first let us examine the response of an initially stationary
oscillator subject to an excitation of the form f(7)=Au(r), where
u(t) is the Heaviside function and A is a constant, for Eq. (3.1).
We will then obtain

1 d? Ar?
xo(’)-;d[,2 (=7
* c d ¥ xg()  k d %x(1) cA 1" kA
xi(t)=—— — _———— —
: mo g om g2 m*T(%) m>T(5)
3 -3 () k d’2x1(t)_c2A r
ST T g e 1)
2kcA ' +k2A 1°
m> () m® ()
c d ¥ xy(1)  k d xy(1) A PP
WOTTETEE w . w i)
3kc’A 7 3k*Ac '? BPA 8
m* T®) m* vy m* T)
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cd” %/Z.X';(t)

xy()==— m g3

kd” 3(0) ctA P
mo 4w’ L9)

6k*c’A  1° 4k3cA 12

4kC3A tl7/2
+

+ +
m* T(F)  om® TAO w1
KA 410
m® T(11)
and so on.
Therefore, the solution (3.8) becomes
A (—1) I+t
-5 S
"~ vr( +2r+3
A < —1) .
T = (_) z(rH)E(z/%r/zH( f3/2) “.D

where E, ,(z) is the Mittag-Leffler function in two parameters:

E({)(y)— E)\,u(y)
(+rty’

T A TNt ) (r=012,...)

5 Impulse Response

As a second example, let us now examine the response of the
oscillator to a unit impulse load f(#)= &(t), where &(7) is the unit
impulse function. Here we will obtain

-2

1 t
xo(t)=— dt’zf(t): .

) c d7xo(1)  k d%xy(1) c r?* kP
x(t)=—— — =—— —
: moog m g2 m? 1Tl m?T4)
()=— c d (1) k d- xl(t) ¢t ot +2kc "2
PO e gt TGt r(
K
m? I'(6)
B c d™ ¥ xy(1) kdfzxz(t)_ e A
x3(1)= m T m g %F(%)
3ke? 1 3kPc ' kA7
m* T'(7) m* 1"(12—5) m* T(8)
¢ dPxy(1) kd7lx(n) ot T +4kc3 1152
SOTTLTG m a i T® Y
6k2C2 l8 4k3C t17/2 k4 t9
5 1“(9)+ 5 19 Jr_51“(1())
m m TR m
and so on.

Therefore, the solution (3.8) becomes
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1w (-1 i+ )17
x(z)72( )y (+7)

= r! 3j
0 F( j+2r+2)

o5 -
5

where E, ,(z) is the Mittag-Leffler function in two parameters,

(5.1)

1
m

r

" (= 2
Ew(y)=dy, ()

SARILE 0,1,2
A TG A (r=012,...)

The solutions (4.1) and (5.1) agree with the solution obtained by
Podlubny [3] using a fractional Green’s function.

6 Verification of the Solutions

The fractional Green’s function discussed by Podlubny [[3],
Section 5.4] for the fractional differential Equation (3.1) is

(=" f 2l g l3/2
" 320242

1

m =g r!
Therefore, the solution of Eq. (3.1) under homogeneous initial
conditions is

Gs(1)=

x(t)= fIG3(t— nf(ndr
0

This implies that

A (=1)
—~>

"k —c
x(t)= P (;) 2(r+l)E(3'/”% r/2+3(7t3/2) ,
if f(£)=Au(r) (6.1)
1w (=1 -
:ZE ! (_) 2r+lE(372r/2+2( mc tm),
if f(z)=6(¢t) (6.2)

The solutions (6.1) and (6.2) are exactly identical with the solu-
tions in Eq. (4.1) and Eq. (5.1).

7 Numerical Results and Discussions

To make a comparison of the present analysis through the Ado-
main decomposition method with that of other available method
[27], the graphs have been drawn using MATLAB software.

In the present numerical computation, we have assumed c/m
=2 nwf’/z, wi =k/m, and m=1, where 7 is the damping ratio and
w, is the natural frequency, as is taken in [27].

It is interesting to note that the graphs obtained in our case
exactly coincide with those of Suarez and Shokooh [27] in cases
of Figs. 1 and 4. In the present analysis, Fig. 2 also coincides with
that of Suarez and Shokooh [27], but in this case the natural
frequency w,, should be 5 rad/s, instead of 10 rad/s, as taken by
Suarez and Shokooh [27].

It may be mentioned in this connection that the graph drawn in
Fig. 2 of Suarez and Shokooh [27] for w, = 10rad/s should be for
w, =5 rad/s. This is definitely a mistake to be reckoned with and
should be taken into account for further study. However, the cor-
responding graph for w,=10rad/s is also drawn by us and given
in Fig. 3.

Equation (5.1) has been used to calculate the impulse response
functions shown in Fig. 1 for oscillators with natural frequency
w,=10rad/s and damping ratios 7=0.05, 0.5, and 1.
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Fig. 1 Impulse response function for oscillators with natural

frequency w,=10rad/s and damping ratios %=0.05, 0.5, and 1

Figure 2 shows the impulse response function for an oscillator
with natural frequency w,=5 rad/s and damping ratios =/, 3,
and 5, and it has been drawn with the help of Eq. (5.1).

The graph drawn in Fig. 2 of Suarez and Shokooh [27] for
w,=10rad/s should be for w,=5 rad/s., Figure 3 in the present
study confirms our assertion. Figure 3 shows the impulse response
function for an oscillator with natural frequency w,=10rad/s and
damping ratios 7=/, 3, and 5. Here, Eq. (5.1) has also been
used to draw the following figure.

It can be noted that, when the damping ratio is equal to /77, the
curves in Figs. 2 and 3 touch the axis of zero displacement. In
addition, the curves in Figs. 2 and 3 tend to zero without crossing
the axis of zero displacement for damping ratios greater than (/7.

0.07

0.06

Displacement
e e o
& § &

0.02

0 . . . —
o] 0.2 0.4 0.6 0.8 1
Time

Fig. 2 Impulse response function for oscillators with natural
frequency w,=5 rad/s and damping ratios »=sqrt(s), 3, and 5
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0.01

0.00

0 0.2 0.4 0.6 0.t
Time

Fig. 3 Impulse response function for oscillators with natural
frequency w,=10rad/s and damping ratios »=sqrt(=), 3, and 5

294 / Vol. 72, MARCH 2005

0.08

0.07 +

0.06 4 N ns008 ;
0.05 + /

0.04 a

Displacement

0.03 1 : n51
0.02 1 ] /

0.01 1

1 : I I

12 14 16 18 2

1
T
Time

Fig. 4 Unit step response function for oscillators with natural
frequency w,=5 rad/s and damping ratios 7=0.05, 0.5, and 1

Consequently, the value 7= is considered as the critical
damping ratio. Moreover, one can easily verify the validity of Fig.
3 by observing Fig. 1. From these two figures, we see that with
natural frequency w,=10rad/s, as damping ratio 7 increases
from 0.05 to 5, the axis of zero displacement tends to become the
asymptote of the curves. In other words, with natural frequency
w,=10rad/s, as damping ratio 7 increases, the displacement de-
creases and finally tends to the axis of zero displacement with the
increase of time.

In the next numerical example, three oscillators with natural
frequency of w,=>5 rad/s and damping ratios 7=0.05, 0.5, and 1
are subjected to a step load magnitude A = 1. In this case, Eq. (4.1)
has been utilized to draw Fig. 4. This figure shows the displace-
ment response of the oscillators. It shows that the curves for
7=0.5 and 1 do not exhibit oscillations around the static equilib-
rium response A/ w,2120.04 and the same result was obtained by
Suarez and Shokooh [27].

8 Conclusion

This present analysis exhibits the applicability of the decompo-
sition method to solve fractional differential equation of fractional
order 1/2. In this work we demonstrate that this method is well
suited to solve linear fractional differential equations. The decom-
position method is straightforward, without restrictive assump-
tions, and the components of the series solution can be easily
computed using any mathematical symbolic package. Moreover,
this method does not change the problem into a convenient one
for the use of linear theory. It, therefore, provides more realistic
series solutions that generally converge very rapidly in real physi-
cal problems. When solutions are computed numerically, the rapid
convergence is obvious. Moreover, no linearization or perturba-
tion is required. It can avoid the difficulty of finding the inverse of
Laplace transform and can reduce the labor of the perturbation
method. This paper presents an analytical scheme to obtain the
dynamic response of a fractionally damped system. Although
other methods (as already mentioned) are available in open litera-
ture, the present Adomian decomposition method justifies its effi-
ciency and gives quite satisfactory results.
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Buck“ng of a Thin Circular Plate While gravity plays an important role for in-plane deformation,
. it also becomes significant for out-of-plane deformation. This is
Loaded by In-Plane GraV|ty especially the case for such a thin mask with a thickness-to-

diameter ratio on the order of 18. The in-plane gravity could be
large enough to induce the mask in a buckling or postbuckling

Z.-Q. Cheng state. Thus, the plane stress solution is only valid within the pre-
buckling range and the mask would be in an unstable state beyond
J. N. Reddy* it. It is the purpose of this technical note to provide the limit of
Distinguished Professor buckling by modeling the mask as a thin plate and studying its
e-mail: jnreddy@shakti.tamu.edu bending deformation under the in-plane stresses. As will be seen,

for a silicon mask with thickness of 3m, the radius must be no
more than 84.459 mm to prevent the mask from being in the
. . . buckling state. This provides designers a precaution that the plane
Department of Mechanical Engineering, Texas A&M stress solutiorf1] is subjected to a limit of buckling and beyond
University, College Station, TX 77843-3123 this limit either the mask is in an instable state or a nonlinear
postbuckling analysis will have to be performed.

Fellow ASME

Y. Xiang

School of Engineering and Indutrial Design, University of

Western Sydney, Penrith South DC, NSW 1797, 2 Buckling Solution

Australia Because the plate is symmetric in its midplane, the plane stress

deformation is decoupled from the bending deformation. There-
fore, we can first deal with the plane stress deformation. A stress
[DOI: 10.1115/1.1831293 function approach in polar coordinates was adopteldnin the
present study, we use an alternative displacement approach in
rectangular coordinates. As will be seen, this approach appears to
1 Introduction be more straightforward and simpler.
. L For the specific problem of a clamped circular plate loaded by
Tejeda et al[1] presented a new exact solution in a recentsjn siane gravity, we use a Cartesian coordinate system with the

L . : -axis in the vertical direction. Assume that the in-plane displace-
beam projection lithographidPL) masks. An IPL circular mask _?nent fields are P P

is supported by a relatively stiff frame and held in a vertical ori-

entation during exposure to the ion bef®h. It is typically made u=0, v=k(x*+y’—R?), (1)

of silicon of 3.0 um in thickness and of the order of 200 mm in ) ) ) )

diameter. The problem was modeled as a clamped circular me¥ereu andv are the in-plane displacements in thandy direc-

brane loaded by in-plane gravity, and an exact plane stress sdians, respectiveyR is the radius of the plate, ardis a constant

tion was derived1]. to be determined. The displacements satisfy the boundary condi-
The elastic distortions due to gravitational loading are negliions for a rigidly clamped edge; i.eu=v=0 atr=x?+y?

gible in most engineering applications. However, they can be sig-R. Using the plane stress constitutive relation for an isotropic

nificant in next generation IPL masks used for semiconductor daaterial yields

vice fabrication. Therefore, the plane stress solutidh is of

practical importance to accurately predict the IPL deformations o 2vE K o Z2E K o E K 9

in order to enhance the quality of the microcircuit to be Txx™ 1— 12 Yo oyyT 1— 12 Yoo OxyT 1+p x (2

manufactured.

whereE is Young’s modulus ana is the Poisson ratio. The gov-

To whom correspondence should be addressed. erning equations for a thin plate, held in a vertical orientation, are
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF

MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- 9. 9o? 95’ 9o?

CHANICS. Manuscript received by the ASME Applied Mechanics Division, Septem- XX ¥ —0, XYY pg=0, (3)

ber 27, 2001, final revision, May 10, 2004. Associate Editor: N. Triantafyllidis. X ay X ay
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Table 1 Convergence study of the buckling factor A
=pghR® D for a clamped circular plate subjected to in-plane
gravity (»=0.2)

Polynomial degreep Buckling factor,\ = pghR®/D

144.391
121.461
118.729 .
111.548 (a) 3-D view
110.239
110.210
110.078
110.054
110.054
110.054

QOWONOUIThWNE

[y

wherepg is the gravitational force in the vertical direction. The
unknown constank is determined by substituting E() into Eq.
(3) as

~(1-v?)pg

Thus, we complete the solution for the plane stress problem. Our
approach yields exactly the same solution as givdi jninciden- (b) Contour
tally, with such a approach an exact solution could also be ob-
tained for the plane stress problem of an elliptic thin plate made piy. 1  The buckling modal shape for a clamped vertical circu-
an anisotropic material. lar plate subjected to gravity
Having obtained the plane stress distribution, the bending de-
formation problem is in order. This is a buckling problem of a
circular plate under the gravity. As is seen from E2), the stress beyond the limit. Thus, the first bifurcation point, which corre-
distribution in the midplane of the plate varies. In particular, theréponds to the critical buckling mode, is of practical interest.
are both stretching and compression deformations. Such a buckBecause the differential equatié®) has variable coefficients, it
ling problem differs from conventional buckling cases in which 8eems to be very difficult, if not impossible, to find an exact
constant in-plane loading is assumed. The governing equation &jlution. The Ritz method is employed to solve the problem. The

the bending deformation of the plate(see Reddy3]) following strain energy is needed in the Ritz methsde Reddy
3,4] and Liew et al[5]):
PV My PMyy 0 [ ow o oW 341 and Liew et al{5)
2 xay " ay? ax | Tgx T gy 1 PPw J2w 2w
U=—= | | My—5 +2M,y=—— +M,——|dA
2 )a ax? axay ay?
J( oW  oow|
oy 7k Ty |70 (5) h([ (W) o owaw (w2
+= ol == | t204—- ——+o, | = [dA (9)
where 2 Ja [ X ay ay
(azw 2w 2w 92w whereA is the area of the plate. Assuming
My=-D|—+v—|, My=-D|—+v—r>/,
XX (9X2 (?yz yy ayz (9X2 , , - p q o
w=(x*+y*—R?) Z 2 cmxd7y' (10)
IPw 4=0i=0
Myy==(1-»)D axay’ (©) andp is the degree of the two-dimensional complete polynomial

used in the trial function in Eq10) andm=(q+1)(q+2)/2—i
(see[5]). The solution in the form of Eq(10) satisfies the geo-
Eh3 metric boundary conditions/=ow/dr =0 for a rigidly clamped

D is the bending stiffness

D=———, (7) edge ar =R. The Ritz method requires
12(1-17) U
andh is the thickness of the plate. In view of E¢8)—(4) and(6), S =0, i=12,...{p+1)(p+2)/2. (11)
i

Eq. (5) reduces to the following differential equation for the de-
flection w: Using Egs.(2), (6), and(9)—(11), we obtain an eigenvalue equa-

5 0\ 2 ) ) tion. Table 1 provides a convergence study of the Ritz method. It
ol w+pghﬂ—W+ipgh , (7_W+y‘7_W is seen that numerical convergence to six significant digits is
x> ay? ady 3—v IX? ay? reached ap=8.
The Ritz method requires that the trial functiongx,y) satisfy
& di=d¢p;lax=d¢p;1dy=0 for a fixed edge at=R. When we
+(1—V)XW =0. (8)  construct them in terms of power seriesnandy, it can be

proved that such a function of the lowest-order power series in
We need to find the limit of the gravity logelg under which the andy (not in r) must be in quartic form, and more specifically,
plane stress state is stable, and beyond which there are bifurcaiefi y>— R?)2. The representation shown in E@.0) provides a
points and its plane state is no longer stable. Any small transversemplete set of the trial functions up to additional orgerand
perturbation would cause an out-of-plane deformation of the plateus provides a global minimum of the buckling load. It should be
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noted that the trial functionr(-R)? is the lowest order irr; Note that the Ritz method predicts the upper bound of a real
however, it does not furnish a power series representation_ solution. The distortion of the IPL circular mask with a radius 100
For a nontrivial solution ofv, we obtain the critical valua, mm or larger mentioned ifil] is already in either an instable
=110.054 for the dimensionless buckling factoe pghR¥/D. plane state or a postbuckling state. In order to minimize the dis-
With this solution, a restriction is placed in the plane stress statertion, the mask has to be designed by reducing the radius or by
The above-mentioned exact elasticity solutdi for the plane- providing extensional prestresses such that it is within a prebuck-
stressed circular thin plate is only valid within the limit; i.a., ling range.
<\ . Figure 1 shows the first buckling mode shape of the thin
circular plate subjected to in-plane gravity.
The circular thin plate is made of silicon material. The materiél?eferences

properties correspond to the average isotropic valueg 106 [1] Tejeda, R. O., Lovell, E. G., and Engelstad, R. L., 2000, “In-Plane Gravity

Loading of a Circular Membrane,” J. Appl. Mect67, pp. 837—839.

silicon [2] [2] Tejeda, R. O., Engelstad, R. L., Lovell, E. G., and Berry, I. L., 1998, “Analy-
_ _ _ sis, Design, and Optimization of lon-Beam Lithography Masks,” Proc. SPIE,
E=160 GPa, »=0.2, p=2330 kg/ni. (12) 3331, pp. 621-628.

As mentioned earlier in Sec. 1, the typical thickness of the silicon™) Rﬁ‘l’dg' lJ'hN" 1999Theory and Analysis of Elastic PlaieBaylor & Francis,
C Philadelphia, PA.

plate is 3.0um. From the conditiol\<\, the radius of the  [4] Reddy, J. N., 1984Energy and Variational Methods in Applied Mechanics

circular plate must be within the range of John Wiley, New York, NY.
[5] Liew, K. M., Wang, C. M., Xiang, Y., and Kitipornchai, S., 199&bration of
R=<84.459 mm. (13) Mindlin Plates: Programming the p-Version Ritz Methdsevier, Oxford.
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Connections Between Stabi”ty’ The material parameteds u, andk may depend upon the inde-

pendent thermal variabl@ or 7, depending on the formulatipn

Convexity of Internal Energy, and the  and independent mechanical variatiisther p or p). Here we

H selectp and » as the independent variables. In this formulation the
Second_ Law fO_I’ CompreSSIbIe auxiliary mechanicalp) and thermal6) variables are prescribed
Newtonian Fluids in terms ofp, 7, and e through
_ p0€ 0 _ €. 4
Stephen E. Bechtel Plp.m)=p=50 0lp )= “)
Department of Mechanical Engineering, The Ohio State Egs. (1)—(4) determine a closed system.
University, Columbus, OH 43210 We employ the second law of thermodynamics in the form of

the Clausius-Duhem inequality,
Francis J. Rooney o ; an
Bishop O’'Dowd, 9500 Stearns Avenue, Oakland, S= afpndv>f5pdv— TdA’ (5)
CA 94605 v v »

where volume) is arbitrary. Using Eqs(1)—(3), this implies
M. Gregory Forest 1
Department of Mathematics, University of North f_
Carolina, Chapel Hill, NC 27599 vo

2 k
N+ 5#) (V-v)2+2uDg Dy + |V0|2}dV>O, (6)

whereDy denotes the deviatoric part &f. Thus the second law
In this note we provide proofs of the following statements for far Newtonian fluids is equivalent to
compressible Newtonian fluid: (i) internal energy being a convex
function of entropy and specific volume is equivalent to nonnega-
tivity of both specific heat at constant volume and isothermal bulk
modulus; (i) convexity of internal energy together with the second
law of thermodynamics imply linear stability of the rest state; an@ Equivalence of Convexity ofe and Stability of the
(iii) linear stability of the rest state together with the second lavkest State
imply convexity of internal energy|DOI: 10.1115/1.1831297

2
N+ §/L20, ©n=0, k=0. 7

The conditions that internal energyis a convex function of
1 Introduction entropy 7 and specific volume#=p~1) (mathematically equiva-

. ) . . lent to entropy being a concave function of internal energy and
In thermodynamics of fluids one encounters different notions @hecific volumg are[2]

stable equilibrium. One is that internal energy is a convex functio

of entropy and specific volume. Another is that certain material e(r,7) Pe(r,7)
properties must be nonnegative. A third is that all small perturba- =0, =0,
X 2 90?

tions of the rest state do not grow. d 7

In this brief note we connect these three notions in a compress- 5 2
ible Newtonian fluid by providing proofs that nonnegativity of o°e(m.n) "e(1,7)
specific heat at constant volume and isothermal bulk modulus is J72 an?
equivalent to convexity of internal energy, that the second law and . )
convexity of internal energy together imply linear stability of théVOte, that the three conditior§) are not independent8), and
rest state, and that the second law and linear stability of the ré8ts IMPly (8)z, and(8), and(8)s imply (8); .

state together demand convexity of internal energy. _One notion of stable thermodynamic equilibrium i &: “Us-
ing the principle—often attributed to Le Chatelier—that any spon-
. : : : taneous change in the parameters of a system that is in stable
2 Governing Equations for Newtonian Fluids equilibrium will give rise to processes that tend to restore the
The equations of conservation of mass, linear momentum, asystem to equilibrium,” Stanley argues that specific heats and
gular momentum, and energy for a continuum are, respectivelyfcompressibilitiesreciprocals of bulk modulimust be nonnega-
. - - T _ tive. Since specific heat at constant pressure is in general greater
ptpVv=0, pv=V-T+pf, T=T', pe=T-D+pr V-q,(l) than or equal to specific heat at constant voluBg, and the
adiabatic bulk modulus is in general greater than or equal to the
wherep is the densityy the velocity, T the Cauchy stres®) the  isothermal bulk modulug, these conditions for stability become
symmetric part of the velocity gradieritthe specific body force,
r the internal heat productiom, the heat flux, and the specific an(6,7) ~0 x=— p(o,7) -0 9
internal energy, and-) denotes the material time derivative. A v="0 00 KT T T ©)
Newtonian fluid is characterized by the constitutive equations

8)

Pe(r,m)\?
=0.
Jdtdn

Using Eqgs.(4), conditions(9), , are directly equivalent to condi-
T=—pl+N(V-v)I+2uD, q=—-kV9, (2) tions (8),3, respectively, and fron{8), 5 condition (8); can be
deduced. Hence, nonnegativity Gf, and « is equivalent to inter-
nal energy being a convex function of entropy and specific vol-
ume, in the sense of satisfying conditioi®.
With the change of variables from specific volume to density,
the convexity conditions Eq$8) are translated into

wherep is the pressuref the absolute temperaturk,the dilata-
tional viscosity,u the shear viscosity, ankithe thermal conduc-
tivity. Entropy # can be defined through]

. P .
e=pZ+on. @)
p 2¢,
—_— = =
P +€,=0, €,,=0,
Contributed by the Applied Mechanics Division ofif AMERICAN SOCIETY OF (10)

MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- 2¢
CHANICS. Manuscript received by the ASME Applied Mechanics Division, March “Phre le. —€2 =0,
28, 2002, final revision, June 16, 2004. Associate Editor: K. R. Rajagopal. ppj=nm ey
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where subscripts denote partial differentiation. Sinceky=0, we haveA,=0, which is inequality(10); evaluated
We now consider an equilibrium state in the absence of a body arbitrary valueg, and », of density and entropy.
force and internal heat supply, We next consider the special perturbations given by

v=0, §=6,, p=po, P=Po, 7=10, (11) t=(0,07), (19)

where pg, vo, and 5, are arbitrary constant solutions of Eqgsfor which the linearized problem reduces to
(1)—(3), and py, Ay are determined from equations of stay

2
evaluated apg and 7. We allow an infinitesimal disturbance of (U_ ko €91%=0
this rest state, pobo 7" '
V=Vr, 0=60p+ 6%, =10+ 1%, p=potp*. P=potp*, Since we have assumed the rest state is stable for all perturbations,

(12) ois nonnegative, so that,,=0 at arbitrary values of density and

. P L . entropy, which is inequalitf10),. We have proved inequalities
t_he starred quantmes are |nf|n|t_e5|mal variations of which onléﬁo)2 and(10);, and(10), and(10), imply (10), . Hence inequali-
linear terms will be retained. Disturbancg$, ¢ are deduced te5(7) and stability of the rest state demand convexity of internal
from P 7 by linearization of the constitutive relatloms). The energy, in the sense that conditioli®) are satisfied.
linearization of problem Eqs1)—(3) then consists of constant-
coefficient linear partial differential equations fa* and 7, 3.2 Proof That Convexity Conditions (10) Together With
along with two linear algebraic equations fpt, ¢*, for which the Consequence$7) of the Second Law Imply Stability of the
Fourier analysis applies. We posit eigenfunctions for each prinfRest State. Recall that either all three roots,, o5, ando; of

tive variable of the form the cubic Eq(17) are real or one is real and the other pair consists
- of complex conjugates. Sindg,=0 from inequality(7);, if we
F*(x,t)=F exp(isn-x—ot), (13) assume inequality10); then A,=0, and from Eq.(18) at least

one of the roots, say,, must be real and nonnegative. We re-

where the wave vectosn has norms and directionn. The rest write Eq. (17) in the form

state Eq(11) is linearly stable if Rag;)=0 for all rootso; of the

linearized dispersion relation at all wave numbgrand unstable 2o[ Mot 2m0 (g ko kopo
if Re(0;)<<0 for some rootr; at somes. o &, g | T e S Ao
The linearized disperson relation foi(s) is [4] o= Po Po% 0 . (20)
2157 p2e® 4 2p @+ NoT 20 (o0 Ko 2)
5 _— 0%ep 0% Po "pg 0o
(0—_ ﬂg) o— O—’U“Os2 The coefficients on the right-hand side are all positive because of
Po Po the convexity ofe and the second law. Hence if the remaining two
rootso, ando are real they must be nonnegative, and if they are
K complex conjugates then
| a(phep +2poe,) — %52%) |02+ C|2
+ 0 =0, (14) Re(0p) =Re(03) = —55—, (21)
U( g (0K 52)
7006, where

where uo, No, Ko, €7, €, € andel?) denote functions 0 Not+2p0 L0 Ko &

C=¢? p§e<°>+ 2po€

evaluated on the equilibrium state and pe P Po Mpoby~ |’ 22)
0 k
Ag= fﬁ,?JrZﬁ €9 — ()2, (15) D=s4(>\0+2M0)(poe;‘;>+2e§,°>)+(x0+2ﬂo)ze§7°,;p3° S+ (Ng
ot
3.1 Proof That Stability of the Rest Statg and Qqnse- K2 K
quences(7) of the Second Law Imply Convexity Conditions +ZMO)(E<0>)2_°56+(6(0>)2Ms4'
(10). Assume the second law holds, so that 2/3u,=0, uq " p36s RO

=0, ko=0. A repeated root of dispersion relatiatv) is and so Ref,)=Re(o3) is nonnegative. This completes the argu-

o4=05=S2uo/po. (16) ment that the convexity conditions on internal energy plus the
second law imply stability. Combined with the earlier result that
stability plus the second law imply the convexity gfit follows

that, assuming the second law, the convexity conditions on inter-

Note, thato,=o05=0 since uy=0. The other three dispersion
branches satisfy

Ao+ 2 K nal energy are equivalent to linear stability of the rest state.
o3—s? foT “fo + 6(”02,—;> o+ 82( pgef,?)) + 2p06§,0)
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0o Fluids, 15, pp. 2681—-2693.

300 / Vol. 72, MARCH 2005 Transactions of the ASME



Wrinkling of Circular Tubes Under 2 Buckling Experiments

i i . Super-duplex SAF 2507 specimens with D/t values in the range
AXI_aI CompreSSIOn' Effect of of 23 to 52 were machined from thicker tube stock. They were
Anlsotropy turned both on the inside and outside, resulting in nearly parallel

test section walls. The test section length varied betwdRmadd
5R. Linear tapers were machined at the ends, reducing edge ef-

S. Kyriakides, F. C. Bardi, and J. A. Paquette fects and resulting in nearly uniform stress in the test section. The
Research Center for Mechanics of Solids, Structures &pecimens were compressed to failure under displacement control.
Materials, The University of Texas at Austin, WRW The evolution of wrinkles was monitored by periodically inter-

110, C0600, Austin, TX 78712 rupting the loading, and scanning the specimen axially using a

custom surface scanner. In the case of combined loading, the
specimens were pressurized to a chosen pressure and compressed
to failure while holding the pressure constant. The wrinkle wave-
[DOI: 10.1115/1.1839590 length increases with pressure and, as a result, all pressure tests
had the longer test section oR5
All specimens initially deformed uniformly. At some value of
strain, wrinkles became discernible on the surface of the tubes.
1 Introduction Figure Xa) shows stress-shortening responsg- 8,) recorded

Elastic buckling of cylindrical shells under axial compressioi;r a tube withD/t=26.3 loaded under pure compression. Figure
i

results in sudden and catastrophic failure. By contrast, for thickk{®) Shows a set of axial scans taken at the positions marked on
shells that buckle in the plastic range, failure is preceded by e response by solid circles. Because of the discrete nature of _the

cascade of events where the first instability and failure are seﬁ&- '

rated by strains of up to 5%. The first instability is uniform axi_values. In this case, wrinkling occurred between strains of 1.08%

symmetric wrinkling. The wrinkle amplitude gradually grows ang@"d 1.18%(indicated by|). Under continued compression, the

in the process, the axial rigidity of the shell is reduced. For thickdf'inkle amplitude grew, gradually reducing the axial rigidity. The
shells, this eventually leads to a limit load instability beyond©Wth oflthe W:VQ g_pprc_mmlatel?( at the _mu?jsp;an of the tzs} sedc-
which failure takes the form of localized buckling that can lead tho" acce ecriate ’ |nd|cat|ng ocalization in de o][matlon. . oal
concertina folding. For thinner shells, a second bifurcation invol\m%'()'}]umd evelope f?tllag gg?riﬂgg strauE 3 bapﬂgroxmr?tey
ing nonaxisymmetric deformation can precede this limit load. Thi /2% and a stress of 111.2 K a, marked by * * on the
buckling mode again localizes and can again result in folding. "€SPONse Following the limit load, deformation in the central
Axisymmetric wrinkling is a classic plastic bifurcation from a}’é’)?;’ihaecﬁﬂﬁrgtsg fjlgfrg?r(r:]z\rt]itc% i'?\‘lttf]gr?]eeizi:f]al?;f‘llgotgeOP{I’c])i(_’i}e\?Vnge-
uniaxial stress state with the following buckling mode: i - ;
g 9 reverted to a nonaxisymmetric mode with two lobes<2). The
- X - oomX test was terminated at a net shortening of 6.5%.
w=acos-— and u=bsin——. (1) The critical straingbound$ from 14 experiments are plotted
_ N against D/t in Fig. 2. They range from about 1.5% for the lower
It can be easily shown that the critical stressc] and half- D/t tubes to about 0.7% for the higher values. Some of the experi-

wavelength of this buckling mode\¢) are, respectively, ments were repeated while others were run with a longer test
CorCor G212 section(M,[) to ensure that the test section length did not influ-
UC_[ 1L~ 12} (i and ence the results. Figure 3 shows a plot of the measured half-
3 R wavelengths as a function of D/t. They vary from aboutrOfdr
14 the lower D/t tubes to about (R2for the high values. Upper and

ch lower bound values are again given in the figure.
m Despite the careful machining of the specimens, imperfections
were unavoidable. These include small wall thickness variations
whereR andt are the radius and wall thickness of the shell rearound the circumference and the length, small eccentricities in
spectively, andC 4] are the instantaneous moduli of the materiahe applied load, and some local hardening and surface marking
at the bifurcation poinf1]. During the last fifty years, use of the from machining. Although generally small, the imperfections in-
J, deformation theory instantaneous moduli in E2). has gained fluenced the onset, the wavelength, and evolution of wrinkles. In
wide acceptance primarily because it yields better results than guddition, in the perfect case, wrinkling is a nearly tangential bi-
corresponding flow theor{2]. furcation, making it very difficult to establish its onset experimen-
The problem was recently revisited in order to establish thally. Thus, the experiments were not repeatable, and the results in
extent to which tubes can be deformed plastically before failurBigs. 2 and 3 exhibit some scatter, although their trend is quite
Because failure follows the onset and evolution of axisymmetradear.
wrinkling, its prediction requires establishing first accurately The material stress—strain response is well represented by the
{oc,€ec,\¢c} (see Refs[3-5]). Experiments were conducted onRamberg—Osgood fit given by
super-duplex stainless ste€bAF 2507 tubes with D/t values
ranging from about 23 to 52. The experiments involved buckling o 1+ 3( a)”‘T 3)
7\oy '

Ae=m (RYYZ, @)

and failure under pure axial compression and under combined T E
internal pressure and axial compression. In both sets of experi-

ments, some discrepancies between the classical bifurcation R{fareE = 28.2x 167 ksi (194 GPa, o, =83.0 ksi(572 MP3, and
dictions of Eqs(2) and measured values of the critical states werg_ 13 "nclyded in Figs. 2 and 3 are the predicted critical strains
found. The cause of the discrepancies was shown to be pla half-wavelengths using, flow and deformation theories in

ﬁnlsottr:opa( present in the tubels l:jsed' This brief note reports @fg o) As expected, flow theory overpredicts the measured criti-
ow the discrepancy was resolved. cal strains(and stressésconsiderably. By contrast, the deforma-
Comributed by the Apolied Mechanics Division ofiE A © tion theory results follow the trend and generally are in good
ontributed by the Applied Mechanics Division o MERICAN SOCIETY OF ; : ;
MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- agreement with the experiments. The flow theory overpredigts

CHANICS. Manuscript received by the ASME Applied Mechanics Division, April 4,Significantly as well, while the deformation. thelory predictions are
2004, final revision, September 2, 2004. Editor: R. M. McMeeking. closer to the measured values but are still higher by a factor of
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Fig. 3 Comparison of measured and predicted wrinkle half-
wavelengths for pure compression

=26.3

x/R eled through Hill's quadratic anisotropic yield functi@Ref. [8]).

® For relatively thin-walled circular tubes, the radial stregg)(can

be neglected. If, in addition, the tube is under a principal state of
stress ¢, ,0,), Hill's yield function can be written as

Fig. 1 (a) Measured tube axial stress-shortening response for
pure compression. (b) Axial scans showing evolution of
wrinkles.

120 SAF 2507/4 [ 800
c, Later; IPress_. Axial | c
about 2. Interestingly, similar overprediction of measured values (ksi) ] - i

of ¢ were reported in Ref$6] and[7] for the related problem of
inelastic bending of long tubes. T 801

Because\ is the starting point of all postbuckling calcula-
tions, this difference is a significant problem that had to be ad-
dressed. It was found that plastic anisotropy introduced by the
manufacturing process to the seamless tube stock was at leas 407
partly responsible for the discrepancy. The anisotropy was mod-

P
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SC | (@)
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Fig. 4 (a) Equivalent stress—strain curves from three paths.
Fig. 2 Comparison of measured and predicted critical strains (b) Equivalent stress—strain curves from three paths.
for pure compression
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Fig. 5 (a) Critical strain as a function of anisotropy variables
(D/t=26.3). (b) Half-wavelength as a function of anisotropy vari-
ables (D/t=26.3).
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where Sy= 0,4/ 0oy, S;=00 100y, and{o oy, 04,044 are the
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Fig. 6 Critical stress versus pressure: experiments and
predictions
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The anisotropy constants were evaluated by conducting uniaxial
experiments in the axialA) and circumferential directionél),
and a hydrostatic pressure inflation téld) as described in Ref.
[9]. Figure 4a) shows a comparison @f,— es for the three tests
assuming the material yields isotropically. The extent to which
they are different is a measure of the anisotropy. The three re-
sponses coalesce, as shown in Figh)4when the valuesS,
=1.15 andS, =0.85 are used in Eq$4) and (5).

The strain increments are assumed to consist of an elastic part
and a plastic part as follows:

dejj=dejj +def;, (6a)

where

1
dfﬁ:E[(1+V)d‘7u_VdUkk‘Su] (6b)

The plastic strain increments obey the flow rule given by

yield stresses in the respective directions. A work compatible mea-

sure of equivalent plastic strain increment is

de,| 1 1+Q(204— Bay)?,
[dEﬁ] = E

Journal of Applied Mechanics

— v+ Q20— Boy)(2acy—Bay),

e — 1/ of of o
Eiij T Omn (90” . (6c)

Specializing Eq(6) to Eq. (4) results in
—v+Q(204—B0oy)(2acy—Loy) [dO'X] .
1+Q(2a0,— Bay)? do, )
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Fig. 8 Wrinkle half-wavelength versus pressure: experiments

Fig. 7 Critical strain versus pressure: experiments and and predictions

predictions
P dU®  9U°® dog 1 1 doe g
where Eij_ao,ij ~ 0. 90, \Es E)%0, (8)
B + ! d Q ( E 1
a=—, = —— =/, an =—| ==
S5 s & 402 \Eioe)

Deformation theory inelasticity is essentially nonlinear elasticityfhe incremental version of E¢8) required in bifurcation calcu-
The corresponding formulation to the anisotropic flow theorlations is developed in the usual manierg., Ref.[10]). When
above is developed by assuming that there exists a complementpgcialized to the two stress problems of interest here, it can be
strain energy density functiod®(o.), such that written as follows:

1+q(20x_506)21 _”"s+q(20'x_,80'6)(2a0'€_50'x)

-2 : R
dey| Eg| —vstq(204— Bog)(2acy— Boy), “"'Es(l_“)"‘Q(ZaUa—BUx)Z doy )

where isotropic case. On the other hand, when b8jhandS; are either
>1 or <1, the effect orec is large and on\ ¢ is small.
_ i Es(‘fe)_ and :E+ E b /_3) Anisotropy was found to also have a significant effect on the
g 402 Ei(oe) s 2 E 2) critical states of the combined loading problem of axial compres-

. ) . . _ sion under internal pressure. This study involves tubes of the same
The moduli[C,] in Egs. (2) are the inverse of the matrices inyjqy with D/t=39.5 compressed at constant displacement rates at
Egs.(7) and(9). The calculations of the critical states were regy o4 yajues of internal pressure. The experimental procedure is
peated using the anisotropic versiong Gf, ;] with the anisotropy similar to the one described for pure compression. The prebuck-
values givep above. The reS“'FS are drawn with solid Iings in Fi %g state is now calculated using the anisotropic flow theory,
2 and 3. Anisotropy has an insignificant effect on the critical Stre%\ﬁ]ile the critical states are again calculated using the incremental

and strain for both the flow and deformation theory prediCtionaeformation theory moduli. In this case, the measured stress—

By contrast, it changes significantly the wavelength of the buck; ) o -

ling mode for both material models as illustrated in Fig. 3. BotfUra!n response reprgsented as piecewise linear was USEd. in the
anisotropic results now pass through the data with the deformatigiculations (approximately represented by the following
theory yielding the better agreement. Ramberg—ngood fit parametdts- 28.1x 103_k5|, (193.8 GP3,

The broader effect of the anisotropy variab{& ,S,} on the oy=87.0ksi(600 MP3 andn=13.5). The anisotropy parameters
critical strain and wrinkle wavelength was considered and the réere found to beS,=1.08 andS;=0.86 (mother tube different
sults are plotted in Fig. 5. Interestingly, the anisotropy has tt&an the one used for pure compressidfigures 6—8 show plots
opposite effect orec (and o¢) than onhc. Thus, whenS,>1 of the measured critical values of;, ec, and\¢, respectively,
andS, <1, as was the case for our tubes, the effechgris large as a function of internal pressuf®). Included in each are the
and onec is small. A similar effect is seen whe®,<1 andS, predicted values for the isotropic and anisotropic materials. In this
>1, but now the predicted wavelength is longer than that of thease, anisotropy affects the critical stress also because of the bi-
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axial loading. The wrinkle wavelength increases with pressure and?] Hutchinson, J. W., 1974, “Plastic Buckling,” iAdvances in Applied Mechan-
this is reproduced well by the anisotropic model. The critical , 'S Volume 14, C. S. Yih, ed., Academic Press, New York, pp. 67-144.

L f he | ; h . . L £3] Gellin, S., 1979, “Effect of an Axisymmetric Imperfection on the Plastic
strain is affected the least, but again, the anisotropic prediction Buckling of an Axially Compressed Cylindrical Shell,” ASME J. Appl. Mech.,

are seen to be an improvement over those from the isotropic 46, pp. 125-131.
material. [4] Tvergaard, V., 1983, “Plastic Buckling of Axially Compressed Circular Cylin-

H f ; H P drical Shells,” Thin-Walled Struct.1, pp. 139-163.
In conclusion, it has been found that yield anisotropy can S|g-[5] Yu'n 0D, and 'Kyriakides g‘ iggg “On the Beam and Shell Modes of

nificantly affect the onset of plastic instabilities and their charac-"" g,ciiing of Buried Pipelines,” Soil Dyn. Earthquake Eng,,pp. 179-193.
teristic wavelengths. The onset of wrinkling of axial cylinders [6] Reddy, B. D., 1979, “An Experimental Investigation of the Plastic Buckling of
under pure compression and under combined internal pressure and Circular Cylinders in Pure Bending,” Int. J. Solids Strudt7, pp. 669—683.

compression have been shown to be predicted with accuracy usir{é] Ju, G. T., and Kyriakides, S., 1992, “Bifurcation and Localization Instabilities
an anisotropic deformation theory based on Hill's aniSOtropic g\gngntiriigl_Sﬂillls Under Bending: Part Il Predictions,” Int. J. Solids Struct.,
yield function. [8] Hill, R., 1948, “A Theory of the Yielding and Plastic Flow of Anisotropic
Metals,” Proc. R. Soc. London, Ser. A93 pp. 281-297.
[9] Kyriakides, S., and Yeh, M.-K., 1988, “Plastic Anisotropy in Drawn Metal
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Discussion: “A Displacement
Equivalent-Based Damage Model for
Brittle Materials” (Soh, C. K.,

Liu, Y., Yang, Y., and Dang, Y., 2003,

ASME J. Appl. Mech., 70, pp.

681—695) whereH(T)= [ a(t) e, (t)dt+ [{o' (t): € (t)dt measures the ir-
reversibility, H(o) is the yield functionF (o) is the viscoplastic

potential for transient creef®(o) is the potential for the steady-

N. D. Cristescu state creepky and ks are two viscosity constants, afd)=A if

e-mail: cristescu@ufl.edu A>0 and(A)=0 if A<O. .
| have also considered decrease of damage, not only increase,

W(t)\ oF S
H(o)/ 90 7 "Saa ¢

d(t)=—W,(t)=— kT< 1

if &F<O d é’S<0
| % an % .

Graduate Research Professor, Mem. ASME as produced by hydrostatic or deviatory tests. It was very well
University of Florida, 231 Aero Building, checked experimentally. For instance, on Fig(Fg. 9.17 is
P.O. Box 116250, Gainesville, FL 32611-6250 shown the damage produced at a tunnel. The results presented

concerning damage over time and the instantaneous one are quite
] ] ) ) _ well accepted. My approach is also used for particulate materials.
In the article, the damage discussed is the microcracks existifgre, however, they are applied to particulate materials with a
in any brittle material. It is a time-independent theOl’y. HOWeVegrain size ZOMm or b|gge|' For small partides_nanoparti_
the authors seem not to know that | published two bodtmck cles—my approach does not work for failure.
Rheologyby N. Cristescu, 1988, Kluwer Academic, 336 pp. and
Time Effects in Rock Mechaniby N. D. Cristescu and U. Hun-
sche, 1998, Wiley, 342 pp. In these books are chapters on damage:
in the first, “Damage and Failure of Rocks” and in the second,
“Damage and Creep Failure.” The damage | have considered is
based on the same idea: increase or decrease of microcracks, w™ . T 7 T PYRH A T
the distinction that | have considered also the hydrostatic tests . 490 T,
which the authors disregard. For instance, in FigFity. 4.25 (all [kPa] ALUMINA POWDER \

figures are from the second bgoéne can see the initial contri- 12001~

bution of the hydrostatic contribution on the alumina powder ob- M;:j**xxu
tained in a three-axial test apparatus. | have considered the phr 1 -
nomenon to be time-dependent. Thus, if you stop everything at i

certain level of stress, the strains are increasing in creep. In add s TN

tion, the authors consider only elastic properties. | have consid s® 204 ey,
ered inelastic properties with respect to developing damage. Thu:
| have considered damage produced by shear. For instance, ¢ . . e e e e eeer

Fig. 2 (Fig. 6.1 is shown, in an octahedral plane, various pos- 196 Ty, f:
sible pure three-axial tests. A pure hydrostatic test is showh)as “N\ % ¥
(c) is a typical true three-axial test. One can see that initially OA **[~ §

are the microcracks closed during the initial hydrostatic test. They X X X XK KKK X ; I X
are followed by a continuous increase of the microcracks. Only in L o598 kFa ¥ :f
the last part one is forming other microcracks and the curve is
going down. Finally, curveéd) corresponds to a very high initial . , | L X M
hydrostatic tests. When the stress state close to the failure curv.  ° 005 ~001 0G0 ) 005 g 00
the failure is imminent. Departing from this curve and approach-

ing the incompressible domain would increase the time to failumy. 1 (Fig. 4.25 Compressibility of alumina powder in classi-
to infinity. The damage rate is defined by the evolution law  cal triaxial tets )
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Closure to “A Disp|acement sion. Besides the opening cracks considered in Héfg], the

slipping cracks occurring in the case of triaxial compression have

Equivalence-Based Damage Model for aiso been taken into account. The damage activation criterion and
i i . . the additional normal strain have been modified to reflect the ef-
Brittle Mate_r_lals_’ P?.I’t I Theory’ fect of confinement. The stiffness degradation due to hydrostatic
Part Il: Verification” (2005, ASME J.  compression has also been considered. In addition, a new damage
evolution rule of concrete under triaxial compression has been
Appl MeCh-’ 72, pp 306'307) developed using the experiment-based method.
According to Eqgs(4), (7), and(15) of Ref.[2], the damage is
time dependent. However, in engineering applications, it is very
difficult to perform dynamic analysis for specimens or structures

Chee Kiong SoH

e-mail: csohck@ntu.edu.sg made of brittle materials such as concrete. A time-independent
Professor constitutive model is also necessary for the case of quasistatic
loading. Hence, although the damage evolution rule was defined
Yu Liu as time dependent, it has been simplified to be time independent
e-mail: cliuy@ntu.edu.sg by assuming that the strain rate remains constant while loading.

On the other hand, we believe that the constitutive model given
in Ref. [4] is derived using viscoplasticity. The total decrease of
irreversible stress work due to volumetric deformation from its
Yaowen Yang maximum value is defined as the damage parameter. As indicated
e-mail: cywyang@ntu.edu.sg by its authors, “the damage of the rock due to a loading history
Assistant Professor producing dilatancy is described by the constitutive equation it-
L . . . self, more exact by the part of the constitutive equation describing

School of Civil and I_Enwron_menFaI Er_lglneerlng, the irreversible deformation of the volume by dilatancy.” To us,
Nanyang Technological University, Singapore 639798  thjs definition of damage parameter is a dispensable part of their
constitutive equation. Furthermore, according to the theory of

We would like to highlight that one of the contributions of ourcontinuum damage mechani@DM), the damage in the material
paperq1,2] is to propose the assumption of displacement equivis irreversible and the damage-induced dissipation is non-
lence and the other contribution is to apply this assumption fegative. However, the damage parameter defined in[Re€an
derive a constitutive model for brittle materials. For simplificaincrease and decrease, and is thus reversible. Because of these two
tion, the material is assumed to be ideal brittle, and hence origasons, we concluded that the model given in R&f.is not
elastic damage is considered. We have indicated that it is a sib&sed on CDM but on viscoplasticity. Hence, this is different from
plified model, which is invalid for the case of the material undepur model presented in Refgl,2] which is based on CDM.
triaxial compression and for the case of the principal directions of We would like to thank Professor Cristescu for his comments
damage not coinciding with those of stress and strain. on our paper.

The displacement equivalence-based damage model for brittle
materials has been generalized for quasibrittle materials such as
concrete by dealing with the above two cases, as presentedRfiferences
Chap. 5 of Ref[3]. The first modification is to consider the case [1] Soh, C. K., Liu, Y., Yang, Y. W., and Dong, Y. X., 2003, “A Displacement
in which the principa| directions of damage do not coincide with Equivalence-Based Damage Model for Brittles-Part 1: Theory,” ASME J.
those of stress and strain, and the model is thus established in é% Gﬂf"k’t"g%m:@ > g%ij‘?'x” anvd Yang, Y. W, 2003, “A Displacement
randomly selected system. The effect of shear stress has been gqiivalence-Based Damage Model for Britles-Part 2: Verification,” ASME J.
dealt with in the auxiliary system. The second modification aims  Appl. Mech., 70, pp. 688—695.

to consider the plastic effect of concrete under triaxial compresl3] Liu, Y., 2003, Computational Experiment of Reinforced Concrete Structural
Element Using Damage Mechanjézh.D. thesis, Nanyang Technological Uni-
- versity, Singapore.
1To whom correspondence should be addressed. [4] Cristescu, N. D., and Hunsche, U., 1998Bme Effect in Rock Mechanics
Wiley, Chichester, England.
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